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Recent breakthroughs with numerous visual experiences using mobile devices
encourage the research of human-computer interaction (HCI) involving hand
gesture recognition for Holograms, Virtual Reality, and Augmented Reality.
The rise of these technologies allows educators in medical segments to ap-
ply new pedagogy by interacting with virtual content in a coherent learning
environment. In this thesis, the Central Nervous System (CNS) interaction
is implemented using the Skeleton Joints Moment (SJM) approach for data
reduction and convex hull k Nearest Neighbour (Convex Hull k-NN) for hand
gesture classification. Principal Component Analysis (PCA) is commonly
used for dimensional reduction as a data preprocessing for machine learning
like k-NN, Support Vector Machine (SVM), and Artificial Neural Network.
However, PCA implementation requires recalculation for a new batch of data.
Therefore, this thesis presented the SJM CH k-NN with the Density Map-
ping to classify hand gestures in CNS application. Evaluation results show
that this method supports incremental learning with optimized classification
complexity than PCA k-NN, SVM, and ANN.

This thesis introduces SJM CH k-NN with Density Mapping that addresses
three hologram interaction issues using low-end mobile devices. The issues
are data dimensionality, the complexity of hand gesture classification for in-
cremental learning, and the uncertainty of hand gesture classification within
a class intersection.
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First, this thesis proposed a robust centroid moment technique for hand ges-
ture data to reduce k-dimensional space to achieve significant data reduction
while retaining hand gesture information. SJM reduces k dimensional data
from hand gesture skeleton data to three principal components (x, y, and z-
axis). These components represent hand gesture moments. Researchers have
proposed different methods of data reduction. One of the methods is PCA.
PCA technique has similar accuracy compared to SJM. However, when new
data is inserted, PCA must decompose the large datasets into a matrix of
eigenvector and eigenvalue to describe their magnitude. Evaluation results
using k-NN show that SJM has better accuracy than PCA for skeleton data.
PCA has a higher uncertainty of mean error of 0.75 compared to SJM at only
0.01. In terms of accuracy, SJM shows 96% of prediction accuracy, similar to
PCA using hand skeleton joints but with O(n) complexity compared to PCA
with O(min(p3, n3)) where n is the data points in the dataset, and p is the
features.

Secondly, the importance and originality of this study are that it explores
the complexity of hand gesture classification for incremental learning using a
low-end device. Thus, this thesis presented a Convex Hull k-NN approach to
optimize hand gesture classification complexity. The advantage of traditional
k-NN is that it does not require preprocessing for a new batch of data. Many
researchers have utilized k-NN to classify hand gestures in the past decades
before moving to SVM and ANN. However, it is not practical for big data
where the complexity is O(n). The solution is to extend the Convex Hull
method into k-NN. The k-value is the smallest intersected region of hand
gesture classes. The evaluation result of the t-test shows that P < 0.05 where
there is a significant difference between Convex Hull SJM and Convex Hull
PCA. Thus, the SJM is feasible for Convex Hull SJM k-NN and has the
complexity of classification of O(c ∗ log(c)) for none intersected regions which
is better than traditional k-NN O(n) and ANN O(nt ∗ (ij + jk + kl)) where
i, j, k, and l are nodes, with t training examples and n epochs, and SVM
O(n3). The experiment shows that SJM CH k-NN optimized computational
complexity by O(c + i ∗ log(c + i)) for an incremental dataset in a real-time
environment with high accuracy of 98% where c is the convex hull points.

Finally, the third aim of this study is to investigate the uncertainty of hand
gesture classification. The primary concern of Convex Hull SJM k-NN is
the intersected region of the convex hull. Therefore in this thesis, density
mapping for the intersected convex hulls is introduced in the CNS system.
Using Convex Hull SJM k-NN with density mapping reduces 76% of data.
The t-test result shows that SJM data and SJM Density Mapping data have
a significant difference of P < 0.05. The F1 score results of this experiment
show that Convex Hull SJM k-NN with Density Mapping has 94% of accuracy.
The results indicate that Density Mapping reduces the data size into a fixed
data frame for intersected convex hulls.
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Penemuan terkini dengan pelbagai pengalaman visual menggunakan peranti
mudah alih menggalakkan lagi penyelidikan interaksi manusia-komputer (HCI)
yang melibatkan pengecaman isyarat tangan untuk tujuan interaksi Holo-
gram, Realiti Maya dan Realiti Berperantara. Kebangkitan teknologi ini
membolehkan pendidik di dalam segmen perubatan untuk menerapkan ped-
agogi baharu dengan berinteraksi melalui kandungan maya di dalam persek-
itaran pembelajaran yang koheren. Dalam tesis ini, interaksi Sistem Saraf
Pusat (CNS) dilaksanakan menggunakan pendekatan Skeleton Joints Moment
(SJM) untuk pengurangan data dan Convex Hull k Nearest Neighbour (CH
k-NN) untuk klasifikasi isyarat tangan. Analisis Komponen Utama (PCA) bi-
asanya digunakan untuk pengurangan dimensi sebagai prapemprosesan data
untuk pembelajaran mesin seperti k-NN, Mesin Vektor Sokongan (SVM) dan
Rangkaian Neural Buatan. Walaubagaimanapun, pelaksanaan PCA memer-
lukan pengiraan semula untuk kumpulan data baharu. Oleh itu, tesis ini
membentangkan SJM CH k-NN dengan pemetaan kepadatan untuk mengk-
lasifikasikan isyarat tangan dalam aplikasi CNS. Keputusan penilaian me-
nunjukkan bahawa kaedah ini dapat mengoptimumkan kerumitan klasifikasi
berbanding PCA k-NN, SVM dan ANN.

Tesis ini memperkenalkan SJM CH k-NN dengan Pemetaan Ketumpatan yang
menangani tiga isu interaksi hologram apabila menggunakan peranti mudah
alih berkuasa rendah. Isunya ialah saiz dimensi data, kerumitan klasifikasi
di dalam pengecaman isyarat tangan untuk pembelajaran mesin yang mem-
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punyai kemasukan data berperingkat, dan ketidakpastian klasifikasi dalam
kelas-kelas isyarat tangan yang bertindih.

Pertama, tesis ini mencadangkan teknik momen tengah untuk isyarat tangan
bagi mencapai pengurangan data yang ketara sambil mengekalkan maklumat
isyarat tangan tersebut. SJM mengurangkan dimensi data daripada rangka
isyarat tangan kepada tiga komponen utama iaity paksi x, y dan z. Komponen
ini mewakili isyarat tangan. Penyelidik di dalam bidang ini telah mencadan-
gkan kaedah yang berbeza melibatkan pengurangan data. Salah satu kaedah-
nya ialah PCA. Teknik PCA mempunyai ketepatan yang sama apabila diband-
ingkan dengan SJM. Walaubagaimanapun, apabila data baharu dimasukkan,
PCA mesti mengambil semula set data lama untuk diproses semula menjadi
matriks vektor eigen dan nilai eigen untuk mendapatkan magnitudnya. Kepu-
tusan penilaian menggunakan k-NN menunjukkan bahawa SJM mempunyai
ketepatan yang lebih baik daripada PCA untuk data rangka. PCA mempun-
yai ketidakpastian minimum ralat yang lebih tinggi iaitu 0.75 berbanding SJM
yang hanya 0.01. Dari segi ketepatan, SJM menunjukkan ramalan yang sama
berbanding PCA iaitu 96% tetapi mempunyai kerumitan yang lebih optimum
iaitu O(n) manakala PCA dengan kerumitan O(min(p3, n3)) dimana n ialah
jumlah data di dalam set data dan p ialah ciri-ciri data.

Kedua, kepentingan kajian ini ialah untuk meneroka kerumitan klasifikasi
isyarat tangan untuk pembelajaran mesin tambahan menggunakan peranti
berkuasa rendah. Oleh itu, tesis ini mencadangkan pendekatan Convex Hull
k-NN (CH k-NN) untuk mengoptimumkan kerumitan klasifikasi isyarat tan-
gan. Kelebihan k-NN tradisional ialah ia tidak memerlukan prapemprosesan
untuk kumpulan data baharu. Ramai penyelidik telah menggunakan k-NN
untuk mengklasifikasikan gerak isyarat tangan dari dulu lagi sebelum beralih
ke SVM dan ANN. Walaubagaimanapun, ia tidak praktikal untuk data be-
sar yang kerumitannya ialah O(n). Penyelesaiannya ialah dengan menambah
pendekatan Convex Hull ke dalam k-NN. Nilai k ialah kawasan berntindih
terkecil bagi kelas-kelas isyarat tangan. Keputusan penilaian t-test menun-
jukkan P < 0.05 di mana terdapat perbezaan yang signifikan antara Convex
Hull SJM dan Convex Hull PCA. Oleh itu, SJM boleh digunakan untuk
perlaksanaan CH k-NN yang mempunyai kerumitan pengelasan O(c ∗ log(c))
untuk kawasan tidak bersilang dimana ia lebih baik daripada k-NN tradisional
O(n) dan ANN O(nt ∗ (ij + jk + kl)) diaman i, j, k dan l ialah nod, t adalah
data contoh, dan SVM O(n3). Penilaian menunjukkan bahawa SJM CH k-
NN mengoptimumkan kerumitan kepada O(c + i ∗ log(c + i)) untuk set data
tambahan dalam persekitaran masa nyata dengan ketepatan 98% dimana c
ialah jumlah data dari pemprosesan Convex Hull.

Akhir sekali, matlamat ketiga kajian ini adalah untuk menyiasat ketidakpas-
tian klasifikasi isyarat tangan. Masalah utama di dalam perlaksanaan SJM
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CH k-NN ialah kawasan bersilang pada kelas-kelas Convex Hull. Oleh itu tesis
ini mencadangkan pemetaan ketumpatan untuk Convex Hull bersilang yang
akan diguna pakai di dalam sistem CNS. Menggunakan SJM CH k-NN dengan
pemetaan ketumpatan mengurangkan 76% data. Keputusan t-test mendap-
ati data SJM dan data pemetaan kepadatan SJM mempunyai perbezaan yang
signifikan iaitu P < 0.05. Keputusan skor F1 menunjukkan bahawa SJM CH
k-NN dengan pemetaan ketumpatan mempunyai 94% ketepatan. Keputusan
menunjukkan bahawa pemetaan ketumpatan mengurangkan saiz data untuk
Convex Hull yang bersilang.
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CHAPTER 1

INTRODUCTION

Neuroscience students in pharmacotherapy, pharmacology, and pathophysiol-
ogy mainly study the central nervous system. It is for medical conditions and
complications. Universiti Putra Malaysia academicians in neuroscience sug-
gest that central nervous system holograms can make teaching and learning
easier by embracing the idea of hybrid learning. It may help to enable in-
teractive visualization, brings conceptual clarity, and ensures communication
efficiency between educators and the students. However, most academicians
have low-end devices and minimal internet accessibility. Low-end devices have
a stringent resource constraint compared to high-end devices to recognize in-
teraction due to limited computational power, memory, and power supply,
e.g., mobile devices and tablets (Hahm et al., 2016). Therefore, this thesis
explicitly studies the constraints of the human-computer interaction (HCI)
approach for low-end devices. The HCI functionality is to navigate the cen-
tral nervous system within a hologram environment.

HCI using machine learning can be used to support various low-end devices.
It is vital in optimizing interaction complexity for mobile devices packed with
running sensors and visual experience. There are many sectors in education
that practice human interaction for training purposes. The training takes
place in a virtual environment. One of the most common interactions in
Augmented Reality (AR), Virtual Reality (VR), Mixed Reality (MR), and a
hologram is hand interaction. The hand interaction of virtual objects is im-
plemented using machine learning approaches to recognize hand gestures that
can be conducted using hand shapes or skeleton joints. A skeleton joint for
hand gesture representation contains connections between all joints connect-
ing neighboring phalanges. A dynamic hand gesture could be analyzed from
the skeleton joints if a hand pose changed to predict which gesture is being
performed (Shin and Kim, 2020). The HCI practiced by the educational sec-
tor has improvised pedagogy of the conventional system to be more interactive
(Ramsundar, 2015). Due to digitization, interaction data across the virtual
environment uncovers the hand gesture patterns using machine learning algo-
rithms (Reddy et al., 2020). It provides a new challenge in HCI, for instance,
hand gesture classification using incremental learning (Yang and Liao, 2014).
The challenge in incremental learning is to retrain these interactions to ac-
commodate new, previously unseen data, which demands high computational
time and energy requirements (Sarwar et al., 2020). Besides, the large data
dimension is difficult to classify (Lv et al., 2020). This study intended to use
hand gesture classification using incremental learning and hologram pyramid
for Central Nervous System (CNS) application where medical students can
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view and interact with 360-degree hologram objects. This approach will help
the student visualize the complex human nerve system interactively. It is one
of the most challenging topics in human anatomy.

An interactive holographic CNS application includes predetermined naviga-
tion throughout the complete nervous system as visual objects. The visual
objects being displayed are the brain and the spinal cord, as shown in figure
1.1. The brain that makes up the large portion of the nervous system is di-
vided into four parts (Brainstem, Cerebellum, Diencephalon, and Cerebrum)
and connects with the vertebrae. The vertebrae, consisting of cranial nerves
from the brain, protects the spinal cord. A more detailed explanation of CNS
is given in chapter 2.

Figure 1.1: Central nervous system

In this study, the CNS application aims to create virtual immersion content
with real-time interaction in a hologram environment. Educators can use
the pyramid hologram projection to interact with the brain using intuitive
free-hand gestures (Cheng et al., 2016). Hence, hand gestures have become
the principal technology for realizing immersive virtual interaction (Rosedale,
2017).
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The CNS application uses hand gesture interaction to interact with the brain
in a hologram setup. Hand gesture interaction is a way for a computer to start
comprehending human non-verbal communication. The general meaning of
hand gestures is the capacity of a computer to identify motions and execute
orders dependent on those gestures (More and Sattar, 2016). In addition,
hand gestures are ubiquitous, are natural characteristics, and are a significant
part of communication. Many studies have claimed that a hand gesture is
a structured system during human cognition and interaction (Yao and Fu,
2014). It is tactile, familiar to users, precise, and comfortable to use (Xiao
et al., 2018). Hence, hand gesture study is vital in the progression of computer
vision.

Hand gesture is an effective technique for hologram human-computer inter-
action (HCI). The main objective of this study is to make the interaction
between human and hologram interface as natural as possible. Like VR,
AR, and MR, hand gestures are the most suitable way to interact with 3D
(Sonkusare et al., 2015). With the advancement of virtual peripherals and sen-
sors, hand gestures have become a well-known approach to interacting with
head-mounted devices, tablets, and hologram projection. Users can control it
without physically touching a screen, using a keyboard or mouse. Therefore,
HCI has become a vital study for pattern classification in computer vision
fields (Yao and Fu, 2014)(Quan and Liang, 2017).

Hand gesture classification involves statistical learning theory and activation
control schemes. The standard approach of predictive pattern recognition in
machine learning like SVM, k-NN, and ANN emphasizes the minimization
of empirical risk (Pasolli et al., 2011). An SVM-based classification system
provides excellent performance like traditional classifiers. It is strongly in-
fluenced by the quality and quantity of the segmentized labeled data used
to train the classifier. A k-NN method is a popular data mining and statis-
tics classification approach due to its simple implementation and significant
classification performance (Zhang et al., 2008). However, assigning a fixed k
value to all test samples is impractical for traditional k-NN methods, even
though set by experts. For artificial neurons called Artificial Neural Networks
(ANNs) or Synthetic Neural Networks (SNNs), a neural network (NNs) is
an integrated collection of artificial human neurons utilizing a mathematical
or computational model for information processing based on a connectionist
approach to computation. An artificial neural network reveals that a good
choice of activation functions and control scheme will lead to a high memory
capacity and increased pattern retrieval capabilities (Lin and Chen, 2009).

Segmentizing data for hand gesture classification is required to divide labels
belonging to a particular hand gesture class by any scoring parameter from
hand features defining their likeliness to belong to that specific class (Mohapa-

3



© C
OPYRIG

HT U
PM

tra, 2019). Data labeling is computationally costly. Many researchers in their
study use Convex Hull to reduce the number of samples for classification (Xu
et al., 2021). Convex Hull reduces sample by vertices selection (Ding et al.,
2018).

Machine learning classification has been applied with the moment’s approach
in various applications. It is due to their invariant features and regardless of
the variations imposed (Zhihu Huang and Jinsong Leng, 2010) (Alp and Keles,
2017). Pasolli et al. applied hand gestures as an approach to interacting with
virtual content using HU Moments and SVM to achieve real-time recognition
(Pasolli et al., 2011). Monge et al. (Monge-Álvarez et al., 2019) claimed
that by using the Hu Moments approach, the system he developed could
detect audio-cough up to 88.51% for high sensitivity and 99.77% for specificity.
Lopez et al. described classifying five genres using Hu Moments led to the
accuracy of 83.33% (Lopes et al., 2017). Shen et al. experiment results show
that Hu Moments can eliminate a large amount of noise (Shen et al., 2015).
Moment’s approach could therefore classify and recognize the geometrical
features of the hand interaction. Plawiak et al. used k-NN to classify hand
body language gestures from specialized glove (P lawiak et al., 2016). Dembi et
al. from the University of Columbia used ANN to solve the inverse kinematic
computational problem in robotics. This seemingly simple task is required to
decide how to transform each joint to achieve the desired pose in cartesian
coordinates (Demby’S et al., 2019).

Machine learning involves high-dimensional data, which consists of many fea-
tures during data collection. There are potential issues when the data is high
in dimension. The first issue is the risk of massively overfitting the machine
learning model and reducing sample performance. It causes the classifica-
tion to be harder to cluster among the classes and appear equally alike and
prone to uncertainty. Hence, dimensionality reduction can remarkably reduce
the complexity during training and classification phases (Reddy et al., 2020)
(Zhang et al., 2008).

1.1 Motivation

Hand gesture recognition is becoming crucial for virtual interaction in a holo-
gram, virtual reality, augmented reality, and mixed reality. However, the
hand gestures classification requires high computation and is unsuitable for
real-time prediction and incremental learning. Another alternative is to ob-
tain cloud computing. However, it takes time to process new data with limited
resources. It requires expertise in cloud computing and is limited to a good
sample of data. It is hard for an educator with low-end devices without access
to the cloud to apply hand gesture prediction in a classroom without high-
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end computing. Moreover, there will be an issue when educators for medical
require a custom pose that is not in the cloud. The list below are the issues
in hand gestures classification for CNS application:

• The CNS application aims to run on low-end tablets. The experiment
on hand gesture classification lagged for every new batch of data using
the device. Current solutions like k-NN, SVM, and ANN require high
computation to remodel the class of hand gestures, which causes the
lag. Hence, it motivates this study to find an approach to reduce the
number of samples for classification.

• The incremental machine learning for a large dataset requires constant
and stable access to cloud computing. However, the CNS application
was not configured to operate within cloud computing due to the mobile
teaching environment, where internet access was limited.

• Other than limited internet access, the teaching environment was in
an offline mode most of the time. Therefore, an offline CNS applica-
tion with high dimensional data reduction is proposed to cover various
teaching environments.

1.2 Problem Statements

1.2.1 High dimensional hand gesture data in a low-end device to
use machine learning

Classification of hand gestures using machine learning in low-end devices is
computationally expensive for high-dimensional data and consists of unneces-
sary features. SVM and ANN are computationally expensive during training
or classification of hand gestures with high dimensional data (Rzayev et al.,
2017). In his paper, Musetta claimed that numerical simulations using ANN
for complex structures require time-consuming computation (Mussetta et al.,
2009). Therefore, the performance strongly depends on the hardware. Hand
gesture recognition using SVM with a large dataset is a challenging problem
and requires a growing memory with the number of training samples (Wang,
2008). Over the past decade, most data reduction research has emphasized
PCA usage. PCA result indicates data reduction from 1246 to 38 from the
collected hand skeleton data. However, these methods require remodeling for
every new batch of data. Therefore, a preprocessing solution without remod-
eling is needed to reduce the number of samples to smaller dimensions.
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1.2.2 Training and prediction complexity with incremental learn-
ing for low-end devices

The main challenge many researchers face is the significant amount of com-
putational complexity for incremental learning in low-end devices. This chal-
lenge leads researchers to find the best method to retain the trained data
when a new batch of data arrives. However, most of the incremental learn-
ing approaches require time to update. It is also cumbersome to collect and
annotate the training data (Guo et al., 2019). In a standard SVM, the train-
ing process has O(n3) time complexities, where n is the size of the training
dataset (Wang, 2009). The neural network complexity for classification is
O(nt ∗ (ij + jk + kl)), where i is the number of nodes, j number of nodes in
the second layer, k in the third layer, and l is the output layer. It is mainly
concerned with learning models in an ever-changing environment (Bouchachia
et al., 2007). The traditional approach of learning model using all the data
at once may not be feasible because it may require more storage for growing
data and take a very long time to build. Furthermore, the one-time built
model may not be able to learn the changed patterns automatically over time
(Pesala et al., 2019). Hence, a new method is necessary to resolve this issue.

1.2.3 Complexity of class intersection

Uncertainty of hand gestures when classes intersect is one of the most fre-
quently stated problems in machine learning. The complexity of uncertainty
requires high-performance processing during classification when the data size
is growing (Samadpour et al., 2015) (Jiaqi and Chung, 2017). The intersected
class region in this study becomes computationally expensive, and the class
becomes uncertain. It tends to search the nearest neighbors for a target in
the entire training set (Hou et al., 2018). For that reason, this study needs a
new approach to reduce data in intersected hand gesture classes.

1.3 Goal and Objectives

This study aims to develop a hand gesture classification model for low-end
devices. This research used data reduction and a fast machine learning al-
gorithm named SJM Convex Hull k-NN. It reduces the complexity of hand
gesture classification in a real-time environment without the preprocessing of
the dataset after the data reduction. The following objectives are the solution
to accomplish the goal:
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• To reduce data dimension of hand gesture dataset without preprocessing
for growing data using skeleton joints moment.

• To design incremental learning using a Convex Hull k-NN approach to
reduce the complexity of training and prediction for incremental learn-
ing.

• To optimize the searching complexity of an intersected cluster of classes
that cause uncertainty during classification.

1.4 Scope of research

This research aims to implement the SJM, CH k-NN, and Density Mapping
method on a hologram CNS application. The requirement is to prevent recal-
culation of the new batch dataset in an offline environment. Therefore, this
research examines a non-reverse technique such as moments and k-NN using
skeleton features as a dataset from a hand tracking device. The proposed SJM
CH k-NN with Density Mapping implementation is specifically for tablet and
desktop applications. Hence, CNS application implementation on a mobile
devices such as Android and iOS smartphones is not under the scope.
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1.5 Thesis organization

The thesis has four main parts: the introduction, literature review, research
chapters, and conclusion. The overview of the thesis organization is as follows:

Part I – Introduction

Chapter 1 is an introductory chapter that explains the research motivation,
then clarify the problem statements, goal and objectives, and the scope of the
research.

Part II – Literature Review

Chapter 2 discussed the related studies, starting with an overview of data
reduction techniques used in hand gesture classification and focusing on the
SJM technique. Then, the chapter continues to cover the data reduction tech-
niques related to high dimensional data, machine learning, and the MapRe-
duce method that constitute this thesis.

Part III – Research Chapters

This part consists of 4 chapters. Chapter 3 explains the overall research frame-
work, and the following chapters elaborate on the separate study related to
each research objective. Chapter 4 details the SJM data reduction, Chap-
ter 5 explains the CH kNN, and Chapter 6 describes the Density Mapping.
Chapter 4, Chapter 5, and Chapter 6 consist of an introduction, methodology,
experiment, results, and discussion.

Part IV – Conclusion

Chapter 7 provides the conclusions of each research chapter related to the
research objectives, followed by clarifying the research contributions of this
thesis. Finally, this study recommends future works at the end of the chapter.
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