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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfillment of the requirement for the degree of Doctor of Philosophy 

MACHINE-LEARNING APPROACH USING THERMAL AND SYNTHETIC 
APERTURE RADAR DATA FOR CLASSIFICATION OF OIL PALM 

TREES WITH BASAL STEM ROT DISEASE 

By 

IZRAHAYU BINTI CHE HASHIM 

December 2021 

Chairman : Prof. Sr. Gs. Abdul Rashid Mohamed Shariff, C.Eng 

Faculty : Engineering  

The fast growth of oil palm has resulted in its development as a strategic 
global commodity. Oil palm creates export revenues and strengthens the 
economies of numerous nations, especially Indonesia and Malaysia. 
However, oil palms are susceptible to basal stem rot (BSR) caused by 
Ganoderma boninense (G. boninense), the most dangerous oil palm disease. 
This disease has been a cause for concern as it has caused significant tree 
mortality in several plantations in Malaysia. Given that there is currently no 
effective cure for this disease, the only viable solution is to prolong the life of 
oil palm trees. This study explored the early detection of the BSR using 
thermal images and an ALOS PALSAR-2 image with dual-polarization, 
Horizontal transmit and Vertical receive (HV), and Horizontal transmit and 
Horizontal receive (HH). The study was conducted in Seberang Perak, part 
of Felcra Seberang Perak 10, and is located in Perak, Malaysia. Initially, an 
experiment was carried out to (1) identify the potential temperature variables; 
(2) identify the potential backscatter variables; (3) utilize the imbalance data
approach like Random under-sampling (RUS), Random oversampling
(ROS), Synthetic Minority Oversampling (SMOTE) and AdaBoost; and (4)
evaluate the performance of machine learning (ML) classifiers Naïve Bayes
(NB), Multilayer Perceptron (MLP), as well as Random Forest (RF) in
classifying the stages and severity levels of G. boninense. The sample size
was comprised of 55 non-infected trees and 37 infected trees. During the field
experiments, oil palm tree samples of non-infected (T0), mild infected (T1),
moderate infected (T2), and severe infected (T3) were measured using the
FLIR T620 IR infrared thermal imaging camera to obtain the temperature of
the oil palm trees. The temperature variation for each thermal image was
examined using FLIR ResearchIR Max, the camera manufacturer's software,
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and feature extraction for each thermal image was extracted using FLIR 
Tools in the FLIR ResearcherIR environment software. The backscattering 
value of each tree was then extracted from the ALOS PALSAR-2 image. 
Using the Extract Multi Values tool in ArcGIS, the backscattering value for 
each oil palm point was derived from the processed ALOS PALSAR-2 image. 
As the ALOS PALSAR-2 image was evaluated with dual-polarization (HH and 
HV), each digitized point has two distinct backscatter data with four severity 
levels (T0 to T3). The machine learning algorithm consistently performs well 
when presented with a well-balanced dataset. In an imbalanced dataset, one 
of the two classes contains fewer total samples than the other class. The 
sampling-based method, also known as the data level method, is used to 
deal with this problem. In this study, the resampling method and ensemble 
procedure relied entirely on the Waikato Environment for Knowledge Analysis 
(WEKA) version 3.8.5 software. The classification is performed using the 
derived features from the thermal images and the backscatter features. The 
extracted features serve as predictors and the status of oil palm as a 
response. To identify non-infected and BSR-infected trees, the WEKA tool 
version 3.8.5 was used for classification. The classifiers evaluated in this 
study were Nave Bayes (NB), Multilayer Perceptron (MLP), and Random 
Forest (RF). Two datasets, for training and testing, were both classified. We 
divided the dataset into a training dataset of 70% and a test dataset of 30%. 
The classification was done with 10-fold cross-validation to avoid overfitting 
and get unbiased prediction error estimates. This was the recommended 
validation method for the small dataset. This study, therefore, detailed the 
description of the confusion matrix as an alternative in terms of the rate of 
success of the non-infected and BSR-infected tree together with the balanced 
classification rate (BCR) or balanced accuracy, the precision-recall curve 
(PRC), and receiver operating characteristics (ROC) curve region (AUC) to 
evaluate different classifier and imbalanced approaches and measure their 
performance. The study found that the Tmax, Tmin feature is the most beneficial 
concerning other temperature characteristics for classifying non-infected or 
infected BSR trees. In the meantime, the HV feature is most advantageous 
for classifying non-infected or infected BSR trees compared to other 
backscatters. Compared with a single approach and other approximate 
imbalance data approaches, the ROS approach improves BCR, AUC, and 
PRC data results in datasets. Next, all classifier models were employed in 
classifying the BSR disease severity using the combination of the best 
features of temperature (Tmax, Tmin), backscatter features (HV), and significant 
ground-based data (DbH and soil moisture) with a single and ROS approach. 
In conclusion, all three ML methods can classify the oil palm with severe BSR 
disease with an outstanding result using the ROS approach. Meanwhile, the 
MLP was found to be the ideal model with a BCR value of 0.964, AUC and 
PRC having the same value of 1.000, model accuracy of 96.43%, and a 
Kappa coefficient of 0.95. The MLP classifier model also had a high success 
rate, whereby it correctly classified 85.71% (T0-healthy), 100% (T1-mild 
infected), 100% (T2-moderate infected), and 100% (T3-severe infected). This 
study concluded that for the early detection of BSR, a significant degree of 
accuracy was obtained. Infected palms are asymptomatic throughout the 
disease's early stages, making disease detection challenging. The survival 
of affected trees must detect BSR at the mild infected (T1) stage. A 
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meaningful conclusion of this study is that the ROS technique can 
differentiate the severity of mild infection (T1) compared to a single approach 
that is incapable of doing so. The main benefit of this study is the 
development of an appropriate model for early identification and severity 
classification of BSR disease in oil palms via remote sensing and data mining 
approaches rapidly and cost-effectively. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah 

PENDEKATAN PEMBELAJARAN MESIN MENGGUNAKAN DATA 
TERMA DAN RADAR BUKAAN SINTETIK UNTUK PENGELASAN 
POKOK KELAPA SAWIT DENGAN PENYAKIT REPUT PANGKAL 

BATANG   

Oleh 

IZRAHAYU BINTI CHE HASHIM 

Disember 2021 

Pengerusi : Prof. Sr. Gs. Abdul Rashid Mohamed Shariff, C.Eng 

Fakulti : Kejuruteraan 

Pertumbuhan pesat kelapa sawit telah menghasilkan pembangunannya 
sebagai komoditi global yang strategik. Kelapa sawit menyediakan hasil 
eksport dan mengukuhkan ekonomi banyak negara, terutamanya Indonesia 
dan Malaysia. Bagaimanapun, kelapa sawit mudah terdedah kepada 
penyakit reput pangkal batang (RPB), yang disebabkan oleh kulat 
Ganoderma boninense (G. boninense) dan merupakan penyakit kelapa sawit 
yang paling berbahaya. Penyakit ini telah menimbulkan kebimbangan, 
kerana ia telah menyebabkan kematian pokok yang ketara di beberapa 
ladang di Malaysia. Memandangkan pada masa ini tiada rawatan yang 
berkesan untuk penyakit ini, satu-satunya penyelesaian yang berdaya maju 
ialah memanjangkan hayat pokok kelapa sawit. Kajian ini meneroka 
pengesanan awal RPB menggunakan gabungan imej termal dan imej ALOS 
PALSAR-2 dengan polarisasi dwi,  transmisi Horizontal dan penerima 
Horizontal (HH) dan transmisi Horizontal dan penerima Vertical (HV). Kajian 
telah dijalankan di Seberang Perak yang merupakan sebahagian daripada 
Felcra Seberang Perak 10 dan terletak di Perak, Malaysia. Kajian ini telah 
dijalankan untuk (1) mengenalpasti potensi pembolehubah suhu; (2) 
mengenalpasti potensi pembolehubah nilai daya hamburan gelombang 
radar; (3) menggunakan pendekatan data ketidakseimbangan seperti 
Random oversampling (ROS), Random under-sampling (RUS), Synthetic 
Minority Oversampling (SMOTE) dan AdaBoost; dan (4) mengkaji prestasi 
pengkelasan pembelajaran mesin (ML) Naïve Bayes (NB), Multilayer 
Perceptron (MLP) dan Random Forest (RF) dalam mengklasifikasikan 
peringkat dan tahap keparahan G. boninense. Saiz sampel terdiri daripada 
55 pokok tidak dijangkiti serta 37 pokok yang dijangkiti. Semasa eksperimen 
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di lapangan, sampel pokok kelapa sawit tidak dijangkiti (T0), dijangkiti ringan 
(T1), dijangkiti sederhana (T2) dan dijangkiti teruk (T3) diukur menggunakan 
kamera pengimejan termal inframerah FLIR T620 IR untuk mendapatkan 
suhu pokok kelapa sawit. Variasi suhu bagi setiap imej termal telah diperiksa 
menggunakan FLIR ResearchIR Max, perisian pengeluar kamera, dan 
pengekstrakan ciri untuk setiap imej terma telah diekstrak menggunakan 
FLIR Tools dalam perisian persekitaran FLIR ResearcherIR. Nilai daya 
hamburan gelombang radar setiap pokok kemudiannya diekstrak daripada 
imej ALOS PALSAR-2. Menggunakan fungsi Extract Multi Values dalam 
ArcGIS, nilai daya hamburan gelombang radar bagi setiap titik kelapa sawit 
diperoleh daripada imej ALOS PALSAR-2 yang diproses. Memandangkan 
imej ALOS PALSAR-2 dinilai dengan polarisasi dwi (HH dan HV), setiap titik 
didigitalkan mempunyai dua nilai daya hamburan gelombang radar yang 
berbeza dengan empat tahap keterukan (T0 hingga T3). Apabila mempunyai 
dengan set data yang seimbang, algoritma pembelajaran mesin secara 
konsisten menunjukkan prestasi yang baik. Dalam set data yang tidak 
seimbang, salah satu daripada dua kelas mengandungi jumlah sampel yang 
lebih sedikit daripada kelas yang lain. Untuk menangani masalah ini, kaedah 
berasaskan persampelan, juga dikenali sebagai kaedah tahap data, 
digunakan. Dalam kajian ini, kaedah pensampelan semula dan prosedur 
ensemble telah menggunakan perisian Waikato Environment for Knowledge 
Analysis (WEKA) versi 3.8.5. Pengelasan dilakukan menggunakan ciri yang 
diekstrak daripada imej termal dan daya hamburan gelombang radar. Ciri 
yang diekstrak berfungsi sebagai peramal dan status kelapa sawit sebagai 
tindak balas. Untuk mengenal pasti pokok yang tidak dijangkiti dan dijangkiti 
RPB, perisian WEKA versi 3.8.5 telah digunakan untuk pengelasan. 
Pengelas yang dinilai dalam kajian ini ialah NB, MLP, dan RF. Dua set data, 
latihan dan ujian, kedua-duanya dikelaskan. Untuk tujuan ujian, kami 
membahagikan set data kepada set data latihan sebanyak 70% dan set data 
ujian sebanyak 30%. Pengelasan telah dilakukan menggunakan 
pengesahan silang 10 kali ganda untuk mengelakkan overfitting dan 
mendapatkan anggaran ralat ramalan yang tidak berat sebelah, kerana ini 
adalah teknik pengesahan yang disyorkan untuk dataset kecil. Kajian ini 
mengemukakan penerangan mengenai matriks kekeliruan sebagai alternatif 
dari segi kadar kejayaan pokok yang tidak dijangkiti dan yang dijangkiti RPB 
bersama dengan kadar klasifikasi yang seimbang atau ketepatan yang 
seimbang (BCR), rantau lengkung (AUC) ciri operasi penerima (ROC), dan 
keluk penarikan semula ketepatan (PRC) bagi menilai pendekatan 
pengkelasan dan ketidakseimbangan yang berbeza dan mengukur 
prestasinya. Kajian mendapati bahawa ciri Tmax, Tmin adalah ciri yang paling 
bermanfaat berbanding dengan ciri suhu lain untuk klasifikasi pokok yang 
tidak dijangkiti atau dijangkiti RPB. Sementara itu, ciri HV paling berkelebihan 
berbanding dengan nilai daya hamburan gelombang radar lain untuk 
mengklasifikasikan pokok yang tidak dijangkiti atau dijangkiti RPB. 
Berbanding dengan pendekatan tunggal dan pendekatan data 
ketidakseimbangan yang lain, pendekatan ROS meningkatkan data BCR, 
AUC dan PRC dalam set data. Seterusnya, semua model pengklasifikasian 
digunakan bagi mengklasifikasikan keparahan penyakit RPB menggunakan 
kombinasi ciri suhu terbaik (Tmax, Tmin), nilai daya hamburan gelombang radar 
(HV) dan data asas yang signifikan (diameter pada paras dada dan 
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kelembapan tanah) dengan pendekatan tunggal dan ROS. Kesimpulannya, 
ketiga-tiga kaedah mesin pembelajaran dapat mengklasifikasikan tahap 
keparahan pokok kelapa sawit dengan penyakit BSR dengan hasil yang luar 
biasa menggunakan pendekatan ROS. Sementara itu, MLP dikenal pasti 
sebagai model terbaik dengan nilai BCR 0.964, AUC dan PRC mempunyai 
nilai yang sama 1.000, ketepatan model 96.43%, dan pekali Kappa 0.95. 
Model pengkelasan MLP juga mempunyai kadar kejayaan yang kuat, dapat 
mengkelaskan 85.71% (T0-sihat), 100% (T1-jangkitan ringan), 100% (T2-
jangkitan sederhana) dan 100% (T3-jangkitan teruk) dengan betul. Kajian ini 
merumuskan bahawa untuk pengesanan awal RPB, tahap ketepatan yang 
ketara telah diperolehi. Pokok yang dijangkiti adalah tanpa gejala pada 
peringkat awal penyakit, menjadikan pengesanan awal penyakit mencabar. 
Adalah penting untuk mengesan RPB pada peringkat jangkitan ringan (T1) 
bagi pokok yang terjejas. Kesimpulan yang perlu diberi perhatian dalam 
kajian ini ialah teknik ROS boleh membezakan keterukan pada peringkat 
jangkitan ringan (T1) berbanding pendekatan tunggal yang tidak mampu 
berbuat demikian. Faedah utama kajian ini ialah pembangunan model yang 
sesuai untuk pengesanan awal dan klasifikasi keparahan penyakit RPB 
dalam kelapa sawit melalui pendekatan penderiaan jauh dan data 
perlombongan dengan cara dan kos yang efektif. 



© C
OPYRIG

HT U
PM

vii 

ACKNOWLEDGEMENTS 

In the name of Allah, the Most Compassionate and Most Merciful 

All praise and thanks to Almighty Allah for His blessing gave me the strength 
and passion to finish this research to its completion. 

My deepest appreciation and sincere gratitude go to my beloved husband, 
my kids and my family members. I owe you deeply for your unconditional 
love, support and sacrifices. 

I would like to take this opportunity to express my sincere gratitude to my 
beloved supervisor, Prof. Sr. Gs. Dr. Abdul Rashid Mohamed Shariff C.Eng, 
for giving me a chance to conduct this research. He gave me the utmost 
inspiration, encouragement, and supervision throughout the completion of 
this research. I would also like to record my profound gratitude to my 
committee members, Assoc. Prof. Dr. Siti Khairunniza Bejo, Assoc. Prof. Dr. 
Farrah Melissa Muharam and Assoc. Prof. Dr Khairulmazmi Ahmad, who 
taught, encouraged, and gave a lot of support to accomplish this research to 
its conclusion. 

Thanks and appreciation to the Ministry of Higher Education Malaysia and 
Universiti Teknologi Mara, Perak Branch, for providing a scholarship and 
study leave, making this research possible. 

I would express my gratitude to Universiti Putra Malaysia for providing the 
research's support and facilities. I also thank the University of Tsukuba, 
Japan, for allowing me to conduct my research by getting the ideas and 
expanding the knowledge from other researchers in Japan. 

I highly appreciate the assistance from oil palm industries, especially 
Malaysia Palm Oil Board (MPOB) and FELCRA Berhad, who provided the 
relevant data and field site for the research analysis to be carried out. I also 
would express our appreciation to Japan Aerospace Exploration Agency 
(JAXA) for the ALOS PALSAR-2 data. Special thanks to the Spatial 
Information System Laboratory Assistant Engineer, Tuan Haji Ghazali Bin 
Kassim, who maintained the facilities in the laboratory where I did my 
research. 



© C
OPYRIG

HT U
PM

viii 

I would also like to thank all the examiners entrusted to examine this 
research. I would also like to thank all the spatial group members who gave 
technical support and motivation in accomplishing my study.  

Lastly, my deep appreciation to my friends for their patience, support, and 
sacrifices throughout my study. Again, thank you to everyone who has been 
directly or indirectly involved in making this research a success. 



© C
OPYRIG

HT U
PM

x 

This thesis was submitted to the Senate of Universiti Putra Malaysia and has 
been accepted as fulfilment of the requirement for the degree of Doctor of 
Philosophy. The members of the Supervisory Committee were as follows: 

Abdul Rashid bin Mohamed Shariff, PhD  
Professor, Sr., Gs. 
Faculty of Engineering  
Universiti Putra Malaysia  
(Chairman)  

Siti Khairunniza binti Bejo, PhD 
Associate Professor 
Faculty of Engineering 
Universiti Putra Malaysia   
(Member) 

Farrah Melissa binti Muharam, PhD 
Associate Professor 
Faculty of Agriculture 
Universiti Putra Malaysia 
(Member) 

Khairulmazmi bin Ahmad, PhD 
Associate Professor 
Faculty of Agriculture 
Universiti Putra Malaysia 
(Member) 

ZALILAH MOHD SHARIFF, PhD 
Professor and Dean 
School of Graduate Studies 
Universiti Putra Malaysia 

Date: 11 August 2022 



© C
OPYRIG

HT U
PM

xii 

Declaration by Members of Supervisory Committee 

This is to confirm that: 

• the research and the writing of this thesis were done under our
supervision;

• supervisory responsibilities as stated in the Universiti Putra Malaysia
(Graduate Studies) Rules 2003 (Revision 2015-2016) are adhered to.

Signature: 

Name of Chairman of 
Supervisory Committee: 

Signature: 

Name of Member of 
Supervisory Committee: 

Signature: 

Name of Member of 
Supervisory Committee: 

Signature: 

Name of Member of 
Supervisory Committee: 



© C
OPYRIG

HT U
PM

xiii 

TABLE OF CONTENTS 

Page 

ABSTRACT i 

ABSTRAK iv 

ACKNOWLEDGEMENTS vii 

APPROVAL viii 

DECLARATION xi 

LIST OF TABLES xvii 

LIST OF FIGURES xxii 

LIST OF ABBREVIATIONS xxv 

CHAPTER 

1 INTRODUCTION 1 

1.1 Research Background 1 

1.2 Problem Statement 4 

1.3 Research Objectives 6 

1.4 Research Framework 7 

1.5 Scope of the Study 8 

1.6 Key Findings 8 

1.7 Thesis Organization 9 

2 LITERATURE REVIEW 10 

2.1 Introduction 10 
2.2 Basal Stem Rot (BSR) 12 
2.3 Symptoms of BSR 12 
2.4 Detection of BSR Disease 14 
2.5 Remotely Sensed Sensors Techniques in 

Detection of Ganoderma disease  
15 

2.5.1 Ganoderma Disease Detection 
using Hyperspectral Remote 

16 

21 

24 

26 

27 

28 

2.6 

Sensing 
2.5.2 Ganoderma Disease Detection 

using Multispectral Remote Sensing 
2.5.3 Ganoderma Disease Detection 

using Terrestrial Laser Scanning 
2.5.4 Ganoderma Disease Detection 

using Thermal Imaging  
2.5.5 Ganoderma Disease Detection 

using SAR 
2.5.6 Ganoderma Disease Detection 

using Combination of Thermal and 
SAR Data 

Overview of Machine Learning 48 



© C
OPYRIG

HT U
PM

xiv 

2.6.1 Types of Learning 49 

2.6.2 Learning Algorithm 49 

2.6.2.1 Naive Bayes 49 

2.6.2.2 Multilayer Perceptron 51 

2.6.2.3 Random Forests 52 

2.7 Machine Learning in Crop Disease 53 

2.7.1 Machine Learning in BSR Disease 
Detection. 

53 

2.8 Imbalanced Data Approach 56 

2.8.1 Approaches in Class Imbalance 
Classification 

57 

2.8.2 Data-level Approaches 58 

2.8.2.1 Undersampling 58 

2.8.2.2 Oversampling  59 

2.8.3 Algorithm-level Approach 60 

2.8.3.1 Ensemble method 60 

2.8.3.2 Hybrid Methods 60 

2.9 Accuracy Assessment 61 

2.9.1 Balanced Accuracy 62 

2.9.2 Area Under the ROC Curve (AUC) 62 

2.9.3 Precision and Recall Curve 63 

2.10 Summary 65 

3 RESEARCH METHODOLOGY 66 

3.1 Introduction 66 

3.2 Overall Methodology 66 

3.3 Study Area 67 

3.4 Materials and Data Collection 68 

3.4.1 Thermal Data 69 

3.4.1.1 Parameters of Thermal 
Camera 

70 

3.4.2 SAR Data 73 

3.4.3 Spatial Data Collection 74 

3.4.3.1 BSR Incidences 69 75 

3.4.3.2 Non-infected and BSR-
infected Tree Geographical 
Location 

76 

3.4.4 Ground Data Collection 77 

3.5 Image Processing 78 

3.5.1 Imagery Processing - FLIR Thermal 
image  

78 

3.5.1.1 Image Enhancement 79 

3.5.1.2 Identifying the Region of 
Interest (ROI) 

80 

3.5.1.3 Statistical Information 
Extracted 

80 

3.5.2 Imagery Processing- ALOS 
PALSAR 2 

80 



© C
OPYRIG

HT U
PM

xv 

3.6 Image Analysis 83 

3.6.1 Feature Extraction – Thermal image 83 

3.6.2  Feature Extraction – ALOS PALSAR 
2 

83 

3.7 Statistical Analysis 84 

3.8 Machine learning 85 

3.8.1 Imbalance Data Approach 86 

3.8.1.1 Random Undersampling  87 

3.8.1.2 Random Oversampling  87 

3.8.1.3 Synthetic Minority 
Oversampling Technique 
(SMOTE) 

88 

3.8.1.4 Ensemble model- AdaBoost 88 

3.8.1.5 Combination of data 
sampling and ensemble 
model (SMOTE+AdaBoost) 

88 

3.8.2 Selection of Learning Algorithm 90 

3.8.2.1 Classification 91 

3.8.3 Accuracy Assessment 92 

4 RESULTS AND DISCUSSION 94 

4.1 Introduction 94 

4.2 Emissivity Result 94 

4.3 Statistical Analysis Results 95 

4.3.1 Selection of Ground-Based Data 95 

4.3.2 Selection of The Time Session 97 

4.3.3 Feature Temperature Selection 101 

4.3.4 Selection of Feature Backscatter of 
Dual-polarization 

103 

4.4 Result of Machine Learning Approach 104 

4.4.1 Classification of Feature 
Temperature (Training Dataset) 

104 

4.4.2 Classification of Feature 
Temperature (Testing Dataset) 

116 

4.4.3 Discussion of Feature Temperature 
Classification Results 

126 

4.4.4 Classification of Feature 
Backscatters (Training Dataset) 

127 

4.4.5 Classification of Feature 
Backscatters (Testing Dataset) 

139 

4.4.6 Discussion of Feature Backscatters 
Classification Results 

150 

4.4.7 Classification of Combination 
Feature Temperature, Feature 
Backscatters and Ground-based 
Data (Training and Testing Dataset) 

150 

4.4.8 Discussion of Combination Feature 
Temperature, Feature Backscatters, 

156 



© C
OPYRIG

HT U
PM

xvi 

and Ground-based Data 
Classification Result 

4.5 Conclusion for the Work 157 

5 CONCLUSION AND RECOMMENDATIONS 158 

5.1 Introduction 158 

5.1.1 Effect of Temperature Feature 158 

5.1.2 Effect of Backscatter Feature 159 

5.1.3 Effects of Data Imbalance on 
Classification 

159 

5.1.4 Effects of Classifiers on the Model 
Performance 

160 

5.2 Recommendations for Future Work 161 

163 

195 

199 

REFERENCES  

APPENDICES  

BIODATA OF STUDENT  

LIST OF PUBLICATIONS  200 



© C
OPYRIG

HT U
PM

xvii 

LIST OF TABLES 

Table Page 

2.1 A review of the RS sensors and techniques used to 
identify and classify BSR disease in oil palm plantations. 

30 

2.2 List of ML algorithms employed for BSR detection. 56 

3.1 List of materials used in the research 69 

3.2 Specification of ALOS PALSAR 2 data used 74 

3.3 Ganoderma severity levels as determined by visual 
symptoms and the Ganoderma-selective media (GSM) 
test 

75 

3.4 Variables of backscatter utilized to distinguish non-
infected and infected trees with G. boninense 

84 

3.5 Summary of the parameters used in the imbalance 
approaches 

89 

3.6 A pre-processed dataset applying an imbalanced 
approach for non-infected and BSR-infected trees 

89 

3.7 A pre-processed dataset applying an imbalanced 
approach for non-infected and severity levels of BSR 

89 

3.8 Information about the datasets, input and output used in 
the study. 

91 

3.9 Classifiers and default parameters in WEKA 92 

4.1 The descriptive statistics for ground-based data were 
collected. 

94 

4.2 ANOVA results comparing the mean of ground-based 
data between non-infected and BSR-infected oil palm 
trees. 

94 

4.3 Descriptive statistics for mean temperature extracted 
from the thermal images. 

97 



© C
OPYRIG

HT U
PM

 

xviii 

 

4.4 ANOVA summary table for mean temperature extracted 
from the thermal images. 

97 

   
4.5 The descriptive statistics for features extracted from the 

thermal images. 
100 

   
4.6 ANOVA results comparing the mean of   Tmean, Tsd, 

Tcenter, Tmax, and Tmin between non-infected and BSR-
infected oil palm trees. 

100 

   
4.7 The descriptive statistics of variables gained from the 

backscatter of dual-polarization values 
101 

   
4.8 ANOVA results comparing the mean of the backscatter 

of dual-polarization values between non-infected and 
BSR-infected oil palm trees. 

102 

   
4.9 The balanced classification rate (BCR) for different types 

of classification model and different imbalance approach 
using various combinations of feature temperature 
extracted as an input (For training set) 

105 

   
4.10 The area under receiver operating characteristics (ROC) 

curve (AUC) for different types of classification model 
and different imbalance approach using various 
combinations of feature temperature extracted as an 
input (For training set) 

106 

   
4.11 The area Precision-Recall Curve (PRC) for different 

types of classification model and different imbalance 
approach using various combinations of feature 
temperature extracted as an input (For training set) 

107 

   
4.12 The success rate (%) of non-infected (N) and BSR-

infected (I) for different types of classification model and 
different imbalance approach using various 
combinations of feature temperature extracted as an 
input (For training set) 

108 

   
4.13 ANOVA for the effect of features, imbalanced 

approaches and classifiers on BCR, AUC and PRC 
across non-infected and BSR-infected tree 

110 

   
4.14 Mean comparison of BCR, AUC, and PRC obtained from 

Tukey's HSD test according to features, imbalanced 
approaches, classifiers and interaction of classifier and 
imbalance approach. 

111 

   
4.15 The balanced classification rate (BCR) for different types 

of classification model and different imbalance approach 
116 



© C
OPYRIG

HT U
PM

xix 

using various combinations of feature temperature 
extracted as an input (For testing set) 

4.16 The area under receiver operating characteristics (ROC) 
curve (AUC) for different types of classification model 
and different imbalance approach using various 
combinations of feature temperature extracted as an 
input (For testing set) 

117 

4.17 The area Precision-Recall Curve (PRC) for different 
types of classification model and different imbalance 
approach using various combinations of feature 
temperature extracted as an input (For testing set) 

118 

4.18 The success rate (%) of non-infected (N) and BSR-
infected (I) for different types of classification model and 
different imbalance approach using various 
combinations of feature temperature extracted as an 
input (For testing set) 

119 

4.19 ANOVA for the effect of features, imbalanced 
approaches and classifiers on BCR, AUC and PRC 
across non-infected and BSR-infected tree. (For testing 
set) 

121 

4.20 Mean comparison of BCR, AUC, and PRC obtained from 
Tukey's HSD test according to features, imbalanced 
approaches, classifiers and interaction of classifier and 
imbalance approach. (For testing set) 

122 

4.21 The balanced classification rate (BCR) for different types 
of classification model and different imbalance approach 
using various combinations of feature temperature 
extracted as an input (For training set)  

127 

4.22 The area under receiver operating characteristics (ROC) 
curve (AUC) for different types of classification model 
and different imbalance approach using various 
combinations of feature temperature extracted as an 
input (For training set) 

128 

4.23 The area Precision-Recall Curve (PRC) for different 
types of classification model and different imbalance 
approach using various combinations of feature 
temperature extracted as an input (For training set) 

129 

4.24 The success rate (%) of non-infected (N) and BSR-
infected (I) for different types of classification model and 
different imbalance approach using various 

130 



© C
OPYRIG

HT U
PM

 

xx 

 

combinations of feature temperature extracted as an 
input (For training set) 

   
4.25 ANOVA for the effect of features, imbalanced 

approaches, classifiers and two-way interaction on 
BCR, AUC and PRC across non-infected and BSR-
infected tree. (For training set) 

132 

   
4.26 Mean comparison of BCR, AUC, and PRC obtained from 

Tukey's HSD test according to features, imbalanced 
approaches, classifiers and interaction of classifier and 
imbalance approach. (For training set) 

133 

   
4.27 The balanced classification rate (BCR) for different types 

of classification model and different imbalance approach 
using various combinations of feature temperature 
extracted as an input (For testing set) 

137 

   
4.28 The area under receiver operating characteristics (ROC) 

curve (AUC) for different types of classification model 
and different imbalance approach using various 
combinations of feature temperature extracted as an 
input (For testing set) 

138 

   
4.29 The area Precision-Recall Curve (PRC) for different 

types of classification model and different imbalance 
approach using various combinations of feature 
temperature extracted as an input (For testing set) 

139 

   
4.30 The success rate (%) of non-infected (N) and BSR-

infected (I) for different types of classification model and 
different imbalance approach using various 
combinations of feature temperature extracted as an 
input (For testing set) 

140 

   
4.31 ANOVA for the effect of features, imbalanced 

approaches and classifiers on BCR, AUC and PRC 
across non-infected and BSR-infected tree. (For testing 
set) 

143 

   
4.32 Mean comparison of BCR, AUC, and PRC obtained from 

Tukey's HSD test according to features, imbalanced 
approaches, classifiers and interaction of classifier and 
imbalance approach. (For testing set) 

144 

   
4.33 The balanced classification rate (BCR), the area under 

receiver operating characteristics (ROC) curve (AUC) 
and area Precision-Recall Curve (PRC) for different 
types of classification model and different imbalance 

147 



© C
OPYRIG

HT U
PM

xxi 

approach using combinations of the best feature as an 
input (For training set) 

4.34 The success rate (%) of non-infected (N) and BSR-
infected (I) for different types of classification model and 
different imbalance approach using combinations of the 
best feature as an input (For training set) 

148 

4.35 The balanced classification rate (BCR), the area under 
receiver operating characteristics (ROC) curve (AUC) 
and area Precision-Recall Curve (PRC) for different 
types of classification model and different imbalance 
approach using combinations of the best feature as an 
input (For testing set) 

150 

4.36 The success rate (%) of the severity level of oil palm 
trees for different types of classification model and 
different imbalance approach using combinations of the 
best feature as an input (For testing set) 

150 

4.37 Classification accuracy based on the severity level of oil 
palm trees for different types of machine learning model 
and different imbalance approach 

151 



© C
OPYRIG

HT U
PM

 

xxii 

 

LIST OF FIGURES 

Figure  Page 
   

1.1 Research framework 8 

   
2.1 Ganoderma symptoms and spread of disease (Source: 

MPOB twitter). 
13 

   
2.2 Ganoderma disease detection using RS techniques. 15 

   
2.3 A typical machine learning system 49 

   
2.4 Confusion matrix 61 

   
2.5 Examples of AUC- ROC 62 

   
2.6 Examples of PRC 64 

   
3.1 Overall methodology flowchart of the research 67 

   
3.2 (a) Malaysia Map, (b) Perak State (c) Mukim Pasir 

Salak, and (d) the image of the study area, Parcel 3, 
Phase 1, FELCRA Seberang Perak 10. 

68 

   
3.3 Position of the thermal camera during image capture of 

the oil palm tree trunk 
70 

   
3.4 Steps to determine emissivity on the field; (a) an 

electrical tape is put on the oil palm tree, (b) the 
temperature of the tape is measured, and (c) the 
emissivity setting is adjusted to the same temperature 
as the previous measurement is obtained. 

72 

   
3.5 Steps to determine RAT on the field; (a) uncrumple the 

aluminium foil and attach it to a piece of cardboard, (b) 
the emissivity is set at 1.0, (c) the cardboard is put in 
front of the oil palm tree trunk, and (d) the apparent 
temperature of the aluminium foil is measured and 
recorded 

72 

   



© C
OPYRIG

HT U
PM

xxiii 

3.6 (a) tree non-infected by BSR; (b) tree infected by BSR
presenting foliar symptoms such as skirting-like
formations on the lower leaf surfaces; (c) tree infected
by BSR presenting multiple unopened spears; and (d)
tree infected by BSR presenting fruiting bodies and
decay of the palm bole

76 

3.7 Spatial distribution of non-infected and BSR-infected 
trees in Parcel 3. 

77 

3.8 Ground data collection for (a) soil moisture, (b) DbH, and 
(c) tree height.

78 

3.9 The general interface of FLIR ResearchIR Max 78 

3.10 Thermal image processing workflow 79 

3.11 SAR processing workflow; (a) SAR image pre-
processing; (b) extraction of backscatter HH and HV for 
oil palm trees by basing on census data. 

81 

3.12 HH backscatter value for the whole image. 82 

3.13 HV backscatter value for the whole image. 82 

3.14 Overview of the machine learning methodology used in 
this study. 

86 

4.1 Determination of emissivity for oil palm tree (a) 
temperature recorded for the area coating with the tape 
with emissivity 0.95 (b) temperature recorded for the 
area without coating with emissivity 0.98. 

93 

4.2 (a) shows the relationship between DbH and the status
of the oil palm trees, (b) the relationship between soil
moisture and the status of the oil palm trees.

95 

4.3 Thermal images of (a) morning session- non-infected, 
(b) morning session-BSR-infected, (c) evening session- 
non-infected, and (d) evening session-BSR-infected

96 

4.4 (a) the relationship between feature temperature
(Tmean) and the status of the oil palm trees, (b) the
relationship between feature temperature (Tmean) and
the session captured of thermal image, and (c) the

98 



© C
OPYRIG

HT U
PM

 

xxiv 

 

interaction effect of feature temperature (Tmean) with 
the healthiness of oil palm and session. 

   

 

 

 

  



© C
OPYRIG

HT U
PM

xxv 

LIST OF ABBREVIATIONS 

EU European Union 

MSPO Malaysian Sustainable Palm Oil  

PFR Permanent Forest Reserve 

MPOB Malaysia Palm Oil Board 

BSR Basal Stem Rot 

GSM Ganoderma Selective Medium 

DNA Deoxyribonucleic Acid 

PCR Polymerase Chain Reaction 

SAR Synthetic Aperture Radar 

ML Machine Learning 

ROS Random Oversampling 

RUS Random Under-sampling 

SMOTE Synthetic Minority Oversampling 

NB Naïve Bayes 

MLP Multilayer Perceptron 

RF Random Forest 

HS-SPME Headspace Solid-Phase Microextraction 

GC–MS Gas Chromatography-Mass Spectrometry 
ELISA-
PAb 

Enzyme-Linked Immunosorbent Assay-Polyclonal 
Antibody 

RS Remote Sensing 

ASW Average Silhouette Width 

TLC Total Leaf Chlorophyll 

GER Geophysical And Environmental Research 

ANN Artificial Neural Network 

FR-IR Fourier Transform Infrared 

LDA Linear Discriminant Analysis 

QDA Quadratic Discriminant Analysis 

kNN K-Nearest Neighbour

PCA Principal Component Analysis 



© C
OPYRIG

HT U
PM

 

xxvi 

 

SVM  Support-Vector Machines 

NIR  Near Infrared 

AISA  Airborne Imaging Spectroradiometer for Applications 

DGPS  Differential Global Positioning System 

MNF  Minimum Noise Fraction 

NDVI  Normalized Difference Vegetation Index 

VOGI  Vogelmann Red Edge Index 

MSR  Modified Simple Ratio 

SRI  Simple Ratio Index 

SAM  Spectral Angle Mapper 

VI  Vegetation Indices 

REP  Red Edge Position  

CR  Continuum Removal 

DSI  Disease Severity Index 

BDNA  Band Depth Normalized to Area 

ARVI  Atmospherically Resistant Vegetation Index  

GBNDVI  Green Blue Normalized Difference Vegetation Index  

SAVI  Soil Adjusted Vegetation Index  

CART  Regression Tree 

ORF  Oblique Random Forest 

PLS  Partial Least Squares 

Rferns  Random Ferns 

PRF  Parallel Random Forest 

RLB  RF Rule-Based 

DT  Decision Tree 

UAV  Unmanned Aerial Vehicles 

MLD  Maximum Likelihood  

MD  Mahalanobis Distance 

NN  Neutral Net 

OBIA  Object-Based Image Analysis 

FLS  Full-Lambda Schedule 

RGB  Red, Green, Blue 



© C
OPYRIG

HT U
PM

xxvii 

R Red 

G Green 

B Blue 

LiDAR Light Detection and Ranging 

DBH Diameter at Breast Height 

TLS Terrestrial laser scanning 

CWSI Crop Water Stress Index 

RADAR RAdio Detection and Ranging 

HH Horizontal - Transmit and Horizontal – Receive 

HV Horizontal - Transmit and Vertical – Receive 

VV Vertical - Transmit and Vertical – Receive 

SNAP Sentinel Application Platform 

KNB Kernel Naïve Bayes 

PC Principal Components 

TP True Positive 

FP False Positive 

FN False Negative 

TN True Negative 

BCR Balanced Accuracy 

ROC Receiver Operating Characteristic 

AUC Area Under the Curve 

PRC Precision-Recall Curve 

GIS Geographical Information System 

JAXA Japan Aerospace Exploration Agency 

ALOS Advanced Land Observation Satellite  

PALSAR Phased Array L-type Synthetic Aperture Radar 

AGC Automatic Gain Control 

PE Plateau Equalization 

ROI Region of Interest 

ENL Equivalent Number of Looks 

SMPI Speckle Suppression and Mean Preservation Index 

dB Decibel 



© C
OPYRIG

HT U
PM

 

xxviii 

 

DN  Digital Number 

Tmax  Maximum Temperature of Oil Palm Trunk  

Tmin  Minimum Temperature of Oil Palm Trunk 

Tcenter  Center Temperature of Oil Palm Trunk 

Tmean  Mean Temperature of Oil Palm Trunk 

Tsd  Standard Deviation Temperature of Oil Palm Trunk 

ANOVA  Analysis of Variance 

WEKA  Waikato Environment for Knowledge Analysis 

   

   

   

   

   

 

 

 



© C
OPYRIG

HT U
PM

1 

CHAPTER 1 

1 INTRODUCTION 

1.1  Research Background 

Palm oil is an important raw material for food and non-food industries. Over 
the recent years, Malaysia faced the implications of the European Union's 
(EU) anti-palm oil campaign on the palm oil industry due to concerns that 
oil palm cultivation accelerates global warming and deforestation. 
Nevertheless, Malaysia is committed to developing the country's palm oil 
industry sustainably through various initiatives (Ishak, 2020). Among them 
are the mandatory implementation of the Malaysian Sustainable Palm Oil 
Certification Scheme (MSPO) from 1 January 2020, strengthening policies 
in maintaining the country's oil palm cultivation activities such as limiting the 
area of oil palm cultivation throughout the country with a target of 6.5 million 
hectares. These include a ban on the cultivation of new oil palm in new 
peatland areas, a ban on the conversion of Permanent Forest Reserve 
(PFR) land use for oil palm or other agricultural cultivation activities, and the 
preparation of an official map of oil palm areas for community access. 
Malaysia accounts for 18.5 million tonnes representing 34.15% of the global 
palm oil production (Malaysian Palm Oil Council, 2019). Being among the 
largest producers and exporters of palm oil and palm-based products, 
Malaysia plays a vital role in meeting the increasing demand worldwide for 
sustainable oils and fats. In 2021, the export revenue from palm oil and 
palm-based products was expected to increase by 2.4% to RM74 billion 
versus RM72.30 billion recorded in 2020 (Bernama, 2021a). In Malaysia, 
2.5 million people are dependent on oil palms (A. Ibrahim, 2015). Growing 
palm oil cultivation each year implies that it is preferred for farming and a 
significant source of income for the rural community (A. Ahmad, Osman, 
Omar, Rahman, & Ishak, 2020). Hence, the role of the palm in the nation’s 
economic and socioeconomic development is crucial. 

Palm oil is one of the leading vegetable oils in various industries, especially 
the food industry, and plays an essential economic role, especially in major 
producer countries. The oil extracted through the oil palm kernel is used in 
numerous processed food production and cooking oils. It is employed to 
manufacture cosmetics, soap, shampoos, and detergents with its 
derivatives. It can also be used as a biofuel (Ghazali, Yusof, & Ahmad, 
2006).  

Based on Malaysia Palm Oil Board (MPOB), palm oil production and export 
have rapidly increased in Malaysia between the year 2012 to 2013 (Bejo & 
Vong, 2014). However, in Malaysia, a common soil-borne fungus known as 
Ganoderma, which can infect palm trees, is becoming a growing concern 



© C
OPYRIG

HT U
PM

 

2 

 

for oil palm plantations. Ganoderma has the potential to reduce yields long 
before it kills an oil palm significantly, and its spores can travel rapidly 
through wind and water over ever-increasing portions of a plantation once 
introduced. In 1930, Ganoderma infection, which is a severe plant root 
system disease, was first reported by discrimination on Ganoderma lucidum 
pathogens in oil palm plantations in Malaysia (Ariffin, Idris, & Marzuki, 1996) 
and it was termed as the Basal Stem Rot (BSR) infection (Haniff, Ismail, & 
Idris, 2005; Utomo, Werner, Niepold, & Deising, 2005) Many studies in 
Malaysia and Indonesia's oil palm plantations indicate that BSR infection is 
predominantly brought about by a single pathogen called Ganoderma 
boninense (G.boninense) (Ho & Nawawi, 1985). A severe plant root system 
disease causes BSR infection (Haniff et al., 2005; Utomo et al., 2005; Idris 
et al., 2002). Therefore, to ensure that palm oil management is sustainable, 
these types of fungal diseases must be controlled to increase high-quality 
palm oil production. 

In the BSR infection, fungal pathogens infect and kill the roots and the basal 
stem. Even in oil palm nurseries, the disease is infectious (Naher, Yusuf, 
Tan, & Ismail, 2013; Wong, Bong, & Idris, 2012). The contaminated internal 
tissues and palm roots become very dry, soft, and powdery. The cortical 
tissue color gets altered quickly into brown color and the fragments and the 
stale color to black (Singh, 1991). There are a number of particular 
symptoms indicating a strong prevalence likelihood of those diseases in oil 
palms, which includes wilting and hanging down green fronds (Kandan, 
Bhaskaran, & Samiyappan, 2010; Singh, 1991), changing frond color from 
green to yellow (Kandan, et al., 2010; Singh, 1991), decreased frond 
production leading to smaller canopy size (Naher  et al., 2013) and 
eventually, basidiomata which occur on the trunks (Kandan, et al., 2010; 
Ariffin, Idris, & Singh, 2000) It is possible for the oil palms that are infected 
to rupture and collapse should they remain in the plantation areas (Idris et 
al., 2002). BSR is considered a silent disease as it shows no apparent 
symptoms until the infection severity level in the plant roots is around 8% 
(Naher, Tan, Yusuf, Ho, & Siddiquee, 2012). Young palms that are infected 
will usually die within six months to two years of the prevalence of these 
symptoms, while mature palms generally take two to three years (Ariffin et 
al., 2000). (Naher, Ho, Tan, Yusuf, & Abdullah, 2011) found that the 
chitinase gene is more significant in the root tissues of infected oil palms 
than the leaf tissues. When BSR foliar symptoms emerge, young oil palms 
die much faster than mature ones. When foliar signs occur, the fungus has 
already infected fifty percent of the plant's tissue (Arrifin et al., 2000). 
Relevant studies show that palm oil growth and metabolism initially 
decrease in BSR infection and its production. 

Many scientific experiments have been carried out to determine a practical 
approach to detect BSR earlier, including the minor scale laboratory-based 
technique. A small number of biochemical approaches can be used to 
distinguish between BSR infections such as the first method is culture-
based, like Ganoderma Selective Medium (GSM) (Ariffin et al., 1996) and 
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the second technique uses Deoxyribonucleic Acid (DNA) molecules such 
as Polymerase Chain Reaction (PCR) (Kandan et al., 2009; Utomo & 
Niepold, 2000). In the disease detection method in PCR, it is found that the 
DNA of a microorganism causes a particular disease to be extracted and 
purified, accompanied by amplification. Disease-triggering organisms are 
confirmed using gel electrophoresis (Sankaran, Mishra, Ehsani, & Davis, 
2010). There are several advantages and disadvantages to the techniques 
of detecting molecular-based disease. It can be considered a robust 
reference method to detect specific plant diseases earlier. However, as it 
requires stem collection and laboratory work that is expensive, time-
consuming, elaborate, and laborious, it can not be used as a preparatory 
experiment method on a large scale (Sankaran et al., 2010). For BSR 
infection’s early detection, the GSM-based method can also be used (Ariffin 
& Idris, 1991). It is capable of isolating the pathogen selectively from the 
infected tissue. Therefore, except for Ganoderma, growing fungi and 
bacteria are excepted in this method (Ariffin & Idris, 1991). However, 
because it is labor-intensive and time-consuming, it is not applicable on a 
large scale. 

Therefore, to monitor such a dangerous plant disease in a comfortable, 
rapid, accurate and widespread way, it is crucial for identifying well-
organized, non-invasive and non-destructive techniques. Geospatial 
technologies and remotely sensed sensors have been placed as practical 
as well as applicable methods for the classification and detection of BSR 
contingent on the recent research (Azmi et al., 2020; Bejo, Abdol Lajis, Abd 
Aziz, Seman, & Ahamed, 2018; Husin et al., 2020a; Izzuddin, Hamzah, 
Nisfariza, & Idris, 2020; Izzuddin et al., 2018; Khaled et al., 2020; Santoso, 
Tani, Wang, Prasetyo, & Sonobe, 2019; Toh, Izzuddin, Ewe, & Idris, 2019; 
Wiratmoko, Jatmiko, Yusuf, Farrasati, & Prasetyo, 2020). These reports 
have shown that the techniques can identify BSR early and differentiate 
between healthy and BSR-infected trees. Nevertheless, a part of the 
approaches still was limited to further classifying the level of severity of the 
BSR infection. 

Thermal imaging uses an image to represent infrared radiation and thus the 
heat of an object. All objects having a temperature higher than absolute zero 
(-273 ° C) emit infrared radiation, but humans' vision is limited to 
electromagnetic visible spectrum radiation. Thermal imaging extends the 
limited vision of humans to view infrared radiation beyond the boundary. 
Over the recent years, developments in the thermal imaging field have been 
rapid. The current availability of commercial systems has made it possible 
to apply thermal imaging methods to a wide array of agricultural, veterinary, 
soil moisture studies, medical and military, and industrial thermal imaging is 
used commonly (Vadivambal & Jayas, 2011). In many operations involving 
in agriculture, there are various potential applications for thermal imaging, 
which includes estimating soil water status, assessing the viability of 
seedlings, estimating the crop water stress, planning irrigation, determining 
the pathogen and disease affected plants, estimating the fruit yield as well 
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as evaluating fruit and vegetable maturity. Based on the literature, we can 
conclude that thermal imaging could analyze plant water stress and disease 
detection. Since the water transport of oil palm was affected by BSR 
infection, the BSR-infected tree's water stress would differ from healthy 
trees. There is, therefore, a potential thermal imaging use in the detection 
of infection with BSR. 

As an active remote sensing technology, microwave remote sensing can 
generate its own radiation and provide imagery regardless of weather or 
daylight conditions. The device resolves the cloud cover issue associated 
with optical remote sensing, common in the tropics, where most oil palms 
are grown. This information is derived from the ground surface's 
backscattered energy. The microwave's wavelength is longer, which allows 
for a higher penetrating power. Measurement of the pixels in the same row 
and column as the illuminated target also collects texture information. Using 
this information, you can tell if a surface is smooth, like water or rugged 
trees (Daliman, Rahman, & Busu, 2014). Since the L-band (at 30–15 cm 
wavelength) is the most effective in mapping forested vegetation and oil 
palms, the L-band is considered the most effective at determining the 
structure of the sub-canopy levels (Ottinger & Kuenzer, 2020; Teng et al., 
2015). Microwave remote sensing has been used in the oil palm 
classification because of these valuable characteristics and the capacity to 
identify different crop types and monitor crop growth (K. L. Chong, Kanniah, 
Pohl, & Tan, 2017; Descals et al., 2019; Silva, Rudorff, Formaggio, 
Paradella, & Mura, 2012). Besides, there is still a lack of microwave 
wavelength monitoring of oil palm trees' health to date. Thus, it is possible 
to assess SAR data's potential in identifying G. boninense disease by its 
disease stage. 

1.2 Problem Statement 

Identifying the plant's health condition is the first essential step in controlling 
diseases, just as it is in all other crop production procedures. One of the 
significant challenges in detecting BSR is that the foliar symptoms appear 
in an advanced stage of the disease. One only way to detect the fruiting 
body visually is around the oil palm trunk. Due to the disease's difficulties in 
being diagnosed early, it spreads rapidly during the field's earliest stages of 
oil palm production. Generally, detecting and controlling BSR in its early 
phases is ineffectual and inaccurate (Chong, Dayou, and Alexander, 2017; 
Fowotade et al., 2019). Early identification is difficult because of the 
absence of visible symptoms, which has become a significant impediment 
to controlling BSR disease (Siddiqui, Surendran, Paterson, Ali, & Ahmad, 
2021). While BSR is incurable, having an early identification tool for infected 
palms is crucial for economically maintaining the condition. 
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The BSR disease detection in oil palm trees has been done through various 
studies and approaches, including manual visual inspection, laboratory 
analysis, and remote sensing. However, these techniques' abilities to detect 
BSR in oil palm trees have some limitations regarding the issues of labor, 
price, and time detecting BSR in oil palm trees. Due to these limitations, 
developing cost-effective and environmentally safe alternative methods is 
an essential solution and a critical approach to controlling BSR. Additionally, 
BSR infection is challenging to be detected in the early stages of the 
disease. 

Disease-specific and rapid techniques deemed fitting for the early disease 
detection were created due to increased demand for automated non-
destructive methods. Plant diseases and stress monitoring could be carried 
out with remote sensing techniques (Ennouri & Kallel, 2019; Gerhards, 
Schlerf, Mallick, & Udelhoven, 2019; Gogoi, Deka, & Bora, 2018; Yang, 
2020; J. Zhang et al., 2019; N. Zhang et al., 2020). Studies in the recent 
times have attempted to formulate this technology to identify and measure 
plant diseases as well as stress in large-scale and real-time trials in the field 
(Bock, Barbedo, Del Ponte, Bohnenkamp, & Mahlein, 2020; Donatelli et al., 
2017; Singh, Ganapathysubramanian, Sarkar, & Singh, 2018; Wu et al., 
2019). Additionally, remote sensing methods can be formulated to identify 
BSR infections at a sufficient scale in oil palm plantation areas. This method 
provides fast, accurate, and real-time monitoring concerning control and 
management. 

The use of thermal imaging in agricultural applications has aided in 
detecting disease and determining the amount of water stress. Studies 
show that the capability to track the spatial and temporal trends of crop 
diseases throughout numerous disease growth stages is possible using 
thermal remote sensing (Hashim et al., 2020; Hernández-Clemente et al., 
2019; Khanal, Fulton, & Shearer, 2017; Mahlein, 2016). There has been a 
minimal exploration of thermal imaging in a palm oil plantation to detect an 
infected BSR tree. 

Due to cloud penetration and capability in all-weather environments, the 
promising remote sensing method is the microwave sensors. Besides, 
unlike optical sensors that rely on the supply of energy from sunlight, 
microwave sensors rely on their own energy source. The capability of 
Synthetic Aperture Radar (SAR) data to track plant conditions and follow 
biophysical parameters has been depicted in numerous researches 
(Harfenmeister, Itzerott, Weltzien, & Spengler, 2021; Mandal et al., 2020; 
Sivasankar, Kumar, Srivastava, & Patel, 2018). According to several 
studies, the SAR backscattering sensitivity to plant conditions is associated 
with the SAR sensor parameters (polarization, incident angle, and 
wavelength) (El Hajj, Baghdadi, Bazzi, & Zribi, 2019; Harfenmeister, 
Spengler, & Weltzien, 2019; Mandal et al., 2020; Nasirzadehdizaji et al., 
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2019). In addition, the use of microwave wavelengths to monitor the health 
of oil palm plants is currently insufficient. 

The machine learning (ML) algorithm may be useful for identifying oil palm 
trees that are non-infected and BSR-infected. ML algorithms rely on a 
computation method to locate data directly from the data without using any 
predefined equations (C. W. Chang, Lee, & Liu, 2018). Over the last 
decade, land cover analysis, forest monitoring, and farm monitoring have 
used ML algorithms in different applications. ML has been expanded to 
applications such as classifying remote sensing data and plant diseases to 
date. Despite this, a majority class often gains from a high degree of 
accuracy thru the class imbalance compared to the minority class; thus, the 
class imbalance of the data poses a challenge to the ML classifiers. Data-
level approaches are commonly employed to alleviate class imbalance 
problems. The most widely used data-level methods to solve the imbalance 
problem include RUS, ROS, and SMOTE (Fernández, del Río, Chawla, & 
Herrera, 2017; Leevy, Khoshgoftaar, Bauder, & Seliya, 2018; Tyagi & Mittal, 
2020; Wah, Aryani, Rahman, He, & Bulgiba, 2016). 

Several studies have demonstrated the utility of thermal and SAR data for 
crop monitoring. However, health monitoring of oil palm plants using thermal 
and microwave wavelengths has not been implemented. Therefore, it is 
possible to evaluate the applicability of thermal and SAR data in 
differentiating non-infected and infected oil palm trees by G. boninense. This 
study's major initiative and contribution are evaluating the class imbalance 
and the performance of the associated classifier. This is not thoroughly 
investigated in agriculture. Despite the fact that many individuals are aware 
that class imbalance produces problems, there have been no in-depth 
studies of its precise effects.  

Therefore, this research will provide a new benchmark in evaluating ground-
based thermal imaging and SAR to diffrentiate oil palm trees that are both 
non-infected and BSR-infected using ML algorithm with an imbalanced 
approach since these techniques are still mostly unexplored for oil palm 
research. 

1.3 Research Objectives 

The primary aim of this research is to establish a rapid and reliable method 
to detect BSR disease. Remote sensing may provide an opportunity to 
achieve this aim, and it has already been used in a few agricultural 
practices. There are several specific objectives to achieve our desired goal: 
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1) To evaluate the potential of extracted thermal features to
differentiate oil palm trees based on the various stages of BSR
disease.

2) To evaluate the potential of extracted SAR features to differentiate
oil palm trees based on the various stages of BSR disease.

3) To explore the potential of machine-learning algorithms with an
imbalanced approach in classifying oil palm trees based on the
various stage levels of BSR disease.

4) To compare the potential of machine-learning algorithms and
imbalanced data approach in classifying stages and severity levels
of BSR disease.

1.4 Research Framework 

This research explores the early detection of the BSR by combining thermal 
images and a dual-polarized ALOS PALSAR-2 image. The study was 
conducted in Felcra Seberang Perak 10, which is situated in the Perak 
Tengah District in the Malaysian state of Perak. Figure 1.1 provides a 
concise narrative explanation of the overall methodology employed in this 
study. The primary objective of this study was to evaluate the applicability 
of temperature variables and backscatter variables in categorizing phases 
and severity levels of G. boninense disease using machine-learning 
algorithms and an imbalanced data method. The number of non-infected 
(T0), mildly infected (T1), moderately infected (T2), and severely infected 
(T3) oil palm tree samples is 55, 11, 15, and 11, respectively. FLIR 
ResearchIR Max was utilised to analyze the temperature variation of each 
thermal image. The value of each tree's backscattering was then derived 
from the ALOS PALSAR-2 image. The resampling approach and ensemble 
procedure were utilized to address the issue of class imbalance. NB, MLP, 
and RF were assessed in this study as classifiers. The dataset was 
separated into a 70 per cent training dataset and a 30 per cent test dataset 
for testing reasons. The classification was performed using 10-fold cross-
validation to prevent overfitting and obtain objective prediction error 
estimates. Lastly, this study described the confusion matrix as an alternative 
in terms of the success rate of the non-infected and BSR-infected tree and 
the BCR, the PRC, and the AUC to evaluate different imbalanced 
approaches and classifiers and measure performance in enhancing the 
early detection of Ganoderma infection. 
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Figure 1.1: Research framework 

1.5 Scope of the Study 

The present research explores the potential of using thermal imaging and 
SAR data in detecting G. boninense disease in oil palm plantations. This 
study emphasized only the classification of non-infected and infected G. 
boninense of matured oil palm trees (13 years old). The number of samples 
of the oil palm tree used in this study was 92. An expert from the Malaysian 
Palm Oil Board (MPOB) ascertained the trees' health status. Hence, the tree 
condition variations are presumed to be due to the G. boninense infection 
rather than any other causes. This research focused on analyzing the trees' 
thermal temperature variation and SAR backscattering. The classification 
methods used were NB, MLP, and RF, and imbalanced data approaches 
like RUS, ROS, AdaBoost, and SMOTE were considered in this study.  

1.6 Key Findings 

The most prominent issue with oil palm plantations is BSR, for which there 
is no impressive treatment that works. One approach to tackle BSR in oil 
palm plantations is early detection (Hushiarian, Yusof, & Dutse, 2013), 
where the disease can be detected quickly and at a low cost. By 
incorporating machine learning techniques, remote sensing can increase 
detection precision. This study's findings are intended to enhance detection 
methods for early-stage G. boninense disease in oil palm plantations. The 
following are the key findings of this study: 
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1) A technique for detecting BSR based on individual oil palm trees
using thermal images.

2) A technique to extract backscatter value for detecting BSR based
on individual oil palm trees using the SAR image.

3) Classification of non-infected and BSR’s severity in oil palm
plantation using machine learning and imbalanced approach.

1.7 Thesis Organization 

This thesis is divided into five chapters. Chapter One consists of a general 
overview, problem statement, research objectives, research scopes, and 
the thesis outline. The rest of this thesis is organized as follows: 

Chapter two focuses on the review of some related studies and work which 
is helpful in the detection as well as monitoring of G. boninense infection in 
oil palm plantations. The various applications of geospatial technology 
efficiency over the last decade are presented. Imbalanced data approach, 
classification models, and accuracy assessment-related in this study also 
are reviewed. 

Chapter 3 presents an overview of the research methodology used in this 
research. The research method consists of four different processes. This 
process refers to the field data collection, image processing for thermal and 
ALOS PALSAR 2 data, statistical analysis of data, and finally, the 
classification used to classify non-infected and G. boninense infected trees. 

Based on the methodology presented in the previous chapter, Chapter Four 
focuses on the results and discussion. 

Lastly, chapter five provides the study's overall conclusion and 
recommendations for further studies. 
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