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Application of Computational Fluid Dynamics (CFD) in studying solid propellant 
rocket motor have been growing steadily. This is due to the fact that experimental 
work will cost more time and money. Other than that, the industry needs more 
understanding to guide designer for more reliable technical solution and less 
expensive in order to design solid rocket motor for missiles and space launchers. 
To bring new knowledge for solid rocket propulsion, CFD has been important 
and dependable. However, to validate the dedicated models and numerical 
simulation, experimental procedure was important. For the design process, solid 
propellant rocket with medium thrust produced been focused in the current work. 
The works are including experimental and CFD simulation approaches. For the 
experimental work, the static firing test will be used. As for the fabrication of the 
propellant grain, it been conducted at the authorized centre by the Malaysian 
authority. Meanwhile for the CFD simulation, the work will be focus on the 
internal flow inside the nozzle. The findings show that data has significant errors 
due to the failure of the SRM bulkhead during experimental analysis. Due to the 
Covid 19 pandemic, the experimental work cannot be repeated and therefore 
was presented as it was. Next findings show the normal nozzle with different 
throat length simulation. It was found that the throat length has significant impact 
on the performance of the nozzle flow. Finally, findings from parametric study 
about the dual bell nozzle. The results show that the dual bell nozzle can 
increase the effectiveness of the nozzle flow. In overall, the work has covered all 
the intended objectives and CFD analysis has been prove as useful design tools 
used to lessen the amount of physical testing that must be done to validate a 
design and measure its performance. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah 

SIASATAN EKSPERIMEN DAN NUMERIK TERHADAP PRESTASI MOTOR 
ROKET PROPELLANT PEPEJAL 

Oleh 

ALI A A A ALMAYAS 

Ogos 2021 

Pengerusi: Kamarul Arifin Ahmad, PhD 
Fakulti: Kejuruteraan 

Aplikasi Computational Fluid Dynamics (CFD) dalam mengkaji motor roket 
propelan pepejal telah berkembang dengan mantap. Ini disebabkan oleh fakta 
bahawa kerja eksperimen akan memakan lebih banyak masa dan wang. Selain 
daripada itu, industri memerlukan lebih pemahaman untuk membimbing pereka 
bentuk penyelesaian teknikal yang lebih dipercayai dan lebih murah untuk 
mereka bentuk motor roket pepejal untuk peluru berpandu dan pelancar 
angkasa. Untuk membawa pengetahuan baharu untuk pendorongan roket 
pepejal, CFD adalah penting dan boleh dipercayai. Walau bagaimanapun, untuk 
mengesahkan model khusus dan simulasi berangka, prosedur eksperimen 
adalah penting. Untuk proses reka bentuk, roket propelan pepejal dengan 
tujahan sederhana yang dihasilkan telah difokuskan dalam kerja semasa. Kerja-
kerja itu termasuk pendekatan eksperimen dan simulasi CFD. Untuk kerja 
eksperimen, ujian tembakan statik akan digunakan. Bagi fabrikasi bijirin 
propelan, ia dijalankan di pusat yang diberi kuasa oleh pihak berkuasa Malaysia. 
Manakala bagi simulasi CFD, kerja akan tertumpu kepada aliran dalaman di 
dalam muncung. Dapatan menunjukkan bahawa data mempunyai ralat yang 
ketara disebabkan oleh kegagalan sekat SRM semasa analisis eksperimen. 
Disebabkan oleh pandemik Covid 19, kerja eksperimen tidak boleh diulang dan 
oleh itu dibentangkan seperti sedia ada. Penemuan seterusnya menunjukkan 
muncung biasa dengan simulasi panjang tekak yang berbeza. Didapati bahawa 
panjang tekak mempunyai kesan yang ketara terhadap prestasi aliran muncung. 
Akhir sekali, dapatan daripada kajian parametrik tentang muncung loceng dwi. 
Keputusan menunjukkan muncung loceng dwi boleh meningkatkan 
keberkesanan aliran muncung. Secara keseluruhan, kerja telah merangkumi 
semua objektif yang dimaksudkan dan analisis CFD telah terbukti sebagai alat 
reka bentuk yang berguna yang digunakan untuk mengurangkan jumlah ujian 
fizikal yang mesti dilakukan untuk mengesahkan reka bentuk dan mengukur 
prestasinya. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
1.1 Overview 
 
 
Solid Propellant Rocket Motor (SRM) is a non-trivial part in aerospace 
technology. It is not a new technology but very reliable and being used as part 
of the space rocket launching around the world. The rocket motor is a 
fundamental piece of a rocket that used to boost a rocket [1]. It comprises of a 
case, insulator, cap, nozzle, igniter, and so forth (see Figure 1). It works utilizing 
standards, for example, pressure vessels since it stores the fuel. Rocket motor 
working conditions could be in high temperature and pressure [2]. 
 
 

 
Figure 1.1: Major component of the SRM. 
 
 
Solid propellant rocket motor is one of many available methods to propel space 
vehicles, rockets and ballistic purposes. They generate high-temperature 
gaseous products during combustion to provide thrust to the rocket and convert 
chemical energy into kinetic energy. It is composed of few chemical components 
such as oxidizer, fuels, binders, plasticizers, curing agents, stabilizers and cross 
linkers [2]. The benefits of solid rocket fuels include: (i) simplicity, which is 
significant for upkeep expenses and savings in high creation rate systems; (ii) 
storage stability, with administration lifetimes that can be up to 30 years;(iii) 
protection from unintended explosion; (iv) dependability, identified with their 
simplicity and chemical stability; and (v) high mass flow rates during launch, and 
thus high thrust (drive power), a prerequisite for the underlying period of rockets, 
all of which utilize solid propellant boosters. Two disservices of solid propellants 
are the trouble in differing thrust on request (i.e., solid fuel rockets for the most 
part cannot be throttled or worked in start-stop mode) and generally low specific 
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impulse (time indispensable of the thrust per unit weight of propellants), Isp, in 
examination with fluid fuel motors.  
 
 
The historical background of rocket (and along propellant) development is firmly 
identified with military applications. Be that as it may, other than military 
applications, from the earliest starting point of development, rockets with solid 
propellants have discovered a variety of non-military uses like signaling and 
fireworks. Current solid propellants have advanced the field of utilization of rocket 
missiles for common/logical use to sounding rockets and launch vehicles (see 
Figure 2). A sounding rocket is the most popular type of rocket at the moment. 
This is due to the fact that it is an experimental rocket that is used to perform 
scientific experiments and to carry the scientific instruments. NASA is one of the 
pioneer in this technology in 1950s and then it now become a tool for the 
universities around the world to test their scientific experimental works related to 
the micro gravity phenomenon. Another factor that makes sounding rocket is 
popular because it is cheaper than to the real space rocket that can cost a multi 
millions of dollars or Ringgit. 
 
 

 
Figure 1.2: NASA Sounding Rocket Family (Sounding rocket, Marcello Lappa, 
in Fluids, Materials and Microgravity, 2004). 
 
 
As solid propellants after ignited can create huge amounts of gas for a brief 
timeframe, it can likewise be utilized to deliver force (i.e., mechanical work) or 
power. This application has prompted the expansion other application in recent 
years in various security devices with purposes in the automotive and aviation 
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industries, among them inflators in airbags. Different applications included 
different partition components, pyrotechnic valves and actuating devices, 
emergency frameworks, and devices intended to guarantee auxiliary propulsion. 
 
 
Solid propellant rocket motor is utilized for propelling various missiles and 
aerospace vehicles including the space shuttle and Titan launch vehicle. These 
rocket motors include a motor case which surrounds a solid propellant having a 
star or other shaped hollow core which defines a combustion chamber, an igniter 
assembly, which is usually mounted on top of the propellant, and a bottom 
mounted nozzle assembly [1]. The igniter assembly initiates burning of the 
propellant generating hot combustion gases which travel through the core, 
initiating combustion along the exposed propellant surfaces. The propellant then 
burns radially towards the motor case, generating additional hot gases which exit 
through the nozzle assembly, thereby providing forward thrust. A rocket motor 
does not require air for combustion of the fuel and such motor produces thrust 
at all speeds, including take-off [2]. 
 
 
1.2 SRM Component 
 
 
In general, the SRM is divided into two main part namely the rocket motor and 
its propellant. The rocket motor case design relies on the inside pressure factor 
and material been used. A thick-walled chamber been used for high internal 
pressure area in rocket motor case. The higher yield strength of the materials, 
the thinner walled chamber can be used in the rocket motor design [3]. To ensure 
the success and safety of the SRM, the design and testing processes should be 
done thoroughly.  Computational Fluid Dynamics (CFD) tool has been used as 
part of the design tool since the beginning of its existence. This is because the 
tool is cheap but with acceptable accuracy and can be used without any safety 
issue. Recent progress in numerical approach and computing power also 
contribute to the accuracy of CFD results [4].  
 
 
The propellant grain or it is called the solid fuel. The grain consists of three main 
materials namely the fuel, the oxidizer, and the binder. Some grain includes the 
inducer or some amplifier to hasten the combustion process. A propellant grain 
depends on the size and the shape of the mold. This will determine the burn 
time, amount of gas, and rate produced from the burning propellant and, 
consequently, thrust vs time profile. The shape is the main factor that determines 
the burn type. There are three main burns namely progressive regressive and 
neutral burn. Progressive burn uses a star shape, regressive burn uses cylinder 
shape and neutral burn uses single perforation shape (see Figure 3).  
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Figure 1.3: Core shape and its influence on the output thrust. 
 
 
1.3 Motivation 
 
 
Even though many research work has been carried out into the area of solid 
propellant rocket, there are many reasons why the author feel it is still important 
topic to be ventured into. The first reason is that the lack of related local scientific 
work in the local and regional regions. Many published works were conducted in 
well-established facilities in either in developed countries such as Europe, the 
US, or China. Consequently, they managed to develop the capabilities in terms 
of human resource, facilities, and knowledge. Hence, they can use it for space 
technologies for the telecommunication and also for defense technologies to be 
used especially for border security. Therefore, it is important to develop the local 
capabilities in order to stay relevant or at least to catch up with the world leader.  
 
 
Another reason why this work is important is because there is no documented 
standard operating procedure exists in Malaysia. From the discussion with the 
Ministry of Defense and the Police, any work related to explosive materials 
should get approval from the authorities and the testing facilities should also be 
approved before any tests should be conducted. The only facility for such 
requirement in Malaysia is located at Batu Arang, belongs to STRIDE, the 
research wing of the Malaysian Ministry of Defense. Therefore, with a 
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documented SOP, it will become a reference to all researchers that wanted to 
endeavor into this research area.  
 
 
1.4 Problem Statement 
 
 
There are many factors affecting SRM design such as thrust requirement, 
material requirement, rocket body requirement, and weight requirement among 
others. The critical part of the SRM is the connecting part where usually bolts 
connection were used. It is proposed that the SRM can be used for several times 
so that cost of the experiment can be reduced hence reducing the overall cost to 
design SRM. This bolt connection however is not strong enough to withstand 
several combustion processes. Usually, the bolt will fail after 1 or 2 static firing 
tests. Therefore, it is proposed that a new bolt connection to solve this problem.  
 
 
In addition to that, nozzle design plays an important role in enhancing the 
performance of the SRM. Popular approach is by using a clean without any flow 
control device nozzle. This approach however is producing a type of thrust flow 
that difficult to be controlled. This is due to the fact that a flow control device is 
the only way to control fluid flow. Therefore, by installing a flow control device 
inside the nozzle, it is hypothesized that it can alleviate the performance of the 
SRM. 
 
 
The major problem statement is due to the fact that experimental work will cost 
more time and money. Hence, using CFD during the design phase will reduce 
time and money consumption to design SRM. Other advantage of using CFD to 
analyze the flow properties is it will validate the performance of the SRM design 
before it been fabricated. Since there is restriction in any work related to 
explosive materials and the testing facilities, using CFD to design SRM will give 
a huge advantage in the rocketry industry. 
 
 
1.5 Aim and Objectives 
 
 
The aim of this project is to investigate the performance of the new design of 
SRM. To achieve this aim, there are three main objectives which are as follow:  
 
1. To improve the SRM by installing a flow control mechanism into the nozzle 

and enhancing the bolt connection of the nozzle. 
2. To evaluate the reliability of the proposed bolt connection performance. 
3. To assess the effect of the flow control mechanism into the rocket 

performance. 
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1.6 Novelty 
 
 
To the author’s knowledge, there is no reported or published work that focusing 
on bolt connection of the SRM nozzle and the flow control device at the 
divergence part of the nozzle. The present work attempt to fill up the gap of this 
research opportunities. Besides that, there is also no CFD simulation work on 
the controlled nozzle flow, where the flow control device is located. The 
application of this new SRM design will be for short distance rocket where it is 
estimated to travel between 1-3 kilometers.  
 
 
In short, the main novelties of this work are: 
 
1. The new bolt connection between the SRM nozzle and the cylinder part. 

There is no reported or published data on this particular topic. There is also 
no reported experimental work on this topic also. 

2. The implementation of the flow control device on the divergence part of the 
SRM nozzle. There is no CFD simulation work on this topic yet. 

 
 
1.7 Scope of Research     
 
 
The author set the scope of research according to the work’s objectives. They 
are listed as follow: 
 

1. The flow control device was only located at the divergence area of the nozzle 
and the new bolt connection of the nozzle only being implemented in the 
fabricated model 

2. The investigation methods will do via CFD simulation and static firing test 
only. In the CFD simulation, the grid will be generated at sufficient size and 
numbers. The CFD setup will be based on the previous investigators, 
therefore no parametric study in CFD method. 

3. The turbulent model that was used is based on the Boussinesq approach 
where it follows the molecular viscosity model and it was the two-equation 
turbulent model. The flow will be treated as steady flow and only partial of the 
SRM will be simulated  

4. The propellant grain will be limited to potassium nitrate, ferric oxide and 
epoxy. The mixing of the grain will be done at an approved center by the 
Malaysian authority. The location for the static firing test was also conducted 
at the approved center by the Malaysian authority. 
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1.8  Thesis Organization 
 
 
The thesis is arranged in a regular format of PhD thesis following the requirement 
from UPM.  Chapter 1 introduces to the background of SRM and its application 
in the rocket technology. It also highlights the motivation for the study, outlining 
the aim and objectives of the research. It also discusses about the scope of 
research work.  
 
 
Chapter 2 summarises the literature available on SRM. A detailed in-depth 
review has been carried out in this chapter. The chapter deals with various 
studies incorporating CFD to study the different parameters related to SRM. The 
chapter also discussed about the related experimental work that focused on 
SRM. A summary is provided at the end of the chapter. 
 
 
Chapter 3 presents the flow chart of the current study. It also presents about the 
two methods that were used namely the experimental work and the CFD 
simulation. Furthermore, it presents about the setup used in the experimental 
and procedure to perform the experimental work. Besides that, it also presents 
about the CFD setup, and also the manual for simulating the SRM nozzle flow.  
 
 
Chapter 4 reports about the results. There are two types of results namely the 
experimental results and the CFD results. The experimental result only focuses 
on the static firing test. Meanwhile the CFD results will focus on the flow control 
device that was installed at the divergence shape of the nozzle. The validation 
and verification of the numerical results was also reported. The results of the 
parametric study were also discussed. Finally, Chapter 5 concludes the finding 
of the current work. 
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