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Additive manufacturing had been taking a lot of attraction for the past several years 
and had been implemented in various fields including the Prosthetics and Orthotics 
industry. One of the applications is the Ankle-Foot Orthosis (AFO), which has an 
increase in demand in the recent years. However, most of the current materials 
used to manufacture AFO were made from plastics, which are non-biodegradable, 
wastes many fabrication materials, and not cost-effective. Thus, this highlights the 
aim of this research, which is to develop a lightweight AFO using Kenaf/PLA 
composite and 3D printing technology. This research consists of two phases, 
which is the experimental phase, and the numerical phase (FEA simulation). The 
experimental phase of the research will start with the development of Kenaf/PLA 
filament with different level of extrusion temperature (160°C, 170°C, 180°C, 
190°C, 200°C) and fiber loading (0 wt. %, 3 wt. %, 5 wt. %, 7 wt. %), followed by 
physical and thermal testing of the filament, then fabrication of Kenaf/PLA 
composite using Fused Deposition Modelling (FDM) printer, and finally, 
mechanical and physical testing of 3D printed Kenaf/PLA specimens. As for the 
numerical analysis phase, it consists of two types of analysis, which are the static 
structural analysis and explicit dynamic analysis. In static structural analysis, the 
study will be specifically on three extreme gait stages, which are heel strike, mid-
stance, and heel rise. As for explicit dynamic analysis, only the selected AFO 
composites material and PLA AFO will be studied and compared. The results of 
this research are consist of the effect of extrusion temperature on the physical 
structure of filament and the smoothness of the extrusion process, physical and 
thermal analysis of the filament extruded at the selected temperature, mechanical 
and physical properties of 3D printed Kenaf/PLA, as well as the comparison of 
strength between neat PLA AFO and the selected variation of Kenaf/PLA AFO. 
The result shows filament extruded at 170°C has the best physical structure and 
ease of extrusion process. The thermal analysis of the selected filament shows a 
reduction of temperature points in filament composites compared to a neat PLA. 
Based on the FEA simulation of static structural analysis, it was also found 3 wt. 
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% Kenaf/PLA AFO shows better total deformation, equivalent stress, and 
equivalent strain compared to PLA AFO and AFO made from other variation of 
Kenaf/PLA. Meanwhile, the explicit dynamic simulation result shows that 3D 
printed Kenaf/PLA AFO could retain the strength shown by neat PLA AFO. In 
addition, since the fabrication of the plaster mold was skipped and the design of 
AFO could be optimized digitally, material waste was reduced significantly.  
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Sejak kebelakangan ini, Pembuatan Bahan Tambahan telah mendapat banyak 
daya tarikan dalam pelbagai jenis industri dan telah dilaksanakan di dalam 
industri-industri yang berbeza termasuk industri Prostetik dan Ortotik. Salah satu 
aplikasinya adalah Ortosis Kaki Buku Lali (AFO), yang mengalami peningkatan 
permintaan sejak beberapa tahun ini. Objektif utama penyelidikan ini adalah untuk 
membuat AFO ringan menggunakan teknologi pencetakan 3D dan komposit 
Kenaf/PLA. Penyelidikan ini terdiri daripada dua fasa, iaitu fasa eksperimen, dan 
fasa numerik (simulasi FEA). Fasa penyelidikan melalui eksperimen akan 
dimulakan dengan pembentukan filamen Kenaf/PLA dengan tahap suhu 
penyemperitan (160°C, 170°C, 180°C, 190°C, 200°C) dan pemuatan serat (0 wt. 
%, 3 wt. %, 5 wt. %, 7 wt. %) yang berbeza, diikuti dengan ujian fizikal dan termal 
pada filamen, kemudian fabrikasi spesimen komposit Kenaf/PLA menggunakan 
pencetak Pemodelan Pemendapan Bercantum (FDM), dan akhirnya, ujian 
mekanikal dan fizikal terhadap Kenaf/PLA spesimen yang telah dicetak 
menggunakan pencetak 3D. Dalam fasa numerik pula, ia terdiri daripada dua jenis 
analisis, iaitu analisis struktur statik dan analisis dinamik eksplisit. Dalam analisis 
struktur statik, kajian ini akan dilakukan pada tiga posisi jalan paling ekstrem, iaitu 
peringkat pemukulan tumit kaki, berdiri tegak dan penaikan tumit kaki. Bagi 
analisis dinamik eksplisit pula, hanya bahan komposit AFO terpilih dan AFO PLA 
yang akan dikaji dan dibandingkan. Hasil penyelidikan ini akan terdiri daripada 
kesan pengaruh suhu penyemperitan pada struktur fizikal filamen dan kelancaran 
proses penyemperitan, analisis fizikal dan termal filamen yang diekstrusi pada 
suhu terpilih, sifat mekanik dan fizikal Kenaf/PLA yang dicetak menggunakan 
pencetak 3D, serta perbandingan kekuatan antara PLA AFO dan variasi 
Kenaf/PLA AFO yang dipilih. Hasil kajian menunjukkan bahawa filamen yang 
diekstrusi pada suhu 170 ° C mempunyai struktur fizikal yang terbaik dan 
mempunyai proses penyemperitan yang terbaik. Analisis termal filamen yang 
dipilih menunjukkan pengurangan kadar suhu pada komposit filamen berbanding 
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dengan PLA. Berdasarkan simulasi analisis struktur static, didapati juga 3 wt. % 
Kenaf/PLA AFO menunjukkan Ubah Bentuk Keseluruhan, Tekanan Setara, dan 
Regangan Setara yang lebih baik berbanding AFO PLA dan AFO yang dibuat 
daripada variasi Kenaf/PLA yang lain. Hasil simulasi dinamik pula menunjukkan 
bahawa Kenaf/PLA AFO dicetak menggunakan pencetak 3D dapat mengekalkan 
kekuatan yang ditunjukkan oleh AFO PLA. Tambahan pula, oleh kerana proses 
pembuatan acuan plaster tidak diperlukan dan reka bentuk AFO boleh diubahsuai 
secara digital, pembuangan sisa bahan fabrikasi dapat dikurangkan.  
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CHAPTER 1 
 

INTRODUCTION 
 

In this chapter, discussions will be on the introduction towards this research. This 
chapter is divided into six sections which consist of Research Background, 
Research Motivations, Problem Statement, Objectives, Scopes, and Thesis 
Overview. 
 
 
1.1 Introduction 
 

Ankle-Foot Orthosis (AFO) is a device, which acts as a support around the ankle 
and foot area to fix muscle or nerve disorders such foot drop, sprain, or fracture 
(Choo & Chang, 2021). Typically, an AFO was designed with an L shape 
appearance as shown in Figure 1.1. The footplate will keep the foot stable 
throughout the gait cycle, thus requiring the AFO device to have characteristics 
such as strong, durable, and light (Choo & Chang, 2021). 
 
 

 
Figure 1.1: Ankle-Foot Orthosis (AFO) 

 
Throughout the years, AFO has been developed gradually with the advancement 
of technologies and material science. AFO has long been known and used since 
the ancient era until the current era. The materials of the AFO have been 
developed from a simple bark (Elliott Smith, 1908; J T W, 1936), followed by 
metal and leather (Banga, Kalra, Belokar, & Kumar, 2015), plastics (Shamp, 
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1983), and carbon fiber (Klasson, 1995). These materials were mainly used in 
the conventional manufacturing of AFO. The progress in AFO development 
ensures that the characteristics required by an AFO device could be achieved 
and current device could be further refined. 
 
 
Conventional manufacturing of AFO can be divided into two methods, which are 
thermoforming polymer sheets and hand laying carbon fiber sheets (Munguia & 
Dalgarno, 2013). However, the basic processes for both methods are quite 
similar. There are mainly four stages in conventional manufacturing. It starts with 
cast rectification, followed by sheet placement on mold, edge cutting and finally 
accessories add on. This manufacturing process may take around 2 to 3 weeks 
to complete a fully functional AFO (DE Editors, 2017a). This slow manufacturing 
process promotes the use of Additive manufacturing in AFO fabrication. 
 
 
Additive manufacturing is a process that uses the printing technology to print out 
3D objects layer by layer controlled by the computer process (TWI Global, 2022). 
There are three main stages in this manufacturing process, which are 3D model 
and STL creation, printing process, and finally, the polishing and accessory add 
on stage. Currently, there are three types of additive manufacturing technology 
that are available in the market, which are material extrusion, laser sintering, and 
binder jetting (3D Printing Industry, 2017). 
 
 
AFO mostly uses the material extrusion and laser sintering printing technology 
for its manufacturing process as shown in Table 1.1.  
 
 
Table 1.1: Recent researches on 3D printing 

Year Authors Materials Additive 
Manufacturing 
(AM) 
Technologies 

2016 
Walbran et al. (Walbran, 
Turner, & McDaid, 2016) 

1. Nylon 1. SLS 

2. PLA 
3. PETG 

2. FDM 

2017 Cha et al. (Cha et al., 2017) 1. PU 1. FDM 

2017 Deckers et al. (Deckers et 
al., 2018) 

1. PA 1. SLS 

2018 Aydin and Kucuk (Aydin & 
Kucuk, 2018) 

1. ABS 1. FDM 

2019 Vasiliauskaite et al. 
(Vasiliauskaite et al., 2019) 

1. PA 1. SLS 

 
 
The implementation of Additive Manufacturing into AFO manufacturing had 
significantly reduced the manufacturing period from weeks to a few days. In 
addition, complex and form-fitting design of AFO could be easily achieved in 
additive manufacturing compared to conventional manufacturing, which needs 
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highly skilled worker to achieve the same result. Figure 1.2 shows the types of 
manufacturing process and technology that are currently available in the 
manufacturing industry. 
 
 

 
Figure 1.2: Types of manufacturing process and technologies in 
manufacturing industry 
 
 
However, the use of plastics in additive manufacturing still could not reduce the 
amount of material waste during the disposal stage of the AFO device. The 
cumulative of such wastes causes an influx in landfill. Thus, this fact leads to the 
motivation of this research project, which is to use a natural filament that could 
resemble the strength of the printed pure plastics AFO and biodegrade after a 
period. 
 
 
Therefore, in this research kenaf was selected as the main material to produce 
a natural filament. There are several factors, which induce the possibility of using 
kenaf for this research, such as shown in Figure 1.3. 

Manufacturing process

Conventional Manufacturing 
Process

Thermoformed Polymer on 
reference model

Hand lay-up of carbon fiber 
sheets on reference model

Additive Manufacturing 
Process

Material extrusion

Laser Sintering

Binder Jetting



© C
OPYRIG

HT U
PM

4 
 

 
Figure 1.3: Factors that induce the use of Kenaf in this research  

Factors of 
research 

motivation

Kenaf can be easily 
obtained due to its 

fast growth and high 
amount of 

productivity within a 
short period.

Kenaf does not need 
high requirement of 
soil cultivation. Thus, 

making it easy to 
cultivate at any 
climate and soil 

condition.

Kenaf raw materials 
are also one of the 

cheapest raw material 
available in the 

market.

Comparing Kenaf to 
other types of fibers, it 

has better strength 
and wider range of 

stiffness as well as one 
of the lightest natural 

fiber available
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1.2 Research Background 
 
 
Ankle-Foot Orthosis (AFO) is a device, which is used to correct or enhance the 
function of the ankle-foot region. From the current market trend in Malaysia, there 
is an increase of demand for this device. However, due to the long procurement 
process of getting a good and functional AFO, many patients could not obtain 
this device within a short amount of time (The Royal Children’s Hospital 
Melbourne, 2020). Thus, most users gave up completely while waiting or do not 
bother in getting one. Usually it took around a few weeks to obtain a complete 
functioning AFO. 
  
 
AFO manufacturing also involves several complicated fabrication process. The 
conventional manufacturing process of an AFO requires skilled orthotists starting 
from the cast rectification phase up to assembling parts phase. Due to the 
amount of details and hands-on skill needed during its manufacturing, highly 
skilled orthotists are very significant. However, the amount of skilled orthotists is 
very limited (Ridgewell, Clarke, Anderson, & Dillon, 2021; Ridgewell, Dillon, 
O’Connor, Anderson, & Clarke, 2016). 
 

 

Manufacturing an AFO requires several processes which involves the uses of 
non-biodegradable materials. One of such cases is the creation of plaster mould 
which corresponds to the measurements and shape of the patient’s lower limbs. 
This mould will then be used to create a positive model which will be used as a 
reference to place thermoformed polymer sheets around the positive model.  
Both plaster mould and positive model will then be discarded after one-time 
usage. Thus, overtime it will provide towards the  
increase of landfills in Malaysia.  
 

 

Manufacturing an AFO also requires several processes, which involves the uses 
of non-biodegradable materials. One of such cases is the creation of plaster 
mold, which corresponds to the measurements, and shape of the patient’s lower 
limbs (Munguia & Dalgarno, 2013). This mold will then be used to create a 
positive model, which will be used as a reference to place thermoformed polymer 
sheets around the positive model.  Both plaster mold and positive model will then 
be discarded after one-time usage causing material wastes. Thus, overtime it will 
provide towards the increase of landfills.  
 
 
The current procurement of AFO is also quite expensive (Rinella Prosthetics & 
Orthotics, 2020). Due to the high cost of this device, most patients could not 
afford a suitable AFO for themselves. Thus, end up not using this device when 
recommended by the doctors. It is especially much more expensive when the 
AFO are custom made for the patients compared to the off the shelf AFO. 
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1.3 Problem Statement 
 
 
Currently, there is a gradual growth in the AFO market (Dataintelo, 2020). 
However, the manufacturing speed of AFO could not keep up with the ever-
increasing demand for an AFO. Furthermore, current AFOs although light, were 
actually quite expensive due to the manufacturing method and the price of the 
material itself, whereas cheaper materials such as aluminum, steel, and leathers 
are usually heavy (Jiménez, Salgado, Sanchez, & del Castillo Granados, 2019). 
Another problem with the current AFO manufacturing process is that it needs 
highly skilled orthotists to fabricate a custom fit orthosis and these may takes a 
few days due to the small amount of orthotists available in Malaysia. 
Furthermore, a highly complex design of an orthosis may take several days to 
weeks to be completely fabricated. Therefore, this research mainly studies on 
developing a composite, which could be printed using a 3D printer to produce a 
lightweight, and cheap AFO, as well as increasing the speed of AFO 
manufacturing process. Furthermore, with the addition of natural fiber composite 
as its main material, the biodegrability of the orthosis could be secured. 
 
 
In 3D printing, the role of a filament is extremely significant in determining the 
quality of the printed specimens. A low quality filament will print a specimen with 
low mechanical properties, whereas a good quality filament will print a specimen 
with better mechanical properties. These filament qualities were mostly affected 
by the extrusion process parameter such as extrusion temperature. However, 
there was limited research, which discusses on the effect of different extrusion 
temperature on the quality of the filament. Therefore, it was not clear what kind 
of condition the filament will be extruded, whether it is full of air gaps within the 
filament itself, or the physical surface of the filament will be smooth enough to 
be used as a 3D printing material. The presence of air gaps within the 3D printing 
filament and the physical surface condition of the filament will severely affect the 
quality of the printed composite specimens. Different types of filament will have 
different optimum temperature that can be used during 3D printing. Thus, this 
study will include investigation on several extrusion temperatures and its effect 
on the morphological surface of the extruded filament, as well as the filament’s 
optimum temperatures for bed temperature, nozzle temperature, and the 
degradation temperature suitable for 3D printing set-up.  
 
 
Most of the studies that are available currently use traditional manufacturing 
method such as hand lay-up or thermoforming. Therefore, there are large 
archives on the physical and mechanical properties of a Kenaf/PLA composite. 
However, there was limited research that had specifically studied on the physical 
and mechanical properties of the specimen that had used additive manufacturing 
method. It is important to understand the basic properties of the printed 
specimens in order to be used as an AFO material. There are several 
requirements that a good AFO must fulfill, which is the AFO must be strong to 
bear weight and resist impact, durable for a long period of time, lightweight and 
able to absorb smell and sweat to ensure comfortability. In order to fulfill these 
requirements, the material used to fabricate the AFO needed to undergo several 
physical and mechanical testing. 
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In the gait cycle, there are three significant stages that should be put into 
consideration when designing an AFO, which was heel strike, mid-stance, and 
heel rise. Since there was limited amount of FEA study that was conducted on 
AFO, it was hard to find specific data on the effect of the different amount of fiber 
loading on the strength of AFOs at these three different gait stages. Thus, 
causing the evaluation of the AFO composites ability to withstand failure 
becomes harder. A highly deformed AFO will severely affect the safety of the 
user, thus knowing the total deformation of the proposed material is extremely 
important. Another problem that could occur is that fracture failure could occur 
at certain points on the AFO after enduring repetitive load on the AFO. Knowing 
where this fracture could occur could help in enhancing the strength of the part 
with high equivalent stress and equivalent strain. Therefore, an FEA study of the 
3D printed AFO composite is necessary to find the AFO’s deformation, 
equivalent stress, and equivalent strain to predict the AFO performance at static 
position. 
 
 
Predicting failure during static is completely different when the AFO was 
subjected under a dynamic condition. There are instances where failure will 
occur during dynamic conditions but performs very well during static conditions. 
Since AFO’s function is to operate normally in daily activities, it is inevitable that 
the AFO will be subjected to high impact forces such as jumping or hopping. 
Thus, it is also necessary to perform an FEA simulation of AFO under free-falling 
condition, which could help in predicting failures that could occur during dynamic 
conditions.     
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1.4 Objectives 
 
 
The main objective of the current research is to develop a lightweight AFO using 
Kenaf/PLA composites via 3D printing technology and use the proposed material 
to print out a 3D model of the AFO prototype. In order to fulfil the main objective 
of this research, several objectives were specified as follows:  
 
i. To evaluate the effects of extrusion temperature on the morphological 

structure and thermal properties of the Kenaf/PLA filament after 
extrusion process 

ii. To examine the physical and mechanical properties of the printed 
Kenaf/PLA composites 

iii. To analyze FEA Static analysis of PLA and different variations of 
Kenaf/PLA AFO composite in terms of deformation, equivalent stress 
and equivalent strain during heel strike, mid-stance, and heel rise 
position 

iv. Assess and compare the simulation of the selected Kenaf/PLA AFO 
and PLA AFO using explicit dynamic analysis through free-fall drop test  
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1.5 Scopes and limitations 
 
 
This research focused on the development of natural filament for 3D Printing. 
The natural fiber used in this research was limited to Kenaf powders with size 
particles lower than 250 µm. The study will involve two stages of extrusion, where 
the first extrusion was via twin-screw extruder to get the Kenaf/PLA pellets and 
the second extrusion via mini desktop filament extruder to obtain a continuous 
filament of 1.75 mm in diameter. The filament was mainly made of Kenaf powder 
and Polylactic Acid (PLA) pellets with the variation of 3% wt., 5% wt., and 7% wt. 
of kenaf powder. SEM analysis, TGA and DSC will only be conducted on the 
filament of the selected extrusion temperature, which was extruded by the mini 
desktop filament extruder. Mechanical test such as tensile, fatigue, Izod impact, 
and physical test such as density, water absorption, thickness swelling, will only 
be conducted on the printed composites. The data obtained from the mechanical 
test will be used in FEA simulation to simulate AFO at heel strike, mid-stance, 
and heel rise in the static structural analysis, as well as free-fall test in explicit 
dynamic analysis. Only PLA AFO and the selected Kenaf/PLA material will be 
used in the explicit dynamic analysis. All numerical analysis will be conducted 
using ANSYS 18.2 software, whereas all 3D models were created using CATIA 
P3 V5 R18. Finally, only PLA AFO and the selected Kenaf/PLA AFO will be used 
to print out a small-scale version of the AFO prototype. 
 
 
Good processing of materials will result in good product quality. While processing 
a filament for 3D printing, there are several challenges that could occur. One of 
the greatest limitations is the filament for 3D printing must meet stringent quality 
requirements. The quality requirements of the filament are strictly defined 
filament diameter (1.75 mm based on standard printer) and a homogenous core 
of the line. Any inconsistency in the filament diameter or deviation will affect the 
quality of the print significantly. The print may deteriorate and clogged due to the 
buildup at the printer’s nozzle. The accuracy of the filament’s diameter is usually 
around ±0.02 mm. 
 
 
Another limitation is the production of air bubbles during filament extrusion. 
Improper mixing or inhomogeneous blending of the filler and matrix may have 
caused these air bubbles. The presence of air bubbles in the filament will 
produce more void within the specimen. In addition, the air bubbles present in 
the filament will cause the filament to easily snap during printing. Therefore, it is 
important to handle the raw materials properly. The moistures must be 
completely removed before the start of the extrusion process.  
 
 
3D printing composites could be tedious without the proper setup and planning. 
Many problems could occur during the printing process that could compromise 
the quality of 3D printing a composite model. The strength of the printed 
specimen will be reduced significantly, and it could become significantly brittle.  

In 3D printing composite, the state of the raw material used to produce 
the 3D print filament has a significant effect towards subsequent printing 
process. The fibers and polymers must be completely dry and free from any type 
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of moisture. If it is possible, it is important to ensure that fresh fibers are being 
used in the filament production since it has not yet degrade and the specimens 
printed from these materials will have the highest mechanical strength.  

 
 

1.6 Thesis Overview 
 
 
In this thesis, detailed discussions of the research are spread across several 
chapters. There are five major chapters in this thesis, which starts with the 
introduction of the research project, followed by the literature reviews that are 
related to this research, the methodology aspects of the project, results and 
discussion, and finally the concluding remarks for this research respectively. 
 
 
Currently, the first chapter starts by discussing a brief insight into the research 
background and motivations that drives this research. Then, several issues were 
discussed in problem statement section to support the necessity of this research. 
Finally, the objectives and scopes for this project will highlight the focus and 
limitations of this research. 
 
 
After the introduction chapter, Chapter 2 will highlight on the fundamental 
theories related to Ankle-Foot Orthosis, current related researches that has been 
done, insight into Kenaf fiber and composites, and finally the technological gap 
for AFO manufacturing. 
 
 
Chapter 3 briefly explains the methodological part of this project. This chapter 
highlights the research flow of this project, the materials and equipment used, as 
well as the procedures and standards used for this research. 
 
 
Followed right after Chapter 3 is Chapter 4, which mainly consist of the results 
and discussion aspects of this project. This chapter will show the results obtained 
from tests that had been conducted and discusses the impact of this results 
towards the prototype. 
 
 
Finally, Chapter 5 will conclude the findings of this research. This chapter will 
conclude whether the project has reached its objectives, and summarized the 
whole project. This chapter also discusses on the limitations and challenges 
while conducting this research as well as future recommendations for this 
research.  
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