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The technology of using only fossil fuel in the operation of a gas turbine engine 
is facing issues that include low thermal efficiency, poor atomization, low vapour 
pressure, and high greenhouse gases (GHG). Thus the research motivation is 
to restructure the design principle of gas turbines for enhancing performance, 
fuel consumption reduction and GHG emission reduction of a gas turbine. Hence 
the main objective of this research is to investigate the impact assessment of 
the plasma combustion technology for a micro gas turbine (MGT) using biodiesel 
fuel. This is achieved through external integration of hybrid plasma-rich mixture 
injection at the compressor inlet of the engine system for enhanced combustion 
of biodiesel fuel through improved thermal efficiency by eight percent. In view of 
this, the specific objectives are (1) To fabricate, develop and assemble a mini 
gas turbine (MGT) engine system with an external integrated hybrid Plasma-
Torch-Ultrasonic atomizer at the compressor inlet point of the 50kW (67hp) MGT 
engine in the laboratory. (2) To conduct characterization of Kuwaiti sheep fat 
biodiesel for the MGT engine operation. (3) To evaluate and validate the 
combustion performance of the fabricated MGT engine and GHG emission 
reduction. The methodology involved the design, fabricating and assembling of 
individual systems (turbo charger, compressor system, ignition system, 
ultrasound-assisted atomizing system, external integration of hybrid plasma-rich 
fuel injection at the compressor system, inlet air inlet, oil system, and control 
unit) for the 50 kW (67hp) MGT test bed in the laboratory. The MGT test bed 
was meticulously designed with an increase in distance between the inlet of the 
micro gas turbine engine and plasma torch nozzle and tested for stability with 
the expansion of the inlet to reduce the speed of air entry. This ensures 
repeatability, reliability, and accurate data acquisition through in-depth 
experimental design with output data of components consistent with literature 
thus fulfilling Objective 1 of this thesis. Secondly, fuel characterization (specific 
gravity, density, kinematic viscosity, total acid number, water content, total 
sulfur, flash point, lubricity, cloud point, pour point, calcium and magnesium 
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content was according to the American Society for Testing and Materials (ASTM) 
standards for six fuels (kerosene, diesel, blends of Kuwaiti sheep fat biodiesel 
(B20, B50, B75 and B100) performed at the Petroleum Research Center, Kuwait 
Institute for Scientific Research.  Results showed biodiesel has higher kinematic 
viscosity and density than diesel and kerosene; flash point (B75) closest to 
kerosene and acid number (B20) value 0.03206 mgKOH/gm in compliance to 
the ASTM D6751 and EN 14214 standard limits of 0.5 mgKOH/gm that indicates 
minimal nitrogen and sulphur emissions (less soot). These results show that 
blended biodiesel is suitable for MGT fuel thus Objective 2 of the thesis is 
achieved. The MGT engine's general performance for all loading conditions 
when operated under integrated plasma-rich fuel mixture injection with 
evaluated results (a) fuel consumption was generally 9% lower than normal 
conditions higher than pledged value of 1.5% (b) thrust value under normal 
condition is 1.7 - 4.2 kgf and 1.8 - 4.35 with plasma system (c) achieved average 
thermal efficiency for biodiesels 15 – 18% higher than 8% as pledged. (d) 
achieved GHG emissions on average 0.07% for CO; 3% for CO2; 5% for NO; 
and 10% for NO2. (e) B100 exhibits the highest compressor outlet temperature, 
highest compressor output pressure and best performance in fuel flow rate 
suggesting unique but desirable features of biodiesel fuel for MGT. Thus the 
efficacy of integrated plasma-rich fuel mixture assisted combustion operation is 
presented that fulfils Objective 3 of the thesis.  Therefore, Alternative hypothesis 
H1 (µo ≠ µ1): Intake integration of hybrid plasma-rich fuel mixture at the 
compressor inlet of mini gas turbine (MGT) engine with assisted ultrasonic 
atomiser does improve engine performance and exhaust GHG emissions level 
control is accepted. The findings of this study can serve as a potential technology 
for improving the efficiency of fuel combustion and ignition in GT engines. It also 
presents an efficient way of using sustainable renewable sources of energy 
(animal fat biodiesel) as a means of reducing GHG emissions level. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



© C
OPYRIG

HT U
PM

 

 
iii 

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah 

 
 

PLASMA UNTUK TURBIN GAS MIKRO MENGGUNAKAN BIODIESEL 
LEMAK BEBIRI KUWAIT  

 
 

Oleh 
 
 

AHMAD M R N ALRASHIDI  
 
 

Ogos 2021 
 
 

Pengerusi :   Profesor Nor Mariah Adam, PhD PE 
Fakulti :   Kejuruteraan  
 
 
Teknologi penggunaan bahanapi fosil tunggal untuk operasi enjin gas turbin 
mengalami isu kecekapan termal yang rendah; pengabusan lemah; tekanan 
wap yang rendah; gas rumah hijau (GHG) yang banyak adalah menjadi motivasi 
penyelidikan untuk penstrukturan semula prinsip rekabentuk turbin gas agar 
prestasi enjin dipertingkatkan; pengurangan penggunaan bahanapi serta 
pengurangan pelepasan gas turbin. Oleh itu objektif utama kajian ini adalah 
mengkaji kesan impak teknologi pembakaran plasma untuk gas turbin mikro 
(MGT) yang menggunakan bahanapi biodiesel dengan cara suntikan campuran 
bahanapi kaya plasma secara bersepadu kedalam salur masuk pemampat enjin 
turbin gas mini yang dibantu pengabus ultrasonik dari luar enjin supaya 
meningkatkan pembakaran bahanapi dengan cara meningkatan kecekapan 
termal sebanyak lapan peratus. Maka objektif spesifik adalah (1) Membina,  
membangunkan dan membuat pemasangan sebuah sistem enjin gas turbin mini 
(MGT) yang dipasang secara luaran system bersepadu bagi kemasukan 
campuran bahanapi kaya melalui obor plasma ke dalam salur masuk pemampat 
(compressor) yang dibantu pengabus ultrasonik (2) aktiviti mencirikan 
(characterization) biodiesel lemak bebiri Kuwait untuk mengenal pasti 
kesesuaian sebagai bahanapi enjin MGT engine (3) menilai dan mengesahkan 
prestasi pembakaran dan pengurangan pelepasan GHG enjin MGT yang telah 
dipasang. Kaedah kajian melibatkan membina, merekabentuk dan pemasangan 
sistem tersendiri (turbo charger, sistem pemampat, sistem penyalaan, sistem 
pengabusan  bantuan ultrasonic, pemasangan luaran bersepadu yang memberi 
suntikan campuran bahanapi kaya plasma ke dalam salur masuk pemampat 
enjin sistem pemampat, sistem kemasukan udara, sistem bahanapi, unit 
kawalan) untuk MGT berkenaan dengan keupayaan 50 kW (67hp) testbed MGT 
di dalam makmal. Penghasilan testbed MGT telah dilakukan dengan teliti dan 
rapi, serta telah diuji untuk kestabilan, kebolehulangan (repeatability), 
kebolehharapan, penghasilan data yang tepat dan jitu melalui rekabentuk 
eksperiman yang mendalam untuk menghasilkan output data yang bertepatan 
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dengan literatur dan seterusnya memenuhi keperluan Objektif 1 tesis. Kedua, 
kaedah mencirikan (characterization) bahanapi (gravity tentu, ketumpatan, 
viscositi kinematik, nombor total asid, kandungan air, jumlah sulfur, titik flash, 
lubrisiti, cloud point, pour point, kandungan kalsium dan magnesium menurut 
standard Persatuan Pengujian dan Bahan Amerika (ASTM) untuk enam jenis 
bahanapi (minyak tanah, diesel, campuran biodiesel lemak bebiri Kuwaiti  (B20, 
B50, B75 dan B100) telah dijalankan oleh Petroleum Research Center, Kuwait 
Institute for Scientific Research. Keputusan menunjukkan bahawa biodiesel 
mempunyai kinematic viscosity dan ketumpatan yang tinggi daripada diesel dan 
minyak tanah; nilai titik kilat (B75) paling hampir minyak tanah dan nombor asid 
(B20) adalah 0.03206 mgKOH/gm yakni memenuhi  compliance standard ASTM 
D6751 dan had standard  EN 14214 standard 0.5 mgKOH/gm membawa 
maksud nilai pelepasan nitrogen dan sulfur adalah tersangat rendah (kurang 
jelaga). Hasil keputusan ini menunjukkan campuran biodisesel yang 
dibangunkan sangat sesuai sebagai bahanapi MGT maka Objektif 2 tesis telah 
tercapai.  Secara keseluruhan prestasi enjin MGT untuk semua keadaan beban 
semasa operasi suntikan campuran bahanapi kaya plasma secara bersepadu 
telah dinilai dengan keputusan (a) penggunaan bahanapi secara am adalah 
pengurangan  9% daripada keadaan biasa yakni lebin tinggi daripada nilai 
ketetapan 1.5% (b) nilai thrust semasa keadaan biasa adalah (1.7 - 4.2 kgf) 
berbanding (1.8 - 4.35 kgf ) dengan penggunaan sistem plasma (c) pencapaian 
kecekapan termal purata untuk biodiesel adalah (15 – 18%) melebihi nilai 8% 
yang dijanjikan (d) pencapaian purata pelepasan GHG 0.07% untuk CO; 3% 
untuk CO2; 5% untuk NO; dan 10% untuk NO2 (e) B100 mempamerkan suhu 
dan tekanan keluaran pemampat tertinggi dengan prestasi kadar alir bahanapi 
unggul meramalkan ciri idaman bahanapi biodiesel untuk MGT. Yang demikian, 
efikasi campuran bahanapi kaya plasma secara bersepadu yang dibantu 
pengabus bantuan ultrasonik telah memenuhi Objektif 3 tesis. Maka, Hipotesis 
alternatif H1 (µo ≠ µ1): kemasukan campuran bahanapi kaya plasma secara 
bersepadu kedalam salur masuk pemampat enjin turbin gas mini yang dibantu 
pengabus ultrasonik dapat meningkatkan prestasi enjin dan pelepasan GHG 
ekzos ke tahap rendah adalah diterima. Hasil kajian ini menunjukkan teknologi 
berpotensi untuk meningkatkan kecekapan pembakaran bahanapi dan 
penyalaan enjin turbin gas. Ianya juga menengahkan kaedah cekap sumber 
tenaga bolehdiperbaharui yang lestari (biodiesel lemak haiwan) sebagai cara 
mengurangkan pelepasan GHG.  
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background of Study 

A typical gas turbine is characterized by a continuous-flow engine and steady 
flame production during the combustion process with high hydrocarbon 
emissions from using conventional fossil fuel resources. Although these 
emissions may impact negatively on the environment by depleting the ozone 
layer, the gas-turbine architecture permits the use of various fuels that also 
ensures complete combustion in the engine where some of these features 
include moderate compression ratios, robust mechanical designs and versatile 
combustion systems that enhance the potential to utilize a wide variety of 
biofuels such as alcohols, bio-diesel, low calorific value (LCV) gasified biomass, 
synthetic gas, hydrogen and natural gas. It is worth mentioning that fuel 
properties influence the performance efficiency of gas turbines and also 
determine the final composition of emitted greenhouse gases (GHG) like 
nitrogen-oxide (NOx), and carbon-monoxide (CO) as published (Knothe et al., 
2006; Lefebvre, 1984). The current adoption of biofuels as alternative energy 
sources in an internal combustion engine is facilitated by the overwhelming 
benefits over conventional fossil fuel sources [(Gupta et al., 2010), (Habib et al., 
2010), (Agarwal, 2007)]. 

The alternative biodiesel sources have proven to be sustainable, cheaper and 
environmentally friendly with a reduction in the toxic emission level [(Agarwal, 
2007), Janulis, 2004)]. Biodiesel does not contain sulphur in the elemental 
compositions when compared with fossil fuels and has great potential to replace 
the ever-depleting fossil fuel energy resources (Salamanca 2012). The constant 
increase in the world population stimulated a relative increase in energy 
demands across all sectors of the global economy as also required in aerospace 
applications. The gas turbine also required an alternative fuel that is 
environmental-friendly with a lower GHG emission impact on the environment.  
Studies have been conducted on the biofuel application in transportation sectors 
for vehicles, and aerospace applications in jet engine/gas turbines [(Nayak, 
2017), (Gupta et al. 2010]. Biofuel is a liquid or gaseous fuel produced from 
biomass, waste and other biodegradable plants materials. The technology of 
using only fuel in the operation of engines is inadequate due to factors ranging 
from low thermal efficiency, poor atomization or vitalization, the low vapour 
pressure that may result in rapid evaporation and high operation cost leading to 
more fuel consumption (Sagás, Maciel, and Lacava, 2016). Several studies have 
been carried out to enhance the fossil fuel combustion processes in gas turbines 
(GTs) without the use of plasma technology. This motivated the current 
proposed study of introducing the plasma combustion technology for the micro 
gas turbine in combination with the biodiesel fuel.  
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1.2 Problem Statement      

The environmental benefit associated with the application of biofuel alternative 
energy sources in transportation systems is gradually gaining global awareness 
and interest. This is reflected in ethanol usage as an alternative biofuel for 
automobiles in Brazil and other developed nations. Although a significant 
number of efforts have been vetted in the application of biofuel to power engine 
systems, the GHG emission control level remains a challenge as established 
when compared with the acceptable global standard (Yilmaz 2017).  Animal fats 
can be considered a promising alternative source for biodiesel production, but it 
requires more complex processing than natural oils.  In Kuwait, waste sheep fat 
is the main feed stock for biodiesel production that contain large amounts of free 
fatty acids (49.1 mgKOH/g) (Fynees Alajmi et al, 2018) which means 
sustainable, abundant, cheap supply and yet reduce handling and reduce impact 
to the environment and without economic competition like vegetable oils.  There 
is high emission of NOx resulting from the combustion of biodiesel in a typical 
gas turbine system operation (Imdadul et al., 2015). Factors such as injection 
timing, adiabatic flame temperature, radiation heat transfer and injection delay 
are also responsible for higher NOx emissions in the reciprocating engine 
[(Imdadul et al., 2015; Narayanan and Jacobs, 2015)]. In addition, the 
antioxidants used in biodiesel mainly contain phenolic groups, which are more 
likely to form soot. In addition to glyceride impurities, even though they have the 
potential to burn with less soot because the biodiesel does not contain sulphur 
(Salamanca, 2012). The technology of using only jet fuel alone in the operation 
of engines is inadequate due to factors ranging from low thermal efficiency, poor 
atomization or vitalization, the low vapour pressure that may result in rapid 
evaporation and high operation cost leading to more fuel consumption (Sagás, 
Maciel, & Lacava, 2016). The blend ratio of 15 % of ethanol at 0.5 % emulsion 
has demonstrated good compatibility with 84.5 % diesel composition to produce 
ethanol-diesel which increases the efficiency of the engine with a thermal 
increment of almost 8 % as proposed by [Senthilraja et al., (2016) (Saifuddin et 
al., (2014)] have shown that there is potential to increase thermal efficiency by 
employing biodiesel in GT. 

To overcome these limitations; effective deployment of biodiesel fuel in gas 
turbines with considerations to lower NOx emission is desired. There is a need 
for higher combustion temperature requirement from plasma technology for 
biodiesel effective combustion and enhanced performance in a gas turbine.   

Plasma technology has been applied as one solution based on the principle of 
free electron formation under high temperatures to enhance the overall 
combustion efficiency in automotive engines with biofuels [(Chen, 2008), 
(Starikovskii, 2005)]. Over the years, the advancement of plasma technology 
has evolved but not for gas turbine applications. Current plasma design can 
easily reach very high temperatures of over 5000 oC making it viable to be used 
on the gas turbine. Therefore, a fundamental understanding of plasma-fuel 
combination as well as the correlation to the emission level is essential for 



© C
OPYRIG

HT U
PM

 

 
3 

optimal utilization of biofuel in GT engines. Generally, considerable progress has 
been made in most recent research works towards an understanding of plasma 
impact in the improvement of the fuel combustion process. The validation of such 
mechanisms was achieved through experimentation under controlled conditions 
and by comparing the results with numerical simulations of discharge and 
combustion processes. However, there is no detailed review of the recent 
applications of plasma in internal combustion engines, particularly in GTs engine 
applications. This knowledge gap is a serious setback in the advancement of the 
science of plasma technology application in internal combustion (IC) engines.  
Biodiesel from plant-based oils gives competition for food but biodiesel from 
animal fat wastes is cost-effective whilst reducing its impact on the environment. 
Also, integration of cost-effective Kuwaiti sheep fat biodiesel and plasma 
technology in the operating of GT engines is lacking [(Alajmi et al 2017), 
((Zakaria & Kamarudin, 2016), (Tropina et al., 2016), (Serbin et al., 2011). 
(Takita, Abe, Masuya, & Ju, 2007)]. Therefore, this research aims to investigate 
the feasibility of using novel external integration of hybrid plasma-rich fuel 
mixture injection at the compressor inlet to enhance effective GT operation 
efficiently with reduced GHG emission levels through the use of animal fat 
biodiesel. 

1.3 Research Objectives 

The main objective of this research is to investigate the impact assessment of 
the plasma combustion technology for micro gas turbine (MGT) using animal fat 
biodiesel fuel through external integration of hybrid plasma-rich mixture injection 
at the compressor inlet of the engine system for enhanced combustion of 
biodiesel fuel through improved thermal efficiency by eight percent. In view of 
this, the following specific objectives were proposed.    

i. To fabricate, develop and assemble a mini gas turbine (MGT) engine 
system with an external integrated hybrid Plasma-Torch-Ultrasonic 
atomizer at the compressor inlet point of the MGT engine.   

ii. To conduct characterization of biodiesel blended fuel for the MGT 
engine operation.  

iii. To evaluate and validate the combustion performance of the fabricated 
MGT engine with plasma-rich fuel assisted combustion technology 
under different fuel mixtures, and loading conditions scenarios for 
improved combustion performance and GHG emission reduction.  

 
 
1.4 Research Hypothesis 

This study on the introduction of plasma combustion technology for MGT 
engines using biodiesel fuels is proposed to investigate the external-intake 
integration of hybrid plasma-rich fuel mixture injection at the compressor inlet of 
the engine. The aim is to enhance combustion performance and GHG emission 
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reduction in an MGT engine powered by biodiesel fuel blends from animal fat. 
This is achievable by formulating the proposed hypothesis as a statement of the 
expected result outcome: 

Null hypothesis Ho (µo = µ1): Intake integration of hybrid plasma-rich fuel mixture 
at the compressor inlet of mini gas turbine (MGT) engine does not improve 
engine performance and exhaust GHG emissions control level. 

Alternative hypothesis H1 (µo ≠ µ1): Intake integration of hybrid plasma-rich fuel 
mixture at the compressor inlet of mini gas turbine (MGT) engine does improve 
engine performance and exhaust GHG emissions level control. 

1.5 Research Scope and Limitations 

This research study focused on the study of plasma combustion technology for 
micro gas turbines using biodiesel. The fabrication of MGT engine systems 
within the laboratory setup using individual engine components (selection MGT, 
selection plasma torch and assemble modifications, compressor system, fuel 
system, air intake system, atomiser, engine test bed) to test the viability of 
adopting plasma technology and alternative renewable biodiesel fuel (from 
animal fat) in MGT engine, in order to enhance the effective engine performance, 
operation cost reduction and reduction in the NOx emission level.  

The scopes of the study are: 
 

i. The accurate parameter selection for the MGT engine design using 
fundamental theorems, composite flow map, and ASTM standard 
compliance for proposed fuel characterization. Adequate safety 
precaution measures were taken.  

ii. The proposed MGT has 78 % maximum mechanical efficiency, a turbo 
charger with a maximum pressure ratio of 2:6, and a mutually coupled 
rotary compressor with a maximum compressing flow rate of 58 ips/s 
(26.31kg/s). 

iii. The external fabrication of the attached exhaust to the MGT was 
adapted to enhance effective engine thrust performance and exhaust 
GHG emission level measurement with the application of fuels from 
fossil kerosene, fossil diesel and biofuel blend mixtures.  

iv. The external integration of plasma torch and ultrasonic atomizer 
devices with temperature specifications range from 5000 - 8000 oC at 
the compressor inlet, and electrically powered atomizer.  
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v. This hybrid integrated plasma-rich fuel mixture into the MGT with both 
fossil fuel and biofuel adopted to examine the combustion 
performance of the engine.  

vi. The novel plasma technology at the intake of the compressor of the 
MGT engine for ionized hydrogen gas formation in combination with 
external air. Hence addressees the GHG emission control level, 
enhancing engine performance efficiency and operation cost based on 
a reduction in fuel consumption by 1.5 % is the novelty of the study.  

 
 
The study is limited to a lab-scale MGT engine fabrication and evaluation under 
different operating conditions with external integration of hybrid plasma-rich fuel 
technology at the compressor inlet point, under four operational conditions with 
fossil and biodiesel fuel blended mixtures. The emitted GHGs monitored and 
analyzed were limited to nitrogen oxide (NOx), sulphur oxides (SOx), and carbon 
monoxide (CO). This study also investigates the rate of fuel consumption, 
combustion temperature and products of the combustion exhaust. 

1.6 Research Contributions  

The following contributions were added to the existing body of knowledge on the 
introduction of plasma combustion technology for micro gas turbines using 
biodiesel fuel. The proposed external integration of plasma-ultrasonic atomizer 
technology at the compressor inlet of the MGT engine powered by conventional 
fossil and biodiesel blended mixtures from animal fat was conducted. The impact 
assessment analyses on the MGT engine efficiency performance level based on 
selected operation parameters and GHG emission control level were divulged 
accordingly. The following are the contribution from the study. 

i. Successful fabrication and assembly of laboratory-scale MGT engine 
with external integrated plasma torch technology and ultrasonic 
atomizer at the compressor inlet of the MGT. 

ii. Comparative reduction in the GHG emission measurement level of 
NOx, SOx, and CO with the introduction of plasma combustion 
technology for the MGT engine using biodiesel fuel compared to 
conventional approaches. 

iii. Performance improvement of MGT at a reduced operational cost  
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1.7 The Layout of the Thesis     

Chapter 1 presents the background of the study, the knowledge gap discovery, 
problem statement, research objectives, significance and scope of research are 
described in detail. Chapter 2 (Literature Review) contained a comprehensive 
literature review on the application of biodiesel, plasma technology and 
combustion performances of various fuels in gas turbines in order to discover 
the research gap to be filled as motivation for this current study. Chapter 3 
(Methodology) presents the materials/ equipment, fabrication procedure, 
experimental layout, parameter measurement and relevant data extraction. The 
procedure employed in fuel characterizations and external technological 
integration of plasma and ultrasonic atomizers were explained in detail. The final 
operation testing of the complete assembled unit for onward analysis was 
executed.  Chapter 4 (Results and Discussions) presented the analytical method 
applied to investigate the significant effect of the measured factors discovered 
by the research. The results and discussions were reported in a sequential order 
based on the specific objectives. Comparison with relevant literature was 
included in the discussion of the results. Chapter 5 (Conclusion and 
Recommendations) finally present the conclusions, suggestions and 
recommendations based on the current research 
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