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Faculty: Engineering

Sheet metal forming is a fabrication process that allows sheet metal to be formed
in 3D shapes with the use of a specific tool and die. However, the conventional
sheet metal forming has disadvantages in terms of quality and low flexibility, and
it also prolongs the time-to-market in producing low costs prototype products.
Robot-based incremental sheet forming (ISF) is a new prospect and one of the
relatively new sheet metal forming processes to fabricate a product with 3D
complex shapes. Interests in new techniques with a variety approach for forming
processes have created more studies by researchers on the robot-based ISF
process. However, tool wear always makes the difficulty of the ISF process for
sustaining the process performance. In the present study, the development of a
comprehensive predictive model for tool wear in robot-based ISF using artificial
intelligence (AI) has been conducted. The model would predict the critical
degradation of tool wear and simultaneously the relationship with quality of the
formed workpiece surface. The robot-based ISF experiments were carried out
using a forming tool of AISI D2 tool steel with a 10 mm diameter that attached to
the ABB IRB 4400/60 IRC5 industrial robotic arm. Three different materials of
SUS316 stainless steel, Cu60Zn40 copper alloy and AA3003 aluminum alloy
with 0.5 mm thickness were used as workpieces. As preliminary experiments, a
parametric optimization was carried out to determine optimum processing
parameters in robot-based ISF using L18 orthogonal array design of
experiments. The vibration signals of the ISF process were recorded by the
accelerometer sensors, which are located on the forming tool and workpiece.
Subsequently, after the vibration signals through signal processing, pattern
recognition was conducted to identify and categorize the tool condition by two
clusters, which are a tool in good condition and worn out. The increasing of
surface roughness on the workpieces can also be seen noticeably with the
increasing of vibration on the forming process due to tool wear. This proving that
vibration signals can provide the tool wear identification for the ISF process. The
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predictive models were developed and compared between three different AI
models, which are artificial neural network (ANN), fuzzy logic (FL) and adaptive
network-based fuzzy inference system (ANFIS). The prediction using ANN
model with two hidden layers showed that it has an excellent prediction accuracy
of 99.94 % for tool wear (architecture 2-4-4-1) and 91.77 % (architecture 2-5-3-
1) for surface roughness. The use of the ANN with two hidden layers is the best
model to predict the tool wear in robot-based ISF. The successful development
of prediction of tool wear in robot-based incremental sheet forming can provide
a significant way in tool condition monitoring system to minimize downtime
related with tool damaged and affected the quality of the workpieces.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PEMANTAUAN KEADAAN ALAT BERASASKAN KECERDASAN TIRUAN
DALAM PEMBENTUKAN LEMBAR PENINGKATAN BERBASIS ROBOT

YANG MEMBENTUK MELALUI GETARAN, KEHAUSAN ALAT DAN
ANALISIS KEKASARAN PERMUKAAN

Oleh

NAZARUL ABIDIN BIN ISMAIL

Mei 2021

Pengerusi: Prof. Madya Mohd Idris Shah Bin Ismail, PhD
Fakulti: Kejuruteraan

Pembentukan kepingan logam kepada bentuk tertentu adalah proses fabrikasi
yang memungkinkan kepingan logam terbentuk dalam bentuk 3D dengan
penggunaan alat tertentu dan acuan. Walau bagaimanapun, pembentukan
kepingan logam secara konvensional mempunyai kelemahan dari segi kualiti
dan fleksibiliti yang rendah, dan ini juga memanjangkan masa ke pasaran
walaupun dalam menghasilkan produk prototaip dengan kos yang rendah.
Pembentukan kepingan logam berasaskan robot adalah prospek baru dan ia
adalah salah satu proses pembentukan kepingan logam yang agak baru untuk
membuat produk dengan bentuk yang kompleks seperti 3D. Minat dalam teknik
baru dengan pendekatan yang pelbagai untuk membentuk proses ini telah
membuatkan lebih banyak kajian dari penyelidik mengenai proses pembentukan
kepingan logam ke bentuk tertentu berasaskan robot. Walau bagaimanapun,
penggunaan alat membentuk ini menyebabkan kesukaran untuk mengekalkan
prestasi proses. Dalam proses pembentukan kepingan ke bentuk tertentu,
kehausan alat bergantung kepada ketebalan bahan, bahan untuk alat
membentuk, bahan kerja, pelinciran, halaju dan jalur kerja. Dalam kajian ini,
pengembangan model ramalan komprenhensif untuk penggunaan alat dalam
proses ini yang berasaskan robot menggunakan kecerdasan buatan telah
dilakukan. Model ini akan meramalkan kemerosotan kritikal kehausan alat dan
pada masa yang sama perhubungan dengan kualiti permukaan benda kerja
yang terbentuk. Eksperimen pembentukan kepingan logam kepada bentuk
tertentu berasaskan robot dilakukan dengan menggunakan alat pembentuk
keluli AISI D2 dengan diameter 10 mm yang dilekatkan pada lengan robot
industry ABB IRB 4400/60 IRC5. Tiga bahan berbeza iaitu keluli tahan karat
SUS316, aloi tembaga Cu60Zn40 dan aloi aluminium AA3003 dengan ketebalan
0.5 mm digunakan sebagai bahan kerja. Sebagai eksperimen awal,
pengoptimuman parametric dilakukan untuk menentukan parameter
pemprosesan optimum dalam eksperimen berasaskan robot menggunakan
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kaedah Taguchi dengan menganalisa kekasaran permukaan benda kerja yang
terbentuk. Analisis varians (ANOVA) digunakan untuk mengenal pasti parameter
proses yang paling signifikan yang mempengaruhi kekasaran permukaan.
Isyarat getaran proses eksperimen ini dirakam oleh sensor akselerometer, yang
terletak di alat dan benda kerja. Selanjutnya, setelah isyarat getaran melalui
pemprosesan isyarat, pengecaman pola dilakukan untuk mengenal pasti dan
mengkategorikan keadaan alat kepada dua kumpulan, iaitu alat dalam keadaan
baik dan rosak. Peningkatan kekasaran permukaan pada benda kerja juga dapat
dilihat dengan bertambahnya getaran pada proses pembentukan kerana
kehausan alat. Ini membuktikan bahawa isyarat getaran dapat memberikan
pengenalan kehausan alat untuk proses pembentukan kepingan logam ke
bentuk tertentu. Model ramalan dikembangkan dan dibandingkan di antara tiga
model kecerdasan buatan yang berbeza, iaitu rangkaian saraf tiruan (ANN), logic
kabur (FL) dan system inferensi kabur berasaskan rangkaian adaptif (ANFIS).
Ramalan menggunakan model ANN dengan dua lapisan tersembunyi
menunjukkan bahawa ia mempunyai ketepatan ramalan yang sangat baik iaitu
99.94 % untuk kehausan alat (seni bina 2-4-4-1) dan 91.77 % (seni bina 2-5-3-
1) untuk kekasaran permukaan. Penggunaan ANN dengan dua lapisan
tersembunyi adalah model terbaik untuk meramalkan kehausan alat dalam
eksperimen berasaskan robot ini. Perkembangan kejayaan ramalan kehausan
alat dalam pembentukan lembaran tambahan berasaskan robot dapat
memberikan cara yang signifikan dalam system pemantauan keadaan alat untuk
meminimumkan waktu henti yang berkaitan dengan alat yang rusak dan
mempengaruhi kualiti benda kerja.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Recently, the production of sheet metal forming is rapidly increased due to
customer demand concerning more personalized products and the requirement
of smaller batches. However, manufacturers have to deliver faster the product
with shortened product design and production phases. The eras of prototyping
in the product design can take a long time and sometimes it can surpass the
budget or even worse the products need to be launched before enhancing the
design phase, showing the need for rapid prototyping (De Backer et al., 2005).
Rapid manufacturing uses a range of methods that are used to produce a 3D
scale model of physical assembly rapidly and efficiently. It is a natural and
complementary technique, as 3D printing, or additive manufacturing does not
require any tooling and tolerates almost limitless freedom of shape. Since the
same equipment can be used to manufacture the prototypes with different
properties and materials, the rapid manufacturing provides the developer,
manufacturer, development team and researchers with distinct advantages such
as saving time and money because the different setup and tooling are not
required. Also, with rapid manufacturing, the process may apply for repeated
designs and improvements that allow the product to be evaluated and checked.
This iterative cycle includes a roadmap for end-product production and
refinement.

In a short period, incremental sheet forming (ISF) is considered a great
alternative of consideration from the major manufacturers to reduce production
costs, increases product quality and minimize manufacturing lead time.
Manufacturers realized that ISF could substitute the conventional methods of
sheet metal forming in traditional manual labor, decrease production costs,
increase productivity, and enhance the quality of the products (Lu et al., 2015).
As a result, the incremental sheet forming process could rapidly replace
conventional methods in the sheet metal forming process. The ISF process is a
modern approach for fabrication of sheet metals using step-by-step movement
of forming tool to the workpiece without the need of dies or molds, which costs
in terms of time and money. This process is performed by a forming tool that
forms the sheet in a series of localized incremental deformation.

The utilization of robots in the industry encourages the researchers to investigate
the potential of industrial robots for performing the ISF process instead of using
a computer numerical control (CNC) machine. Due to the dynamic working
diversity of industrial robots, the ability of ISF process to create a greater and
complex workpiece can be enhanced. However, the robot-based ISF process
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has yet to be fully optimized and accepted in the industry. Behera et al. (2017)
reported that the major companies such as Ford Motor are interested in the
prospect of robot-based ISF process since the automotive, transportation and
aerospace industries often require the use of robot for larger components, which
the CNC machine has a limitation on the working range. This technology also
has a great potential to be utilized in Industry 4.0, since it can offer an integration
of robot, intelligence-based monitoring and control system with internet-of-things
(IoT) devices and networks for cyber-physical systems (Paniti, 2014; Sa de
Farias et al., 2014). Therefore, the robot-based ISF is an alternative technique in
fabricating sheet metal into final products based on appropriate parameters
involving robot speed, step size, wall angle, shape and size of the forming tool
compared to CNC machine which is involved with feed rate, tool path and
lubrication conditions on the workpiece.

In general, tool wear is a tool failure. Tool wear plays an important role in shaping
both ease of forming tools and the resulting surface quality of the workpiece. One
factor affecting the forming tool’s failure is based on the behavior of the tool. Tool
behavior is affected by many factors including the composition of the forming tool
and workpiece material, the essence of the forming procedure or method and the
geometry of the forming device. Many researchers are rapidly involved in
developing innovative techniques for the prediction model technology and
advancement in tool wear (Ambhore et al., 2015). Numerous researchers had
developed the tool wear prediction modeling and mostly focused on turning
(Twardowski and Wiciak, 2019) and milling (Mandal, 2014) operations, but none
in the robot-based ISF process. Primarily, a proper model needs to be built and
tested before implementing it for online control. The requirement to predict tool
wear as a function of tool performance in the ISF process has become more
important to provide a basis for a computer-based control system in the future.
Nowadays, intelligent algorithms such as artificial neural networks (ANN) and
fuzzy logic (FL) have been widely used to tackle the problem which cannot be
satisfactorily handled by conventional analytical approaches. The advantages of
intelligent algorithms include extreme computation, powerful memory, and rapid
learning. Furthermore, it can predict an output parameter with accuracy even if
the input parameter interactions are not completely understood. It has been
reported that the implementation of intelligent algorithms could minimize the time
and cost consumption during the machining process (Abellan-Nebot and
Romero, 2010). These capabilities make intelligent algorithms a useful prediction
tool that can be implemented successfully in the research and development of
casting and molding process (Raj et al., 2021), machining process (Abellan-
Nebot and Romero, 2010), joining process (Rajan et al., 2016), and shearing and
forming process (Al-Musawi et al., 2020 and Meng et al., 2015).

1.1.1 Mechanism of Incremental Sheet Forming

The basic components of the ISF process are presented in Figure 1, which
illustrated the workpiece, blank holder, and the forming tool. During ISF, the
blank holder is used for clamping and holding the sheet in position and its
opening defines the working area of the ISF forming tool. As shown in Figure
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1.1(a), the flat sheet with a typical thickness of 0.3 - 2mm is held in place by a
blank holder placed on the simple fixture. The basic mechanism of ISF is that a
generic forming tool moves along a tool path and progressively forms a metal
sheet (workpiece) into the desired shape. The tool is either moved using CNC
machines or industrial robots. The metal shaping tool is a rounded single point
rod, which is positioned in the collect tool holder. The shaping method traces a
course as smooth gradual steps deform the sheet metal. In Figure 1.1(b), the
incremental steps are shown as ∆y and ∆z, with the horizontal and vertical
increments, respectively, thus adding up to provide a draw depth of h. There is
no backup die which supports the sheet’s back surface during the forming
process. The application of CNC technology or industrial robots to sheet metal
forming enables the replacement of costly dedicated tooling and the fast
transition from the CAD model to the formed component.

(a) (b)
Figure 1.1 : (a) Stages and (b) incremental steps of forming tool in ISF.

1.1.2 Application of Incremental Sheet Forming

The increase in recognition of flexible forming techniques has risen to boost the
interest in the ISF process (Nasulea and Oancea, 2018), whereby the complex
three-dimensional profiles can be manufactured by simple jig and forming tools.
The sheet metal that being deformed by a series of small, localized, and
incremental deformations throughout the forming process, preventing tensile
deformations in sheet metals. This is due to localized deformation, the forming
forces in this process are lower than in conventional method (Liu and Li, 2019).
This gives a great opportunity in reducing the volume and size of the machines
engaged in this process. Malwad and Nandedkar (2014) reported the recognition
of ISF as a new advanced forming technology. It includes the various advantages
of ISF such as lower cost and shorter time in prototype development, enhanced
formability, and easy component design modification. Also, the ISF has two key
advantages that are die-less, or that it needs only a simple or cheap die and
suitable for low-series output. Secondly, the formability of material is elevated
and considerably often (Emmens et al., 2010).

These advantages make the ISF as a promising technique compares to the
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conventional sheet forming such as spinning forming or deep drawing processes
for producing intricate components in rapid manufacturing. The ISF process has
been widely used in the fabrication of aerospace and automotive components
which are mainly built from various materials such as aluminum alloys (Ghamdi
and Hussain, 2015; Wang et al., 2020), steels (Milutinovic et al., 2021; Li et al.,
2017), magnesium alloys (Leonhardt et al., 2018), titanium alloys (Uheida et al.,
2017; Khazaali and Fereshteh, 2016) and polymers (Shubhamkar, 2016;
Sabater et al., 2018). These materials are recognized for their great strength-to-
weight ratio and low formability at room temperature (Ambrogio and Gagliardi,
2015; McAnulty et al., 2017). Despite this, aluminum alloys are receiving more
attention from researchers for investigating due to aluminum alloys embrace of
greater toughness, meticulous thermal development coefficient, improved
damping capability and enhanced high-temperature properties. Figure 1.2 shows
the example of aerospace and automotive components manufactured by ISF
process (Lu et al., 2013; Bambach et al., 2009, Verbert, 2010; Behera et al.,
2017).

The demands technology of ISF not only in the automotive and aerospace
industries, but it also has demanded from the medical industry, which the ISF
technology allows the manufacturing prosthetics with exclusive characteristics
for different patients (Centeno et al., 2017). Lu et al. (2015) reported that the
work has been largely focused on ISF strategy and there are still considerable
technical challenges to achieve better geometry precision, thickness distribution
and complex cranial shape. In recent decades, versatile manufacturing solution
offers by the ISF process have attracted a great deal of attention from the
medical parts industry suppliers (Cheng et al., 2020). The focus is made on
evaluating the feasibility of ISF to produce medical parts, and the emphasis is
placed on the manufacture of a customized titanium maxillofacial implant (Grade
2) under laboratory-controlled conditions. Figure 1.3 shows the example of
medical products manufactured by ISF process (Lu et al., 2015; Duflou et al.,
2013; Bagudanch et al., 2015). Furthermore, Behera et al. (2017) reviewed the
other application of incremental forming in various industries with the materials
used as listed in Table 1.1.

Figure 1.2 : Example of automotive and aerospace components
manufactured by ISF (a) car fender and (b) airfoil
(Source: Lu et al., 2013; Bambach et al., 2009; Verbert, 2010; Behera et al.,
2017).
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Figure 1.3 : Example of the medical parts manufactured by ISF (a) cranial
plate, (b) maxillofacial implant, (c) backseat orthosis and (d) hand orthosis
(Source : Lu et al., 2015; Arajou et al., 2013; Duflou et al., 2013; Bagudanch et
al., 2015).
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Table 1.1 : Application of incremental sheet forming with different materials

(Source: Behera et al., 2017)

1.2 Problem Statement

Recently, the diversification from CNC technology to robot-based technology has
rapidly enhanced and the increasing demands of process automation for
unmanned manufacturing fascinated many researchers in the field of on-line
monitoring of machining processes. Because of this, extensive research work is
captivating place worldwide in the area of on-line tool affects the tool life. Tool
life is primary importance in material processing remaining to its direct effect on
the surface quality of the machined apparent, its dimensional accuracy, and as
a result of the economics of machining processes (Ambhore et al., 2015).

The improvement of ISF process performance and increasing the tool life are two
critical issues that should be more developed. To improve the ISF process
performance, a comprehensive study on the correlation between associated
physical processes of the ISF process and mechanical behaviors of the process
parameters is necessary. With multi-parameters influencing the process, it is
important to determine the different changes that may have occurred during the
process when manipulating the process parameters. Therefore, an optimal
degree of process parameters for the procedure to be conducted needs to be
taken. Conventional methods of experimental design are too complicated, and
not convenient to be used. This research seeks to optimize process parameters
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settings. The optimal process parameters can be derived using a simple,
accurate, and systematic method.

Many researchers have improvised on the ISF technology, which focuses on
processing parameters and their influences (Kumar and Gulati, 2018; Lu, 2016;
Gatea et al., 2016), wall thickness distributions (Choi and Lee, 2019;
Mohammadi et al., 2016; Lu, et al., 2016), springback effect (Abeyrathna et al.,
2017; Zhang et al., 2020), formability (Pandivelan and Jeevanatham, 2015;
McAnulty et al., 2017) and surface quality (Mohanty et al., 2018; Zhai et al., 2020)
but none in tool wear condition monitoring. Tool wear is one of the noticeable
parameters in all of the manufacturing processes (Adnan et al., 2015). Since tool
wear affects the characteristics and tolerances, which are achievable, it is a
significant concern that must be received more attention (Oliaei et al., 2016).
Prediction of tool wear has been a crucial topic in determining the tool life (Kong
et al., 2018). According to the authors, tool wear status is one of the most
important variables in ensuring the dependability and stability of a manufacturing
system, because excessive wear of cutting tools causes a sharp increase in
cutting force and even machine tool noise. Furthermore, tool failure accounts up
to 20 % of downtime in modern processes, resulting in lower productivity. Wang
et al. (2020) stated that when dealing with a physical problem, the existing
prediction model frequently encounters difficulties. Physical consistency is
lacking in current prediction models due to the lack of representation of physical
concerns. In addition, the size of the training sample limits the performance of
data-driven model. Due to the dynamic and complex working conditions,
manually altering parameters in practice can add a significant cost to current
prediction models. The ability to accurately predict the tool wear during
machining is an incredibly important part of the diagnostics that results in the tool
being replaced at the right time. Efficient tool wear assessment improves process
productivity and enables replacement of the tool before unpleasant wear occurs
(Twardowski and Wiciak, 2019). Rao et al. (2014) described the cost of tooling
as an important factor that should be reduced to minimize the cost of
manufacturing. The authors defined that tool failure can be observed by higher
power consumption, poor surface finish, dimensional inaccuracy, presence of a
burning band on the machine surface, tool, and workpiece vibration. In protecting
the tool life, Pandiyan et al. (2018) stated that many researchers studied,
evaluated and developed prediction modeling for the tool condition. However, no
studies have been found for the prediction of tool wear in the robot-based ISF
process.

Until now, the tool condition monitoring is intensively carried out in CNC turning
and milling processes. In the turning process, a tool condition monitoring strategy
based on a large number of signal features in the rough turning, where the signal
feature can be extracted from the time domain signals as well as from frequency
domain transform and their wavelet coefficients (time-frequency domain)
(Kuntoglu and Saglam, 2021). In milling processes, tool condition monitoring is
widely investigated either using vibration or force sensor. The performance of
clustering methods on high-speed end milling experimental data in which the
clustering methods were applied to wavelet features of force and vibration
signals to illustrate the results repeatability was demonstrated (Torabi et al.,
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2016). In the ISF process, Behera et al. (2017) had review that the variability of
the applied forces in incremental sheet forming is one of the major problems in
sheet failure prediction. In addition, the prediction of applied force values was
developed for optimizing tool and fixture design and correct machine-selection.
Jauregui et al. (2018) investigated tool wear estimation using a neuro-fuzzy
model, indicating that evaluation using simply the force signal is less accurate
owing to bandwidth limitations. This flaw is mitigated by the addition of the
acceleration and AE sensors, which expanded the measurement bandwidth
needed to capture additional tool wear characteristics. From this point of view,
an effective detection system needs to be established for the ISF process and
subsequently could be used in developing a prediction model of tool wear and
product quality.

Tool wear modeling can be predictive offline by using computer-based process
models that utilize feedback information from the machining process. Many
studies have been carried out to develop various mathematical models for the
prediction of tool wear (Pimenov et al., 2017; Okokpujie et al., 2018). However,
it is not easy to apply this conventional technique to practical situations because
the relationship between the ISF process and the tool wear is complex.
Conventional control techniques, such as PID controllers based on mathematical
models cannot provide a reliable solution when global control was required. The
high complexity of forming processes has become a major handicap, and the
creation of global controllers capable of sustaining stable processes such as
deep drawing processes which are highly non-linear forming processes, and
their behavior is very difficult to describe by mathematical models (Meng et al.,
2015).

According to the issues mentioned above, the studies on parametric
optimization, surface characterization and prediction of tool wear in robot-based
ISF process are needed to carry out. In sequence, the issues need to be given
a high consideration in this research hypothesis are listed below:

1. The quality of formed surface could be improved by proper selection of
process parameters, hence a parametric optimization may improve the
surface quality and process productivity.

2. Since the tool condition monitoring plays a vital role in process
performance, a robust detection system with reliable pattern recognition
on tool wear and product quality need to be developed.

3. The relationship between tool wear and product quality with machining
signals is necessary to be establish for tool condition monitoring.
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1.3 Research Objectives

The main objective of this research work is to develop and compare several
intelligent algorithms for tool wear prediction in robot-based ISF. To achieve this
aim, the present research objectives can be listed as follows:

1. To determine the optimization of process parameters in robot-based ISF by
evaluating the surface quality.

2. To evaluate the vibration signals for identifying and categorizing the tool
condition and surface quality of the formed workpiece.

3. To develop AI-based predictive models such as neural networks (ANN),
fuzzy logic (FL), and an adaptive network-based fuzzy inference system
(ANFIS) by correlating the vibration signals with tool wear and surface
roughness of workpiece in robot-based ISF.

1.4 Significance of the Study

The conventional sheet metal forming process relies on molds and dies, which
are the costs of time and money. Because of these factors along with growing
variants and types of sheet metal manufacturing, the highly versatile forming
process is being developed. On the other hand, tool wear condition monitoring
is more suitable from a technological point of view, and the development of the
prediction model offers a perfect method for economic optimization of machining
operation and avoidance of devastating tool failure.

Tool wear is a significant factor that affects the surface finish, development time
and economy of tooling (Mali et al., 2017). In this era of high-speed machining
and competitive market, continuous monitoring of tool condition is required to
maintain the finished product quality. With an appropriate prediction system for
tool wear conditions, a damaged tool can be replaced in time to prevent
unpredicted downtime and scrapped workpiece. Appropriate sensors play a
major role in obtaining the process parameter. Without the signal from this
sensor, decision-making to generate the prediction monitoring system is difficult.
Most researchers used a variety of methods to track the wear condition of each
tool series, such as selecting process parameters, extracting features, selecting
features and classifying features. However, advanced signal acquisition and
processing techniques need to be developed to carry out the extraction of the
functionality without affecting the process parameters.
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The findings of this study are expected to contribute by offering a practical
technique to analyze the vibration signal with effective pattern recognition for
development on prediction modeling of tool wear in robot-based ISF. They are
also providing a significant approach in tool condition monitoring system to
minimize downtime related to tool damaged and affected the quality of the
workpiece.

1.5 Scope and Limitation

Robot-based ISF has more advantages compared to the CNC machine, but it
also has a limitation on material thickness. Robot-based ISF is not as rigid as a
CNC machine. Due to the hard-to-form materials such as materials with a high
yield stress, springback characteristic and surface properties which increase the
friction between the forming tool and the workpiece, it will require high forming
forces which not suitable for robot mechanism. The scope of this research is not
limited to develop the prediction models of tool wear, which has not yet been fully
studied in previous research works. It also covers the optimization of process
parameters and pattern recognition of tool wear and workpiece surface
roughness, which are important before the study of tool wear.

1. The process parameters are robot speed, step size and wall angle. These
parameters range are selected based on the capacity and capability of the
six-degree-of-freedom robot.

2. Parametric optimization is conducted by evaluating the surface roughness
as a single output response using Taguchi method. The optimization
experiment only utilizes aluminum alloy as a workpiece since it is the softer
material and become a benchmark material.

3. Difficulty on measuring voltage or current due to the hardware condition
(fragile/rot) of robot electrical parts which is obsolete in terms of
input/output/controller module and complete electrical drawing not available
which if wrong tapping the input output module can make the module short
circuit, and unaffected temperature to the process, which is the temperature
different can only be observed by using SEM analysis.

1.6 Structure of the Thesis

The thesis presents the research work on tool wear prediction in robot-based
ISF, and it consists of five chapters. Contents of each chapter are briefly
described as follow:
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Chapter 1 introduces the background and motivation of the research, basic
mechanism, and applications of the ISF. Problem statements, objectives and
scope of research are also mentioned in this chapter.

Chapter 2 reviews the previous works that related to the ISF process. It includes
an overview of ISF process, tool wear, signal processing and AI-based predictive
modeling for tool wear. It comprehensively reviews the important parameters and
process flow on the development of prediction models in tool wear.

Chapter 3 describes the methodology implemented in this research. It includes
the materials used and the design of experiments. The main equipment’s
employed for experimental work are explained including the measuring devices
and engineering software to design and generate the prediction model of tool
wear. The vibration analysis and feature extraction for signal processing and
development of AI-based models are also presented.

Chapter 4 discusses the experimental and modeling results. Experimental
results cover the parametric optimization, pattern recognition of forming tool and
workpiece surface roughness and signal collection. In this chapter also the
results of signal processing and AI-based predictive models are analyzed. Then,
the comparison between predictive models is compared and discussed and
model validation are also being verified.

Chapter 5 presents the overall conclusions of this research work. The main
contribution of this thesis on the development of the predictive models on tool
wear in robot-based ISF and some recommendations for future work are stated
in this chapter.
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