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SELECTIVE LASER MELTING TECHNOLOGY 
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July 2021 
 
 

Chair  : B.T Hang Tuah Bin Baharudin, PhD, PEng 
Faculty  : Engineering 
 
 
The invention of Metal Additive Manufacturing or known as Selective Laser 
Melting has opened a wide application of field such as biomedical devices, 
automotive and Oil & Gas, Aerospace and Consolidation of parts, and in 
certain area where stronger parts can be produced. Furthermore, the 
Selective Laser Melting (SLM) has been known to produce new net shape 
and intricate design which cannot be achieved through conventional 
processing. In this research, the problem statement of laser cuts stent has 
been addressed to overcome the constraint of laser cutting by enhancing with 
the SLM technology. The additively manufactured stent is consisting of seven 
(7) type design where the purpose was manufacturability through SLM 
technology by utilizing the strut, diameter, height, and angle. A set of default 
parameter with the laser power of 200 Watt, with the hatching distance of 
0.14mm, layer thickness of 0.02mm and scanning speed of 800mm/s has 
been applied through a series of different type of additive stent.  The 
tolerances or shrinkage of the stent are also achieving a good result because 
the dimensional accuracy reaches closely to 0.5% shrinkage (±70 µm) of 
diameter and 0.03% (±30 µm) for the height. Result from testing method also 
shown that, where all seven (7) AM stents showed better performance 
compared with conventional stent due to the placement of strut hoops in all 
connectors with highest stiffness was 1.44 N/mm (in axial) and 0.75 N/mm in 
radial during compression load. Whereas the flexural test showed a better 
stiffness in the value of 0.44N/mm. The heat treatment stent was then 
compared with the As-built stent where there is significant increase on 
compression test (2.04 N/mm). While the Flexural Test showed the decrease 
of stiffness (0.36 N/mm), but still the acceptance rate was better compared to 
the commercial stent in the market. The Clinical test (Cytotoxicity test) also 
showed promising result where all the additively manufactured stent showed 
100.3% viability cells. 
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Penciptaan Pembuatan Aditif Logam atau dikenali sebagai Teknologi Lebur 
Laser Terpilih (SLM) telah membuka aplikasi bidang yang luas seperti peranti 
bioperubatan, automotif dan Minyak & Gas, Aeroangkasa dan Penyatuan 
bahagian, dan di kawasan tertentu di mana bahagian yang lebih kuat boleh 
dihasilkan. Selain itu, Teknologi Lebur Laser Terpilih (SLM) telah diketahui 
menghasilkan bentuk bersih baru dan reka bentuk rumit. Dalam penyelidikan 
ini, kenyataan masalah pemotongan laser stent telah ditangani untuk 
mengatasi kekangan pemotongan laser dengan meningkatkan dengan 
teknologi SLM. Stent yang dihasilkan secara aditif terdiri daripada tujuh (7) 
jenis reka bentuk di mana tujuannya adalah pembuatan melalui teknologi 
SLM dengan menggunakan strut, diameter, ketinggian dan sudut.  Satu set 
parameter lalai dengan kuasa laser 200 Watt, dengan jarak penetasan 
0.14mm, ketebalan lapisan 0.02mm dan kelajuan pengimbasan 800mm / s 
telah digunakan melalui satu siri jenis stent tambahan yang berbeza.  
Toleransi atau pengecutan stent juga mencapai hasil yang baik kerana 
ketepatan dimensi mencapai hampir 0.5% pengecutan (±70 μm) diameter 
dan 0.03% (±30 μm) untuk ketinggian. Hasil daripada kaedah ujian juga 
menunjukkan bahawa, di mana semua tujuh (7) Stent AM menunjukkan 
prestasi yang lebih baik berbanding dengan stent konvensional kerana 
penempatan gelung strut dalam semua penyambung dengan kekakuan 
tertinggi adalah 1.44 N / mm (dalam paksi) dan 0.75 N / mm dalam jejari 
semasa beban mampatan. Manakala ujian lenturan menunjukkan kekakuan 
yang lebih baik dalam nilai 0.44N/mm. Stent rawatan haba kemudiannya 
dibandingkan dengan stent yang dibina as di mana terdapat peningkatan 
yang ketara pada ujian mampatan (2.04 N/mm). Walaupun Ujian Flexural 
menunjukkan penurunan kekakuan (0.36 N/mm), tetapi kadar penerimaan 
masih lebih baik berbanding stent komersial di pasaran. Ujian klinikal (Ujian 
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Cytotoxicity) juga menunjukkan hasil yang menjanjikan di mana semua stent 
yang dihasilkan secara aditif menunjukkan 100.3% sel daya maju.  
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1 

 

CHAPTER 1 
 

INTRODUCTION 
 
 

1.1 Metal Additive Manufacturing 
 
 
Metal Additive Manufacturing (MAM), or Selective Laser Melting (SLM), is a 
new technology where it uses a fiber laser for fabrication. The laser melts a 
feedstock (metal powder) layer by layer within variable thickness, and the 
powder solidifies to produce a fully dense component. The technology has 
been used comprehensively in many sectors, such as medical product, 
aerospace, tooling, and automotive sectors, can be found as early   as the 
1990s. The technology is used to build a complex object through three-
dimensional computer-aided design (3D CAD) models without the use of 
special tools or jigs in the likes of subtractive processes, such as Computer 
Numerical Control (CNC) machining or laser cutting.Two (2) researchers from 
a university in the United Kingdom (UK) has created an invention, where they 
successfully produced patient-specific 3D-printed vascular stents using a 
technology called Micro Continuous Liquid Interface (Micro CLIP) from 
specialized polymer [1]. In 2017, two (2) researchers from Italy Polytechnics 
also worked on the same subject but with a different technique application, 
which is the SLM technique, to produce a metal stent [2]. New research 
published by one of the universities in United States of America (USA) 
illustrates a possible improvement in the use of medical stents, demonstrating 
the successful use of a completely biodegradable magnesium-alloy tracheal 
stent that avoids some of the risks posed by more traditional material [3]. Either 
prototyping or product development, SLM technology has penetrate through 
aerospace sector, medical devices, automotive sector, and tooling industry. 
SLM has been used   to create a full dense part, directly from 3D STL data [4]. 
SLM is also used where all the parts which cannot be produced by conventional 
manufacturing, such as bulk deformation (casting) or subtractive (cutting tool) 
technique. One of the best cases involved the production of a porous structure 
made by titanium alloy (Ti-6Al-4V) possessing different sizes of pores and joint 
pore structures. This intricate structure with high rigidity and strength has 
already been produced together with additive manufacturing (AM) and powder 
metallurgy techniques [4]. Nowadays, a lot of industry player, in the likes of 
automotive (for retrofitting), hospitals, and aerospace industry (spare parts), 
fully adopting SLM technology [5]. 
  

1.1.1 Stenting  
 
 
A stent has gain tremendous growth for nearly 2 decades, where all three (3) 
types of stents, which is bare metal (BMS) stents, biodegradable (BDS) stents 
and drug eluting (DES) stents and have been implanted to the patients with 
heavy complication of artery disease. Stents are a device used to treat 
narrowed or weakened arteries in a patient’s body. This small device helps 
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surgeons expand arteries during surgery due to the build-up of fats that block 
the blood flow inside arteries, which is the epidemic of heart failure [6]. Stents 
are utilized to widen up arteries and help to reduce the risk of heart attack 
caused by the build-up of plaque. Stent positioning and length or diameter 
usually depend on the surgeon’s expertise and skills. If a stent incorrectly fit, it 
could loose and went to the other section of the human body and cause 
catastrophic implication to the patient. Stents are designed using various 
metals, such as stainless steel, cobalt-chromium alloy, and recently, using 
nitinol. A stent that fits accurately is always an issue, although different sizes 
are available. The physician must guess the stent size for a good fit to keep the 
blood vessel open. However, there is no optimal solution because every human 
is different, and the results are highly dependent on the physician’s experience. 
There are cases where a physician tries to place a stent into a patient’s blood 
vessel, but the stent fits poorly. This condition might be due to indifferent 
geometry in the patient’s blood arteries, such as a miss orientation path that 
can disturb the flow of blood, causing the stents to fracture. This will create 
additional issue for patients who use drugs as a supplement (reduce blood 
clots), normally carried out to patients with stents. It can be expected that the 
probability of these complications can be minimized by producing a stent with 
the correct geometrical and biological necessity.The application of AM or 3D 
printing technology produces personalized coronary stents. In stent 
manufacturing, the diameter of the diseased coronary is measured, and 3D 
reconstruction is conducted based on the coronary angiography imaging data. 
A personalized stent is produced for each patient according to the diameter, 
length, and morphological characteristics of the target vessel that suits the 
lesion. The use of AM can minimize the supply chain by shortening the current 
manufacturing process from six steps: rolling, tubing, turning, laser cutting, heat 
treatment, and polishing) to only three steps (3D printing, heat treatment, and 
polishing). 
 
 
1.1.2  Stent materials 
  

Various materials and techniques have been used to produce stents (e.g., 
BMS, DES, and BDS) with their respective advantages and disadvantages. 
DES are more popular than BMS because DES have a flexibility material to 
reduce the passive ion release that can affect patients in the long term. 
Nowadays, many researchers have begun to explore the possibility of 
commercializing BDS using polylactic acid (PLA) and polymethyl methacrylate 
(PMMA), where the devices can dissolve in a human body in a certain period. 
Stents need to fulfil several requirements before they can be used for implants. 
These include strength, elastic modulus, resistance towards corrosion, and 
good biocompatibility. Stents available in the market nowadays use several 
types of materials, consisting of stainless steel 316L, nickel-titanium alloy 
(nitinol), titanium alloy (Ti-6Al-4V), and other metal alloys. Nitinol or known as 
shape memory alloy (SMA) has been developed extensively due to its ability 
to change shape according to the temperature and environment, besides 
possessing high strength and biocompatible. The feedstock such as SS316L, 
181 Ta, NiTi, CoCrMo, and Ti6Al4V are a type of metal alloy which are 
commonly used to produce a stent. A stent must have several requirements, 
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such as highly resistance to corrosion, excellent modulus of elasticity, good 
biocompatibility and finally radio opacity enabled for detection of scanned 
image during angioplasty. In this thesis, medical-grade ASTM F75 cobalt-
chromium-molybdenum (CoCrMo) alloy was chosen due to its excellent 
strength and biocompatibility, thus making it the only outstanding material 
among to its classes. Stainless steel has excellent characteristics (e.g., 
strength and corrosion resistance). However, due to its relatively low cyclic 
loading (fatigue life), other materials must be assessed as an alternative to 
stainless steel. One research study has been done to compare two (2) types 
of material: SS316L and Ti-6Al-4V, where Ti-6Al-4V has better fatigue lifetime 
than stainless steel (316L) as a hip implant [7]. Whereas another study has 
been made where the average number of cycles to failure for the titanium rod 
models was 12840 while the CoCr rod models failed at a significantly higher, 
58351 cycles (fatigue tested with 700N at 4 Hz until failure) [8]. Thus, it can be 
concluded that the cobalt-chromium has better tendency to sustain a longer 
lifetime compared to stainless steel or titanium alloy. In this case, Cobalt-
chromium-molybdenum superalloy was chosen as the material of investigation, 
which is in conformity with F75 medical grade and meets the specification of 
ISO 5832-4. This superalloy is also comparable to the casting of conventional 
cobalt-chromium. This material is extensively used in metal additive 
manufacturing machines and widely accepted in biomedical applications (hip 
replacement, osseointegration) and dental prosthetics [9]. Cobalt-chromium 
alloys possess radial strength with excellent elastic modulus and capable of 
producing very fine thin-wall structure without compromising the strength of the 
material. Cobalt-chromium alloy has been known to have less biocompatibility 
issues; thus, it is suitable for biomedical applications. The alloy has better 
strength either in axial or radial force (load), highly flexural, and radio opacity 
[10]. 
 
 
1.1.2 Stent designs 
 
 
Design of the stent is according on the strut dimensions and stent thickness. 
This research purposedly to carry out to find a property of stents by additive 
manufacturing based on designs, mechanical properties, and clinical studies. 
A study applied thin struts to avoid restenosis (blocked artery after surgery) 
[11]. The thickness of strut was the main issue for diameter reduction in arteries 
after surgery procedures [12]. Research was conducted to evaluate the 
implication of thinner struts, and the results listed out where thinner struts had 
a lower probability of restenosis, and stent design was a factor for late lumen 
loss after binary restenosis [11]. The selected stent design needs to be 
checked for dimensions after fabrication because shrinkage affects the SLM 
accuracy especially on the end products. One of the research projects 
commented that the number of design porosity contribute to shrinkage 
compared to the full dense [13]. A full dense part is one of the prime focuses 
to the implant area. Therefore, a stent through SLM must have the same or 
better specifications with other manufacturing techniques, such as bulk 
deformation or subtractive manufacturing. The   grain structure, tensile 
strength, and ductility are better compared to conventional cobalt chromium 
[13]. The properties of strength, and ductility of Nickel alloys increased with 
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increasing Chromium composition [14]. The stents must comply with the rules 
of so-called Design for Additive Manufacturing, in the likes of angle, overhang, 
holes and length of walls. Specific SLM parameters have been developed to 
give a better density to weight ratio, which influences energy density. Energy 
density was determined for optimization, leading up to 99.9% for cobalt-
chromium alloy [15]. The stent density can be improved through secondary 
processing, which is called Hot Isostatic Pressing (HIPing).   HIPing is a 
process of heat treatment characterized by using high concentration inert gas 
(argon) pressure through a sealed vat, where the common lead time is 
according to the stipulated time setting. The direct advantage of HIP is that the 
process can merged porosity inside, thus resulting for a better specification 
[16]. The demand for implants biocompatibility is important because a lot of 
issues happened after post-surgery. The stents need to undergo in vivo and in 
vitro studies before being used and acceptable for implants during surgery. 
This specific evaluation is called cytotoxicity measurement, which assesses 
viability of the cells [17]. Commercially stents are consisted with different type 
of design and diameter.  A new developed tracheal stent was explained by one 
of a researcher with good results [18]. The model, which consist of “D” shape 
surface with a flexible geometry which permitted the stent location during 
respiratory, are choose for this assessment (Figure 1.1). The researcher 
proposed the use of a tool to alter the stent specification according to the artery 
size of the patient. The design parameters that can be modified are the height, 
diameter, thickness, and length. All design parameters can be saved and 
modified in a Microsoft Excel file for patient [18]. Customization of implants is 
costly and consumed a lot of time [19]. To search a technology that can 
manufacture specific customize parts through a software design while reducing 
a time cost consuming is interesting. Additive Manufacturing came out as a 
standard technology to produce customized implants faster and cheaper. The 
Fused Deposition Manufacturing (FDM) technology were utilized to 
manufacture a silicone because of the cheaper costs and to focus and utilize 
the entire manufacturing process. The first study was done using the Fused 
Deposition Manufacturing (FDM) machine and commonly type silicone. 
Beginning through a CAD design and fabrication developed by Melgoza et al. 
[18], a stent was successfully printed. The stent had the same characteristics 
as the imposed model. Therefore, after adjustments concerning the 
manufacturing path strategy, it could be said that the FDM machine was better 
to fabricate the product. Later, the FDM machines were used to fabricate high 
grade silicone stents. But, because of their material properties, the study was 
failure. Either alteration of the feedstock composition or the method of different 
technologies is essential to process the silicone materials. 
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Figure 1.1: General dimensions of specific implant stent [18] 
 

 
1.2 Problem Statement 
 
 
Metal additive manufacturing (MAM) is a technology that potentially to 
substitute or compliments areas of manufacturing processes. A lot of 
researchers and engineers have conducted studies to understand laser cutting 
for manufacturing stents. However, comparatively      fewer efforts have been 
made to investigate SLM for stents by additive manufacturing. Controlling the 
design rules and parameters requires study to overcome the obstacles below: 
 

1. Conventional laser cutting has a defect, such as heat-affected zones 
where it produces a heat area where it could result in fracture when the 
stent is expanded due to brittleness [20]. 

2. Laser cut stent create a dross, where a molten material flows to the 
bottom edges of the parts [20]. 

3. Laser cut stent also occurred Recast. Recast is occurred because the 
harden of the molten materials on the edges. The surface is usually 
harder than the original materials and is highly brittle which can cause to 
formation of crack [20].  

4. Back wall damages happened by the laser beam with molten particles 
transferred to the opposite of side wall [20]. 

5. Oxidation always occurred during laser cut materials. Oxidation can 
make a stent tend to fail during manufacturing. [21]. 

6. Laser cutting of tubing starts by exposed a laser beam on a focused spot 
on the tubing. The spot is melted and is preferably vaporized, by the 
laser beam. Once the laser beam burns through the side wall of the 
tubing, the beam will usually continue to strike the opposite side wall of 
the tubing and may begin to vaporize, the opposite side wall of the 
tubing. This undesirable burning or vaporization of the opposite sidewall 
is called ‘burn through’ and can result in the weakening of opposite 
sidewall. In some cases, burn through may result in the stent workpiece 
being discarded [21]. 

7. Laser cut stent is a thermal process which will lead to thermal damages. 
To overcome the thermal damages, the following postprocessing 
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techniques are applied: pickling, etching, annealing and electropolishing 
which raise the manufacture cost and could affect the mechanical 
properties of the stents [22]. 

8. The manufacturing cost is slightly higher for conventional stents in the 
market, which paves the way for stent by additive manufacturing as a 
viable alternative [22]. 

9. In a conventional process, a standard-sized stent is used for all patients. 
Thus, surgeons sometimes need to assume the exact size of airways 
during angioplasty. In AM, a custom and specific-sized stent can be 
produced according to the patient, leading to shorter time for implants 
and saving lives [23]. 

10. The materials for commercialized stents are comparatively weaker than 
the average AM materials, which have higher strength. 

11. In general, the manufacturing process of conventional needs to undergo 
several processes, such as rolling, tube forming, laser cutting, and heat 
treatment. Meanwhile, AM only needs powder metallurgy to process the 
infinite shape and design without tooling. This will be a huge advantage 
compared to conventional methods in terms of lead time and time to 
delivery. 

12. SLM are relatively superior compared to manufacturing process. In this 
context, it produced complex parts with acceptance geometrical 
accuracy thus allowing the freedom to manufacture patient-specific 
products.  

13. Additive manufacturing has a very rough surface. The part needs to be 
smooth to be advantageous during an angioplasty procedure. The needs 
of electrochemical polishing will be addressed in methodology and result 
will be evaluate based on the outcome. 

 
 

This research can be associate as a novelty to fill the gap especially on 
characteristics, behavior, and properties in SLM studies, especially in the 
development of stents. The research of SLM stents is crucial to understand 
each characteristic and properties. Based on the latest publication, two article 
of metallic stents by additive manufacturing is published, but the number of 
testing and specific parameters are very limited [2][24]. The mechanical 
properties, secondary processing, and clinical studies were not considered in 
the development of stents by additive manufacturing. 
 
 
1.3 Objectives of the study  
 
 
To overcome the problems, the setting objectives are listed: 
 

1. To create a stent design and shape using additive manufacturing 
technique via selective laser melting processing 

2. To apply the secondary processing, such as surface polishing and heat 
treatment  

3. To analyze the performance of mechanical properties, such as 
compression, flexural strength, hardness, and tensile strength 
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4. To investigate the effect of material usage in in vitro (cytotoxicity test) for 
better understanding via the biocompatibility study. 

 
 
As previously mentioned, this research aims to determine the mechanical 
properties of the design model and to determine suitable methods for 
enhancing the surface finish and characteristics of stents by additive 
manufacturing. 
 
 
1.4 Significance of the study 
 
 
The significance of evaluating SLM processing can be summarized as follows: 
 

1. Understanding the design model for a complex, undercut, and intricate 
stent using the AM technique via DFAM. 

2. Enhancing the mechanical properties of stents by additive manufacturing 
by studying several characteristics, such as compression, flexural 
strength, and hardness. 

3. Modifying secondary processing, such as surface roughness and heat 
treatment, so that the process is more compatible with commercialized 
stents in the market 

 
 
1.5 Scopes of the study 
 
 
This study was conducted between 2015 and 2020 in conformity with the    
following scopes: 
 

1. The research fundamentally focused on the stent design of various struts 
and undercuts with similar length and diameter. 

2. The processing was executed using a high-powered SLM machine 
(EOSINT M280) with standardized parameters, such as laser power, 
hatching distance, layer thickness, and scanning speed. 

3. The stent specimen was held and oriented at 90° to reduce the overall 
support during fabrication (ASTM ISO/ASTM52910-18). 

4. The material used was cobalt-based superalloy (CoCrMo), which meets 
the ASTM F75 standard. 

5. The cytotoxicity test (Clinical Testing) was performed according to the 
laboratory requirement to reduce external contamination (ISO 10993-5). 

6. The heat treatment and polishing procedures were conducted to improve 
the overall shape and performance of the stents by additive 
manufacturing. 
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1.6 Organization of the thesis 
 
 
This thesis has five chapters. Chapter 1 focused to the introduction   on Metal 
Additive Manufacturing (MAM), Selective Laser Melting (SLM), stenting, and 
related materials. The problem statement is identified, objectives developed, 
the significance of the study, and the scopes and limitations of the study are 
subsequently described. Chapter 2   consists of the literature review that 
focuses on related issues, mechanical processing, and selective laser melting 
parameters. Chapter 3 discusses the methodology, while Chapter 4 focuses 
on results and analysis by comparing the experimental outcome to obtain 
different characteristics of commercialized stents and stents by additive 
manufacturing. Finally, Chapter 5 concludes the thesis, and the novelty 
contributions are addressed. The additional suggestions for future works are 
addressed as well. 
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