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The advantages of ultrashort pulse lasers have triggered a technological 
tsunami in the laser field, putting pressure on researchers to discover the 
simplest fabrication method and thus effectively improve the saturable absorber 
(SA) preparation technique. The optical property of saturable absorption is 
directly associated to the embedded materials in SAs themselves.  Thus, 
manipulation of the embedded materials may improve the overall performance 
of the SA. Metallic nanostructures have been known for their optical properties 
due to the effect of surface plasmon resonance. Among the metallic 
nanostructures, gold nanoparticles (Au-NPs) are widely investigated due to its 
saturable and reverse saturable absorption properties. These properties can be 
tailored to cater for various applications by manipulating its size and shape. 
There are three important aspects in this research work which include the 
synthesis of Au-NPs in tetrahydrofuran by pulsed laser ablation, validation of 
the ablated Au-NPs as a SA in generating mode-locked pulses and 
investigation on the effect of Au-NP size towards optical pulse profiles. The 
proposed synthesis of Au-NPs in tetrahydrofuran with stirring condition 
produced a good size distribution of spherical Au-NPs ranging from 6.0 to 11.5 
nm. The size reduction was influenced by the ablation time increment from 7 to 
30 minutes. The effect of stirring was also confirmed by comparing the ablated 
material size without stirring. However, the biggest challenge of using this 
method was the low yield of ablated Au-NPs. In order to study the effect of Au-
NP size, commercially available Au-NPs of varied sizes were purchased; 10, 
20, 40 60 and 80 nm. These two batches would be prepared as fillers inside 
polydimethylsiloxane (PDMS) polymer matrix. To fabricate a mode-locker that 
can support evanescent wave propagation, a tapered fibre was selected as the 
preferred waveguide. The embodiment of Au-NPs with PDMS on the tapered 
fibre was deposited using a spin coating technique. The longitudinal 
encapsulation of Au-NP/PDMS enables interaction between evanescent wave 
and matter (surrounding medium). The fabricated Au-NP-based SA was 
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characterized using a twin balance photo-detection method to obtain its 
saturation fluence, non-saturable loss and modulation depth. The functionality 
of the fabricated Au-NP-based SA was proven by incorporating it in a ring 
cavity erbium-doped fibre laser as a result of optical pulse generation. The 
same laser cavity was used throughout the research work to minimize 
uncertainties of loss and dispersion. Based on the experimental findings, both 
batches of Au-NPs were proven to be able to generate ultrashort pulse with a 
pulse duration of less than 1 picosecond. This marks the most significant 
finding of the research work. For the ablated Au-NPs, the average size of 7.8 
nm was successfully tested to generate mode-locked pulse at 1554.5 nm with 
duration in the range of 916 – 994 fs. Even though that the modulation depth of 
the fabricated SA was only 0.4%, a stable pulse was produced. For the 
commercially available Au-NPs, mode-locked pulse was attained for all sizes to 
verify the finding from the previous experiment (ablated Au-NPs). The lasing 
performance was evaluated by comparing SA characteristics and pulse 
qualities among the sizes. The optimum pulse performance was realized when 
the SA was fabricated with 20 and 40 nm Au-NP size. For the former, the time-
bandwidth product of 0.34 was demonstrated which was the closest to its 
bandwidth-limited pulse. For the former, the fabricated SA exhibited 4.0% 
modulation depth and average pulse duration of 886.7 fs. From the 
experimental findings, larger Au-NP size of 60 and 80 nm had the tendency to 
scatter more lights due to its larger cross section. Therefore, the highest 
transmission loss of 8.56 dB was obtained for 80 nm Au-NP size and the pulse 
quality deteriorated to 1062.3 fs. The research work has demonstrated the 
functionality of Au-NPs as a saturable absorption material to generate 
ultrashort pulses. In addition, the size of nanomaterials has influenced on the 
characteristics of saturable absorbers that shapes the quality of laser pulse. 



© C
OPYRIG

HT U
PM

iii 
 

 Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah  

 

PENYERAP TEPU NANOPARTIKEL EMAS BAGI MENJANA DENYUT 
ULTRAPENDEK DALAM GENTIAN LASER 

 
 

Oleh 
 
 

NOOR ZIRWATUL AHLAM BINTI NAHARUDDIN 
 
 

Jun 2021 
 
 

Pengerusi  : Mohd Adzir bin Mahdi, PhD 
Fakulti    : Kejuruteraan 
 
 
Kelebihan laser denyut ultrapendek telah mencetus tsunami teknologi dalam 
bidang laser, dimana kini terdapat tekanan di kalangan penyelidik untuk 
mencari teknik fabrikasi termudah sebagai ganti yang lebih baik bagi penyerap 
tepu (SA) yang sedia ada.  Ciri optik penyerap tepu adalah berkait secara terus 
dengan bahan terenap dalam penyerap tepu. Oleh yang demikian, manipulasi 
bahan terenap ini mungkin boleh memperbaiki prestasi keseluruhan SA 
tersebut. Nanostruktur metalik terkenal dengan ciri-ciri optiknya disebabkan 
oleh resonan plasmon permukaan. Antara nanostruktur metalik ini, Au-NPs 
dikaji secra meluas disebabkan oleh ciri-ciri penyerapan tepu dan penyerapan 
tepu songsangnya.Ciri-ciri ini boleh di ubah untuk memenuhi pelbagai aplikasi 
dengan memanipulasi saiz dan bentuk. Terdapat tiga aspek penting dalam 
kerja penyelidikan ini, yang mana sintesis Au-NPs di dalam tetrahydrofuran 
menggunakan ablasi laser denyut , untuk mengesahkan kebolehan Au-NPs 
terablasi sebagai SA dalam menghasilkan denyut mod-terkunci dan 
menentukan kesan saiz Au-NPs terhadap profil denyut. Sintesis Au-NPs yang 
di cadangkan di dalam tetrahydrofuran dengan kondisi dikacau telah 
menghasilkan Au-NPs berbentuk sfera dengan taburan saiz yang baik antara 
6.0 ke 11.5nm. Pengurangan saiz sepadan dengan tempoh ablasi dari 7 ke 30 
minit. Kesan pengacauan juga disahkan dengan membandingkan saiz bahan 
terablasi tanpa pengacauan. Walaubagaimanapun, cabaran terbesar 
menggunakan kaedah ini adalah kuantiti Au-NPs terablasi yang rendah .Untuk 
mengkaji kesan saiz Au-NPs, bahan yang tersedia secara komersial telah 
dibeli: 10, 20, 40, 60 dan 80nm. Dua kumpulan ini akan disediakan sebagai 
pengisi di dalam polimer metrik polydimethylsiloxane (PDMS). Bagi 
menghasilkan penyerap tepu yang boleh menampung penyebaran gelombang 
evanescent, gentian tirus lebih di ingini sebagai panduan gelombang. 
Penyatuan Au-NPs dengan PDMS di atas gentian tirus adalah melalui teknik 
lapisan putaran. Penyalutan Au-NPs/PDMS secara membujur mombolehkan 
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interaksi antara gelombang evanescent dan jirim (medium persekitaran). Au-
NPs SA yang terhasil dicirikan menggunakan kaedah pengesanan photo 
berkembar seimbang untuk memperoleh ketepuan lancar, kehilangan tidak 
tepu dan kedalaman modulasi. Kebolehfungsian Au-NPs SA yang terhasil di 
buktikan dengan menggabungkannya ke dalam rongga cincin laser gentian 
terdop erbium kesan daripada penghasilan denyut optik. Rongga cincin yang 
sama digunakan sepanjang kerja penyelidikan bagi mengurangkan 
ketidaktentuan kehilangan dan penyebaran. Berdasarkan kepada dapatan 
eksperimen, kedua-dua kumpulan Au-NPs terbukti boleh menghasilkan denyut 
ultrapendek dengan tempoh denyut kurang daripada 1 piko saat. Ini adalah 
merupakan penemuan yang paling ketara bagi kerja penyelidikan ini. Bagi Au-
NPs yang terablasi, saiz purata sebanyak 7.8 nm berjaya di uji bagi 
menghasilkan denyut mod-terkunci pada 1554.5 nm dengan tempoh denyut 
antara 916 – 994 fs. Walaupun kedalaman modulasi bagi SA yang terhasil 
hanyalah 0.4%, denyut yang stabil dapat dihasilkan. Untuk Au-NPs yang 
tersedia secara komersial, denyut mod-terkunci diperoleh untuk semua saiz 
mengesahkan penemuan dapatan kajian sebelumnya. Prestasi laser di nilai 
dengan membandingkan ciri-ciri SA dan kualiti denyut di antara saiz. Prestasi 
denyut yang paling optimum direalisasikan apabila SA dihasilkan 
menggunakan Au-NPs bersaiz 20 dan 40 nm. Bagi yang terdahulu, SA yang 
terfabrikasi menghasilkan 4.0% kedalaman modulasi dengan purata tempoh 
denyut adalah 886.7 fs. Dapatan kajian juga mendapati, Au-NPs dengan saiz 
yang lebih besar iaitu 60 dan 80nm mempunyai kecenderungan utuk 
menyelerakkan cahaya disebabkan oleh keratan rentasnya yang lebih besar. 
Oleh yang demikian, kehilangan transmisi tertinggi sebnayak 8.56 dB telah 
diperoleh untuk Au-NPs dengan saiz 80 nm dan kualiti denyut yang merosot 
kepada 1062.3 fs. Kerja penyelidikan ini telah mempamerkan kebolehfungsian 
Au-NPs sebagai bahan penyerap tepu yang mampu menghasilkan denyut 
ultrapendek. Tambahan lagi, saiz material nano juga mempengaruhi ciri-ciri 
penyerap tepu yang mencorakkan kualiti denyut laser.  
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

1.1 Overview 
 

Ultrashort pulse lasers can be defined as an optical laser pulse with a pulse 
duration within the range of picosecond or less. Its capacity to deliver bursts of high 
intense light onto a localized region translates to efficient energy transfer that offers 
numerous advantages in the fields of transparent material [1], biology and medicine 
applications [2], optical metrology [3] and many other. In transparent material 
processing, scribing and marking without affecting the material surface is possible 
after high intensity ultrashort pulse is applied, therefore commencing nonlinear 
absorption process, where localized energy deposition leads to permanent 
structural changes inside the sample [4]. This type of laser also has played 
significant and important roles in biology and medicine applications. For example, 
laser radiation is used in surgery for treatment and diagnosis related to coagulation 
of retinal excess blood vessel for diabetic patients [5], while pulse laser with 10 ns 
pulse duration had been employed in tissue ablation, non-invasive treatment for 
removing stones in kidney, and enabling the tissue fluorescence imaging [2]. Optical 
metrology is an advance technology where light is used to set the standard that 
define units of measurement. Optical metrology, on the other hand, is an advance 
technology where light is used to set the standard for units of measurement. By 
adopting the ultrafast femtosecond laser, exciting prospects like extensive distance 
measurement with sub-wavelength resolution over multiple ranges is attainable, like 
the large scale surface profiling reported in [6]. 

 

For the past decade, an increase in the demand for ultrashort pulse lasers operating 
in visible to mid-infrared spectral range has intensified research activities in this 
domain. The generation of optical pulses can be achieved via active and passive 
mode-locking techniques [7][8]. Active mode-locking involves optical modulators 
which require a driven input signal in a periodic form. These modulators are 
normally based on optoelectronic devices whereby the pulse duration is limited to 
picosecond [9]. On the other hand, passive mode-locking is based on a saturable 
absorber (SA)[10]. It is an essential element that has a specific feature of intensity 
dependent loss modulation. SA can be classified into two groups; artificial or real 
SAs. The artificial SAs can be achieved by nonlinear effects such as nonlinear 
polarization rotation [11]. However, dealing with environmental perturbations can be 
very challenging as it disrupts the pulse oscillation stability in laser cavities [7][11]. 
In order to mitigate this drawback, real SA is selected as an alternative to generate 
shorter pulse durations in the femtosecond region. The first generation of SA was 
based on semiconductor saturable mirrors (SESAMs) pioneered by U. Keller et al. 
in 1992  [12]. Her invention created a new scientific discovery path for generating 
much shorter optical pulses. This versatile device was made possible from current 
semiconductor technologies. However, the disadvantages of SESAMs that include 
narrow operational bandwidth due to the semiconductor band-gap structure [13], 
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along with the bulky size and complicated fabrication method using molecular beam 
epitaxy [14] have prompted for researchers to search for other potential materials. 

 

2D nanomaterials have unique optical properties that offer a vast opportunity in 
photonic applications. Graphene for example, has an easy and cost effective 
fabrication method [15], possess gapless linear dispersion of Dirac electrons, 
ultrafast recovery time, and broad saturable absorption [16]. Other 2D materials 
such as transition metal dichalcogenides (TMDs), layered molybdenum disulphide 
(MoS2), and layered black phosphorus (BP) demonstrated better nonlinear optical 
properties than graphene at particular wavelengths [17]. It has been reported that 
MoS2 has stronger saturable absorption than graphene at 800 nm [18] while BP 
was found to have saturable absorption properties in a wide wavelength range from 
visible to mid-infrared due to its large bandgap transition [19] .  

 

Metallic nanostructures are known for their optical properties due to the effects of 
surface plasmon resonance (SPR). SPR is an optical property caused by the 
coherent oscillations of electron plasma at the surfaces of metallic particles when 
interacting with light [20]. Nowadays, such particles have been widely applied to 
various applications such as chemical, biological sensing, microscopic, solar cells 
and optics[17,18]. Furthermore, because of their field enhancement properties and 
sensitivity towards the surrounding medium, plasmonic structures play a key role in 
the development of novel nonlinear optical devices [21-23]. Among metallic 
nanostructures, gold nanoparticles (Au-NPs) are widely researched owing to its 
unique electronic, optical and plasmonic properties which have opened up an 
exciting possibility for ultrafast pulse generation in lasers. 
 
 
1.2 Problem Statement 
 

According to the literature, Au-NPs are small gold particles with typical sizes 
ranging from 1nm to 100nm [20]. Optical properties for particles size greater than 
10nm govern by the particle dimension known as the extrinsic effect [20]. Whereas, 
for smaller than 10nm Au-NP, its intrinsic properties become dominant for the 
electrodynamics effect is independent of particles size dimension and eventually is 
a source of an additional surface damping [20]. It has two basic nanostructures 
which are the gold nanorods and gold nanospheres. This material has been 
investigated and proven to pose saturable and reverse saturable absorption 
properties [24]. On top of that, other features of Au-NPs, include large surface to 
volume ratio [21], and the position of SPR can be tailored depending on the size 
and shape of Au-NPs. As particle size increases, the absorption wavelength of 
surface plasmon resonance shifts to longer wavelengths and as the increment 
continues towards the bulk limit, surface plasmon resonance wavelengths move into 
the infrared portion of the spectrum [21-24], signifying that the tunability of gold 
nanoparticle saturable absorption waveband is possible across a wide bandwidth 
[27].  
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There are many methods applicable to synthesize Au-NPs. The notable four 
methods are physical, electrochemical, photochemical and liquid reduction, which 
can be further classified as top down or bottom-up processes [15]. However, these 
conventional methods have some limitations including the usage of hazardous and 
toxic chemicals as reduction and capping agents which can be harmful to the 
environment. Moreover, the undesired components such as unreacted surfactants 
and other reagents have to be removed to maintain the purity of the colloids. Hence, 
other approaches, aiming for the safe and easy synthesis of nanoparticles are 
needed. Pulsed laser ablation (PLA) is a green method in which nanoparticles are 
removed from the metal plate by laser beam radiation [28]. The method 
demonstrated by Compagnini et al. in alkanes produced Au-NPs with hydrocarbon 
chain [29]. This achievement has opened up possibilities for other researchers to 
study the synthesis of nanometal particles in other organic solvents such as 
dimethyl sulfoxide (DMSO), tetrahydrofuran (THF) and acetonitrile (CH3CN)[30]. 
These organic solvents are commonly used in organic synthesis, however, are 
usually incompatible with most molecules used in Au-NP functionalization, thus, 
limiting its potential to be applied with hydrophobic polymer. Among other organic 
solvents, one study investigated the synthesis of Au-NP using the PLA technique 
with THF as a medium solvent [30]. Despite reporting good stability, no further 
investigations were reported on direct synthesis of Au-NPs in THF with regards to 
size-controlled particles, nor were the ablated nanoparticles ever tested in an SA for 
femtosecond mode locked laser. 

 

To date, there have only been limited reports of fibre lasers using Au-NPs as a SA 
for generating Q-switched and mode-locked pulses [24-26]. Based on recent 
publications, the most common method implementing Au-NPs in SA fabrication is 
by placing thin nanocomposites film in between fibre ferrule connectors to achieve 
either q-switching or mode-locking operations[33][34][35][36]. In particular, for 
passive mode-locking operation, the pulse generated from fibre lasers operates in 
femtosecond regime has extremely high peak powers. Since the method is prone to 
the thermal damage due to its extreme intensity, alternative approaches befitted for 
high thermal damage SA were proposed. One of the alternatives was to manipulate 
an evanescent field interaction scheme of the propagating light with nanomaterials 
deposited onto a microfibre [37][38]. However, to ensure a full homogenous 
coverage when depositing Au-NPs on tapered fibre is challenging task. The only 
method that has successfully proven to deposit nanoparticles on microfibre is based 
on optical deposition technique [39]. In this method, the nanoparticles which are 
graphene are ultrasonicated in chemical solutions and a portion of this mixture was 
dropped on the microfibre. However, the thickness of the thin film nanocomposites 
along the tapered region was inhomogeneous and repeatability of the process was 
not guaranteed.  Spin coating has yet to be reported for Au-NP deposition. 
Nonetheless, it well known in thin nano film fabrication for wafer technology [40]. To 
achieve this, the tapered fibre plate is placed on the designated chuck, and the 
chuck will spin in vacuum space for a specific time and speed. This will ensure the 
same thickness for all the fabricated SAs.  
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Au-NPs are fascinating due to its unique nonlinear optical properties, whereby its 
most highlighted features are large third-order nonlinearity [41] and broad 
absorption governed by localized SPR. Third-order nonlinearity and SPR properties 
are governed by the particle size of the material which can be tailored accordingly to 
cater to the need of the intended application. Most of the research on SA in regards 
to Au-NPs are done by employing gold nanorods [31] [42]. However, it has been 
reported that interfaces between polymer and spherical nanoparticles is better 
compared to gold nanorods due to the curvature of the spherical surface of gold 
nanoparticles, whereby such differences may affect thin film surface thickness 
resulting in a moderately compressed nanocomposite polymetric layer with higher 
filling density of AuNPs [43]. In spite of that, limited studies have been reported on 
1.55 μm fibre laser using spherical Au-NPs to generate mode-locked pulses. Thus, 
this has motivated the proposed project to investigate on the effects of Au-NP size 
towards the performance of Au-NP-based SAs in ultrashort pulse laser systems.  

 

1.3 Research Objective 
 
 

a) To synthesize Au-NPs directly in THF by implementing pulsed laser 
ablation method 

b) To fabricate Au-NP-polymer based saturable absorber and demonstrate its 
functionality in erbium-doped fibre laser 

c) To compare and analyse the effects of Au-NP size on ultrashort pulse laser 
performance 

 

1.4 Research Scope 
 
 

Figure 1.1 is the research scope of the project. Overall, the work focuses on the 
process of incorporating Au-NP nanocomposites on a microfibre SA and the 
performance of the Au-NP SA in a femtosecond laser cavity. Two types of Au-NPs 
have been investigated; synthesised Au-NPs directly in THF via PLA method and 
commercialized Au-NP/polymer. At varied sizes, these Au-NPs were integrated with 
microfibre SA. The fabricated SA will be deployed in an erbium-doped fibre laser 
(EDFL) for testing its functionality to generate ultrashort pulses. 
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Figure 1.1: The scope of the research 

 

1.5 Thesis Organization 
 
 

There are 6 chapters in this thesis. Chapter 1 is the introduction of the thesis which 
explains the application of mode locked pulse lasers in the industry, the trends in 
passive SA fabrication and the motivation of the study. Objectives are also 
explained along with the research scope presented in Figure 1.1.   
 
 
Chapter 2 is the extensive literature review that covers from the recent research 
done on gold nanoparticle-based SA, theoretical background on the optical 
saturable absorption that enables gold nanoparticles to be integrated in SA and 
pulse evolution of the soliton-based mode locked mechanism. Chapter 3 elaborates 
on the synthesis of gold nanoparticles using the PLA method, for which the 
formation of the particles in the liquid is explained in detail. Chapter 4 describes the 
SA fabrication process and mode locking performance by introducing the gold 
nanoparticle-based SA produced by the PLA synthesis in an EDFL cavity, while 
Chapter 5 elaborates the effects and comprehensive comparison of different gold 
nanoparticle size towards the performance of the gold nanoparticle-based SA in 
femtosecond pulse laser. The last chapter will conclude on the overall observation 
and findings based on the experimental results as discussed previously. 
Achievements, problems and future recommendations useful for future research will 
also be discussed. 
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