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Accurate and timely mapping of the urban building is crucial for proper planning for 

planners, managers, and even the government. Nevertheless, the urban environment is 

complex and heterogeneous, with different features such as buildings (houses), 

transportation, and vegetation. The extraction of urban features remains a challenge for 

planners and government due to the issues associated with the urban areas. In the past 

photogrammetric sensors were deployed. However, it was time-consuming, capital 

intensive and manual. The revolution of technology has made available Airborne light 
detection. The ranging sensor (LiDAR) has undeniably brought about detailed, speedy 

terrain mapping, although with the challenge of many weeks of building feature 

detection and modelling process due to its discriminate placement of elevation points on 

everything. It includes cars, houses, and trees. Hence, the focus of this thesis carried out 

urban building detection and, where possible, had minimal user intervention in its 

process. In the first instance, LiDAR derivatives were employed via an image algorithm 

to perform the detection of buildings. Our method achieved promising results over a 

large scene with completeness, correctness, and the quality matrix we have for the 

object-based evaluation average values were   97%,   99% and 99%, respectively. The 

second goal employs a deep learning(DL) algorithm to predict the best sensor for 

detection, either the LiDAR, optics or the fusion of the LiDAR and high-resolution aerial 

photography, to know which is most suitable for building detection with little or no user 
intervention. Whereas an acceptable range for good classifiers (TPR and TNR index) 

should be 100, none of those mentioned above was below the threshold of ninety. In 

contrast, we had  97%, 93%, and 91% for the pixel-based evaluation values, respectively, 

for the deep learning method. We tested on A1, A2, A3, and our discovery DSM had the 

highest accuracy compared to other sensors alone. For  Area 1 (A1), a value of overall 

accuracy of 93.21%, with a kappa coefficient of  0.798. Also, the optics' overall accuracy 

value was 87.54%, and the kappa coefficient was 0.630. Whereas for the fusion, the 

overall and kappa coefficient here was A2(94.30%, 0.859).. in conclusion, the 

integration of LiDAR and Aerial photography outperformed all the optics and DSM. 

The weakness of the image and the LiDAR dataset has been compensated through their 
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fusion. Moreover, the proposed model was evaluated on three building forms in different 

locations with different rooftops forms for this research; three forms of housing/building 

types were considered: the complex, high rise and single low detached apartment 

buildings only. The result was negligible over the study area by comparing LiDAR DEM 

heights and differential GPS. The.RMSE is 0.11 for the heterogeneous environment, and 
mixed building forms for high rise buildings form RMSE is 0.002 m for high rise 

buildings while for low residential apartments, our RMSE value Root means square error 

0.003m. The studies show our models' capacity to improve urban building detection and 

automate building objects. It is an indicator of excellent performance. The proposed 

technique can help detect and solve urban building detection problems. 
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EKSTRAKSI BANGUNAN UNTUK PEMODELAN BANDAR 3D 

MENGGUNAKAN INFUSI LIDAR UDARA DAN GAMBAR UDARA 

BERRESOLUSI TINGGI 

Oleh 

OJOGBANE SUCCESS SANI 

Julai 2021 

Pengerusi :   Profesor Dato’ Shattri bin Mansor, PhD 

Fakulti :   Kejuruteraan 

Pemetaan bangunan bandar yang tepat dan tepat pada masanya adalah penting untuk 

perancang, pengurus dan juga kerajaan untuk perancangan yang betul. Namun begitu, 

persekitaran bandar adalah kompleks dan heterogen, dengan ciri yang berbeza seperti 

bangunan (rumah), pengangkutan, dan tumbuh-tumbuhan. Pengekstrakan ciri-ciri 

bandar kekal sebagai cabaran bagi perancang dan kerajaan kerana isu-isu yang berkaitan 

dengan kawasan bandar. Pada masa lalu sensor fotogrametri telah digunakan. Ia 
memakan masa, padat modal dan manual. Revolusi teknologi telah menyediakan 

pengesanan cahaya Udara.Penderia jarak (LiDAR) tidak dapat dinafikan telah 

menghasilkan pemetaan rupa bumi yang terperinci dan pantas, walaupun dengan cabaran 

selama berminggu-minggu pengesanan ciri bangunan dan proses pemodelan kerana 

penempatannya yang mendiskriminasikan titik ketinggian pada segala-galanya. Ia 

termasuk kereta, rumah, pokok. Oleh itu, fokus tesis ini menjalankan pengesanan 

bangunan bandar dan, jika boleh, mempunyai campur tangan pengguna yang minimum 

dalam prosesnya. Dalam contoh pertama, derivatif LiDAR digunakan melalui algoritma 

imej untuk melakukan pengesanan bangunan. Kaedah kami mencapai hasil yang 

menjanjikan ke atas pemandangan yang besar dengan kesempurnaan, ketepatan dan 

matriks kualiti yang kami ada untuk nilai purata penilaian berasaskan objek ialah 97%, 

99% dan 99%. Matlamat kedua menggunakan algoritma pembelajaran mendalam(DL) 
untuk meramalkan penderia terbaik untuk pengesanan, sama ada LiDAR, optik atau 

gabungan LiDAR dan fotografi udara resolusi tinggi, untuk mengetahui mana yang 

paling sesuai untuk pengesanan bangunan dengan sedikit atau tiada. campur tangan 

pengguna. Manakala julat yang boleh diterima untuk pengelas yang baik (indeks TPR 

dan TNR) hendaklah 100, tiada satu pun daripada yang dinyatakan di atas berada di 

bawah ambang sembilan puluh. Sebaliknya, kami mempunyai 97%, 93% dan 91% untuk 

nilai penilaian berasaskan piksel , masing-masing untuk kaedah pembelajaran 

mendalam. Kami menguji pada A1, A2, A3 dan penemuan kami DSM mempunyai 

ketepatan tertinggi berbanding dengan penderia lain sahaja. Bagi kawasan Kawasan 1 

(A1), nilai ketepatan keseluruhan 93.21%, dengan pekali kappa 0.798. Juga, nilai 
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ketepatan keseluruhan optik ialah 87.54%, dan pekali kappa ialah 0.630. Manakala bagi 

pelakuran, pekali keseluruhan dan kappa di sini ialah A2(94.30%, 0.859).. 

kesimpulannya, penyepaduan LiDAR dan fotografi Udara mengatasi semua optik dan 

DSM. Kelemahan imej dan set data LiDAR telah diberi pampasan melalui gabungannya. 

Selain itu, model yang dicadangkan telah dinilai pada tiga bentuk bangunan di lokasi 
yang berbeza dengan bentuk bumbung yang berbeza untuk penyelidikan ini; tiga bentuk 

jenis perumahan/bangunan telah dipertimbangkan: kompleks, bangunan tinggi dan 

bangunan pangsapuri berkembar tunggal rendah sahaja. Hasilnya boleh diabaikan di 

kawasan kajian dengan membandingkan ketinggian LiDAR DEM dan GPS pembezaan. 

The.RMSE ialah 0.11 untuk persekitaran heterogen, dan bentuk bangunan bercampur 

untuk bangunan tinggi membentuk RMSE ialah 0.002 m untuk bangunan tinggi 

manakala untuk pangsapuri kediaman rendah, nilai RMSE kami Root bermaksud ralat 

segi empat sama 0.003m. Kajian menunjukkan kapasiti model kami untuk meningkatkan 

pengesanan bangunan bandar dan mengautomasikan objek bangunan. Ia adalah 

penunjuk prestasi cemerlang. Teknik yang dicadangkan boleh membantu mengesan dan 

menyelesaikan masalah pengesanan bangunan bandar. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background of the Study  

Identifying urban areas' geographical distribution and expansion is critical for planning, 

resource administration, and mapping. The built-up regions are among the most 

fundamental actions necessary to map the built-up areas. When conducted using 

traditional methods such as ground surveying and aerial photography, any mapping 

operation necessitates many resources. The issue of rapid and reliable mapping of urban 

built-up environments is made more challenging by the sometimes fast urbanization 

process (Bhatti & Tripathi, 2014; Q. Y. Zhou & Neumann, 2013). A proficient probe of 

the built environment is suitable for the future world where human functionalities might 

be replaced by automation and machines. The urban environment is exceedingly 

complex and diversified. This is chiefly because the vast majority of the human 

population lives in urban areas. With over half of the earth's population presently 

residing in urban centres, the well-being of societies is heavily reliant on the efficiency 

of the city area (Ali et al., 2017; Ok, 2016)  

According to the UN report, urbanization has become an unavoidable phenomenon with 

the global population's sustained growth. Presently more people live in urban areas than 

in rural areas. The urban spread intensifies and is expected to exceed 6 billion by 2050 

in 30 years. Cities in emerging nations will account for 95% of the expansion. This drift 

to the city areas will rise to 2.5 billion inhabitants, primarily in Asia, Africa, and Latin 

America, comparable to 66% of the world's population. These urban areas are often faced 

with the challenge of maintaining their infrastructure and offering timely deliveries to 

safeguard the well-being of their residents (UNDESA,2019). It is anticipated that 40% 

of the world's population would need sufficient buildings for their housing, which 

equates to nine years of construction of ninety-six thousand new apartments per day. 

These numbers suggest that the expansion of informal settlements will unavoidably 

constitute global urbanization.  The accelerated pace of urban expansion challenges city 

planners in ensuring effective urban infrastructure administration and, at the same time, 

reducing environmental damage and proactively responding to the increasing demand of 

cities. The present-day urban planners need to have technical awareness of the complex 

challenges that modern cities are faced with; one of the key urban features is looking for 

a home with access to housing delivery(Barney cohen, 2006; Lojanica et al., 2018)  

In addition, efficient urban information is a crucial precondition for strategic 

development for city planning. We need to respond aggressively to the expanding 

demand of our cities by consistently mapping, monitoring, updating, and having 

accurate, detailed plans(Kadhim et al., 2016). The importance of the urban planning unit 

in overseeing the physical evolution of towns/cities by building a framework and settings 

to serve varied requirements, such as social, cultural, financial, and leisure, and to create 

a better for both affluent and poor people, is often noted above. Hence, the work of urban 
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planners is a time-consuming and challenging task involving the designing and building 

of cities (Judyta, 2016). There are numerous types of house property available right now. 

Property costs vary depending on their category, size, and location. Semi-D, terrace 

houses, and bungalows, amongst many others, are residences with the land. 

Condominiums and apartments in the realm of housing: we have two broad categories 

of housing, namely residential and commercial properties (Aurand, 2010). These can be 

further categorized into:- Residential properties consisting of condominiums, residential 

houses, serviced apartments, and apartments all fall under the residential property. It is 

only utilized for domestic uses, not for commercial or official reasons. Let us look at the 

many types of residential properties available. Residential houses include single-family 

detached houses, terrace houses, and semi-detached houses (Lu et al., 2014). Numerous 

families frequently live in the same building in terrace houses and semi-detached houses. 

It is connected but is divided by fences or walls. This type of property is available on 

various levels, including one, two, and three stories. Most people, particularly families, 

choose residential houses over other dwellings because they provide more living space. 

A condominium includes recreational amenities and 24-hour security with swimming 

pools, tennis courts, gyms, convenience stores, and other standard amenities. On the 

other hand, apartments are usually living units in high-rise or low-rise buildings. 

Moreover, most service apartments are found in commercial districts at the many 

business properties available (Aurand, 2010). Consequently, it becomes imperative to 

gather information about how urban houses or building objects are distributed and used.  

The current technology advancement supports new home solutions (Kadhim et al., 

2016).  This information offers city planners awareness, assisting them in managing 

existing urban infrastructure, and planning for imminent cities is critical for reporting on 

advancements in Sustainable Development Goals (SDGs (Srivastava et al., 2019)). The 

extraction of buildings acquired via remote sensing technology, a competitive 

technology, is reliable, large-scale, and affordable (Lai et al., 2019a). Therefore, Urban 

remote sensing is one vital aspect of geospatial technology used to acquire information 

to understand and forecast the diverse urban dynamics that support a sustainable decision 

system (Ngo et al., 2017). It has become increasingly essential for balancing competing 

goals and solving complex challenges like maximizing new building locations or 

identifying the viability of a dumping area. Nevertheless, field surveys, imagery, drone, 

and radar can perform the task of feature mapping, and it is often time-consuming, costly, 

and conventional in practice (Han et al., 2014; Torok et al., 2013).    

1.2 Statement of the Problem 

The information about building location and types is a prerequisite for planning. The 

cost of embanking on traditional field Surveying for the automatic extraction of the 

position of different building forms in urban areas has various challenges: Buildings 

come in multiple forms, shapes, designs, densities, data collection methods, registration 

blunders, and locations, among others. These complexities pose an issue for urban 
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planning authorities in the precision mapping of buildings features. It is especially 

challenging to acquire complete, accurate, detailed building geometric and volumetric 

details about the buildings from the ground over a broad area with complex building 

forms (Awrangjeb et al., 2010; Yu et al., 2010). The cost of traditional field Surveying 

methods for this purpose is time-consuming labour-intensive, and expensive; although 

highly precise,  on the other hand, aerial photographs are updated more often for 

provincial mapping purposes in numerous nations (Acar et al., 2018; Song et al., 2019) 

Classification algorithms relying on examining a single pixel are not always effective in 

extracting features of interest from high-resolution orthophotos (Ok, 2016). The spectral 

complexity of urban land-covered topographies would weaken by employing per-pixel 

analysis to distinguish natural and artificial elements. Also, aerial photogrammetric 

surveys generate massive data quantities that necessitate parallel processing and, as a 

result, a significant investment in hardware and software (Chen et al., 2020a; Yu et al., 

2010). Lastly,  the loss of information: buildings are 3D objects, but the third dimension 

is lost in 2D images.  There is no perfect approach for automation extraction from images 

for building extraction. Hence, the image extraction process is slow, requires highly 

trained personnel, and is error-prone. Some key reasons why only images do not provide 

adequate output occlusion: in urban areas, building facades can obscure the view of other 

objects in addition to shadows (Fang et al., 2019; Varol et al., 2019). One of the most 

remarkable innovative technologies in the 21st century is the emergence of Airborne  

LIDAR sensors. These technologies are all-weather independent, have fast data 

acquisition time, and penetrate canopies. Its point cloud is dense and provides highly 

accurate vertical coordinate information to extract 3D objects on the earth's Surface (D. 

Li et al., 2020a; Tarsha Kurdi & Awrangjeb, 2020a). A thick point cloud of LIDAR data 

reflects the city area's complicated morphology, allowing vertical information to be 

extracted.  LiDAR point clouds can be utilized for automated modelling workflows and 

visualizing urban areas. The proliferation of the LiDAR can be a cost-effective method 

for automated mapping and can be employed in urban management (Awrangjeb et al., 

2010; Tarsha Kurdi & Awrangjeb, 2020b).   

 Urban buildings are essential in many facets of life in Malaysia and worldwide; 

applications could span from economics, safety, planning, taxation, and many other 

areas. LiDAR is widely used for urban mapping, detection, monitoring and maintenance. 

Its high spatial resolution and mapping accuracy make it an interesting catch (Raber & 

Cannistra, 1935). The sensor has also gained popularity in the geospatial world due to 

its low cost and high reliability (Trinder & Salah, 2011). Compared to airborne laser 

scanning, aerial photographs are often updated for provincial mapping purposes in 

numerous Nations (M. Li et al., 2018; Xie et al., 2018). As a result, aerial photography 

with detailed building boundaries can be integrated with LiDAR data to improve 

building extraction accuracy. The difficulty of quickly creating Digital Elevation Models 

(DEM) from spectral imagery data as passive sensors on the one hand, and the lack of 

textural details in LIDAR data on the other (Chen et al., 2020; Nguyen et al., 2020). 

Several methods have been developed and set up to address these issues extraction (Li 

et al., 2020b; Ullo et al., 2020). The combination of Airborne LiDAR and very high-

resolution aerial photography tends to compensate for the weakness of the other and 

hence could improve buildings detection and extractions. The goal of this study is to 

develop a method for detecting and extracting urban building models using LIDAR and 

high resolution aerial image-based sensors: The findings will serve as a foundation for 

future data management, knowledge management, and strategic planning and could 
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serve as a support to policy-making by the government agencies, planning offices, and 

even managers connected with planning, research, engineering, and construction make 

meaningful decisions that would be efficient and beneficial to the public and their 

immediate communities.  

1.3 Motivation 

Awareness of the wealth of information derived from the mapping accuracy of Airborne 

LiDAR has the capacity for detection, and 3D reconstruction can produce an inclusive 

understanding of broad city research. The LiDAR sensor is affordable and dependable. 

It is now a primary focus for a variety of applications, such as urban planning, Surveying 

and mapping, virtual information systems for tourists, and the generation of 3D city 

models with other city applications (Kabolizade et al., 2012; T. Lu et al., 2018a). The 

Airborne LiDAR technology delivers the unusual ability in gathering exceedingly 

accurate and densely sampled surface elevation capacities over urban areas.  

Consequently, it is necessary for city managers and urban planning agencies to grasp the 

mountainous opportunities of this emerging technology and its equivalent applications. 

This study proposes a practical strategy for building extraction in a city with a wide range 

of structures on a large scale. There is an urgent need for accurate, precise, and consistent 

updates of building footprints for proper planning and management. The ability to 

sustain productivity when extending from a small area to a wide area is essential because 

of the study size scale. The nature of urban environments can be very challenging, where 

buildings of varied geometry such as shapes, colours, and sizes can be found and cannot 

be generalized across urban areas with varying vegetation and density distribution 

(Nguyen, Daniel, et al., 2020b)(Nguyen, Daniel, et al., 2020). This complexity could 

pose a challenge for developing building extraction solutions for large-scale building 

extraction (Awrangjeb et al., 2020). A great deal of research with relatively significant 

results has been documented over the years, assuming building shapes implemented 

geometrical assumptions(Syed Ali Naqi Gilani et al., 2016; Yan et al., 2015; K. Zhang 

et al., 2006). 

The building features are one of its major vital objects and play a significant part in the 

economic and daily life of the residents(Feng et al., 2020). Nevertheless, such premises 

and restrictions restrain the building extraction process's scalability, particularly across 

vast areas consisting of scene complexity and diverse building forms: sensor dependency 

and incomplete cue data extraction. Therefore based on this premise, it is appropriate to 

have a solution that will be a highly accurate, intelligent, and accessible approach. Over 

large areas with comparative computational ease, Robust is suitable for various 

urbanized areas without depending on predefined conditions, restrictions, or past 

knowledge of the scenes and buildings features.  Airborne Laser scanners and high-

resolution aerial imagery sensors are the most suitable for urban feature detection, 

extraction and reconstruction (Elias, 2002; Tomljenovic et al., 2016). The resultant 

model output can enable city planners, real estate agents, and the government to decide 

about urban features. 
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1.4 Objectives 

The main aim of this study is to develop a framework to improve building extraction in 

an urban area.  

The following are the specific objectives of the study: 

 

 To delineate based on  LiDAR alone and orthophoto to create a 2D building 

model.  

  To develop an Automate building extraction by the fusion of LiDAR with 

orthophoto  

 To validate the developed process for building type classification. 

 

 

1.5 Research Questions 

To fulfil the overall research objectives, the following research questions are addressed 

in this research:  

 

 What modelling technique provides an automated building extraction 

assignment for the Urban modelling  

 How does Airborne Laser Scanning data serve as an information source for 

Urban feature extraction?  

 How does the integration of LiDAR with orthophoto improve modelling results 

using an image and object processing approach provides for the 3D city for city 

planners and designers?  

 

 

1.6 Scope and Limitations 

There are several approaches for urban feature operation; however, specific attention is 

given to buildings, not foliage or trees, power lines or roads. Minimal to no user 

intervention is employed to automate the process as much as possible, and the final 

output expected is a 3D block model. This study explores the Airborne Laser scanning 

survey mission, also referred to as LiDAR techniques, in combination with aerial 

imagery for urban building extraction. This synergy is preferred to conventional field 

Surveys, which are costly, time-consuming, and laborious. However, the coverage is 

equally broad, which takes time to gather such precise information. Apart from that, 

some areas are not accessible on foot, but it is easier to access such places with an 

airborne laser scanner. Specific interest is given to building objects and automating the 

process as much as possible with minimal user intervention in the extraction. The final 

output is expected to be a 3D polygon model. 
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Nevertheless, the details at disposal are expensive and huge. The research is entirely a 

data-driven concept used for many applications. The urban building types considered 

here are the residential, apartment, high rise buildings, mixed building apartments, also 

referred to as complex building types and single detached low apartments. All those 

mentioned above are significant considerations for smart cities and urban planning. The 

method developed for detecting urban building objects was applied to various building 

forms to test its applicability within study areas with various landforms and roof types. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 : Scope of the study shows specific methods employed in the green 

colouration study 
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1.7 Thesis Outline 

This thesis is structured into five chapters: Chapter one entails the research background 

and the study's problem statement, objectives, and significance in addition to the research 

questions, scope, and, lastly, the overall structure of the thesis. The chapter concentrates 

on instrumentation, scanning procedures, and raw point cloud processing. Chapter Two 

describes the literature review of building detection, extraction, and modelling with 

Airborne laser scanning. Additionally, several applications of laser scanning products 

advance in sensor growth and feature extraction using the machine learning method. 

Chapter Three presents in the general methodology slightly the description of the study 

areas. First, the laser scanning survey of the UPM and its surroundings in Serdang with 

raw point cloud processing from DSM, DTM, Curvature, laser intensity images, and 3D 

point datasets were produced. This was advanced with specific methods employed to 

reach each objective, 

 Chapter Four concentrates on the results and discussion. The detection, extraction, 

classification and 3D modelling approach, detection accuracy, reliability, and 

transferability are described with supplementary tables and figures. Also presented in 

the chapter is the potential of a 3D model for building identification and documentation. 

Lastly, Chapter Five provides the study's general conclusion, recommendations, and 

future study. 
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