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Layer by layer additive manufacturing techniques have inherently low strength in 
z-orientation. Mechanical properties of the final products are influenced by both 
materials and processing method utilized. The multijet 3D printing technique is 
not new in Additive Manufacturing. Studies on the processing and product 
optimization are still ongoing. However, studies on the characterization of 
fabricated products using this technique has not yet been fully explored. 
Additionally, the said attributes might be distinctive depending on machine brand 
and manufacturer. Therefore, the main objective of this study is to investigate 
the effects of orientation by conducting mechanical and structural testing 
involving tensile strength, compression, flexural strength, and surface roughness 
at various orientations. Specimens of liquid resin VisiJet M3 Black materials were 
printed using ProJet 3510 HD by 3D Systems. For each test, specimens were 
prepared in three different orientations which were x-orientation, y-orientation, 
and z-orientation. To support the findings and to rule out material influences, 
tensile testing was performed using comparable materials but with a different 
printing technique, Fused Deposition Modelling (FDM). As an end use product, 
it is necessary to characterize fatigue behaviour and effect of orientation to 
structural integrity. In the fatigue test, specimens of each orientation underwent 
dynamic loading for fatigue life and fatigue properties. Another objective of this 
study is to characterize interconnecting layers and to relate how printing 
orientation may influence product performance. To achieve the objectives, a 
literature review on jetting and ultraviolet curing methods was carried out. Finally, 
the objective is to analyse the correct parameters reflected to product quality 
printed using ProJet 3510 HD. It was found that printing using ProJet 3510 HD 
had a significant effect to the mechanical strength at the x-orientation. From 
tensile testing, as compared to the x-orientation, the strength of the y-orientation 
was higher by 22%. While the strength showed only 6% difference as compared 
to the low strength z-orientation. These results was supported by the flexural test 
where the ultimate flexural stress at the y-orientation was almost four times 
higher than that of the x-orientation. Fracture surface microstructure 
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observations explained interconnection layers, failure characteristics, and effects 
of orientation. From this study, fatigue life data for specific materials, machine, 
and orientation has been discovered for future reference. 
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Kaedah lapisan demi lapisan dalam teknik Pembuatan Tambahan mempunyai 
kekuatan yang rendah pada orientasi-z. Ciri mekanikal pada produk akhir 
dipengaruhi oleh bahan yang digunakan dan kaedah pemprosesan yang dilalui 
semasa pembuatannya. Teknik percetakan 3D jet berbilang bukanlah satu 
kaedah yang asing dalam Pembuatan Tambahan. Kajian berkaitan 
pengoptimuman proses dan produk masih berlangsung. Namun, pencirian 
terhadap proses serta hasil produk yang difabrikasi melalui teknik ini masih 
belum diteroka sepenuhnya. Lebih-lebih lagi, ciri proses dan produk akhir 
mungkin berbeza dari satu jenama pengeluar mesin pencetak 3D ke satu 
jenama yang lain. Oleh itu, objektif utama kajian ini adalah untuk Kajian ini 
mengkaji kesan perubahan orientasi dengan menjalankan ujian-ujian mekanikal 
dan struktur melibatkan kekuatan tegangan, mampatan, lenturan dan kekasaran 
permukaan pada pelbagai orientasi. Spesimen dari bahan cecair jenis VisiJet 
M3 Black dicetak menggunakan mesin pencetak 3D jenis jet berbilang ProJet 
3510 HD dari 3D Systems. Bagi setiap ujian yang perlu dijalankan, spesimen 
dicetak dalam tiga orientasi berlainan iaitu orientasi-x, orientasi-y dan orientasi-
z. Untuk menyokong keputusan dan untuk membuktikan bahawa pengaruh 
bahan tidak signifikan, ujian tegangan dilakukan ke atas bahan yang hampir 
sama tetapi menggunakan teknik percetakan yang berbeza iaitu Permodelan 
Pemendapan Tergabung (FDM). Sebagai produk yang sedia digunakan, adalah 
penting untuk mencirikan sifat lesu dan kesan orientasi terhadap integriti 
struktur. Di dalam ujian lesu, spesimen diuji dengan ujian pembebanan dinamik 
bagi mendapatkan sifat serta hayat lesu setiap orientasi. Seterusnya, objektif 
kajian adalah untuk mencirikan hubungan antara lapisan-lapisan pembuatan 
tambahan dan menghubungkaitkan bagaimana orientasi percetakan yang 
berbeza boleh mempengaruhi prestasi produk. Untuk mencapai objektif ini, 
kajian literatur tentang mekanisme semburan serta pemejalan bahan cecair 
dengan sinaran ultra ungu dijalankan. Akhir sekali, objektif kajian adalah untuk 
menganalisis parameter yang menentukan kualiti produk yang dihasilkan 
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menggunakan ProJet 3510 HD. Dari kajian ini, didapati percetakan dengan 
teknologi dan jenis mesin ProJet 3510 HD memberi kesan signifikan terhadap 
kekuatan mekanik bagi orientasi-x. Melalui ujian tegangan, secara perbandingan 
dengan orientasi-x sebagai rujukan, orientasi-y melebihi sebanyak 22% 
sementara perbezaan dengan orientasi-z adalah 6% sahaja. Keputusan 
disokong dengan ujian lenturan di mana terikan lenturan orientasi-y adalah 
hamper empat kali ganda lebih tinggi berbanding pada orientasi-x. Hasil 
pemerhatian mikrostruktur permukaan patah menjelaskan ikatan antara lapisan, 
pencirian kegagalan dan pengaruh orientasi. Daripada kajian ini, hayat lesu bagi 
bahan, mesin dan orientasi yang spesifik diperolehi dan dapat digunakan 
sebagai rujukan bagi kajian akan datang. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
1.1 Additive Manufacturing 

 
 

Additive Manufacturing (AM), as officially defined according to industry-standard 
term (ASTM F2792) is a joining process to make objects from 3D model data by 
adding materials layer-upon-layer. AM is a disruptive (Griffiths et al., 2016) and 
emerging (Babu et al., 2015) technology in product manufacturing and is 
opposed to traditional subtractive methodologies such as machining process 
which fabricating is by subtracting materials from the block to get the final 
product. Besides the capability of freeform fabrication with a high degree of 
freedom in design (Klahn et al., 2014), Tang, Mak, & Zhao, (2015) in their study 
found that AM is providing huge potential to reduce the environmental impact as 
compared to conventional manufacturing processes. The AM process can be 
divided into various methods based on the raw material form, whether liquid, 
solid, or powder. 
 
 
Since the emergence of this new technology, some commonly used terms have 
been used when describing the process in the engineering community all over 
theِworld.ِ‘3DِPrinting’ِisِtheِmostِpopularِtermِthoughِrapidِdevelopmentsِofِ
AM have found ways of making parts layer by layer and not necessarily by 
depositing material from the nozzle as is simply comprehended by the terms of 
‘printing’.ِReferringِtoِthe process chain, some enthusiasts call the process as 
layering manufacturing, direct CAD manufacturing, and rapid prototyping. 
 
 
Theِtermِ‘prototype’ِisِusedِforِcomponentsِintendedِforِpresentationِpurposesِ
or testing at a smaller scale which usually require non-performing properties. 
However, for end-user products, individual parts, as well as series products, 
higher durability and long term stability are required (Klahn et al., 2014). Though 
theِuseِof “ِRapidِPrototyping” iِsِnowadaysِconsideredِoutdated (ِChuaِ&ِLeong,ِ
2015), its terms are still valid when a physical model is created rapidly. 
Goodridge, Tuck, & Hague (2012) claimed that AM is the evolution of additive 
techniques from its origin, Rapid Prototyping. The process of Rapid Prototyping 
is still prevalent as it offers a better way of designing before mass manufacturing. 
Predominantly, various AM technologies available these days have been 
primarily aimed at producing prototyping models (Campbell et al., 2012). By 
Rapid Prototyping, rework of the process can be repeated when necessary until 
an acceptable prototype is obtained.  
 

Basically, the concept of Rapid Manufacturing (RM) is the production of end-use 
parts from additive manufacturing systems (Griffiths et al., 2016; Vayre et al., 
2013). Rapid manufacturing is also an additive manufacturing of individual parts 
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or small lot sizes for industrial applications (Klahn et al., 2014). Based on this 
definition, products to be used as real products (end products) should meet the 
various basic requirements for such production parts. Rapid Tooling (RT) may 
be considered in this context as a sub-category of RM, i.e., production of 
functional tool components produced by layered manufacturing (Kruth et al., 
2007). 
 
 
1.2 Research Background 

 
 

Additive manufacturing technology emerged in the late 1980s. Since then, 
various AM technologies have been born and classified according to their 
method of material deposition. Due to the printing method, anisotropy or the 
dependence of properties according to their printing orientation has been a topic 
of great debate in AM. Research and investigations have been done to 
determine, lessen, avoid, and ensure usage of non-critical orientation. For jetting 
AM, historically, the technology was first brought to market by 3DSystems in 
1996, then similar technology was founded in 1999 by Objet which was later 
patented by Stratasys.  
 
 
Two well-known brands for AM are 3D Systems and Stratasys. The key players, 
from their published works, mainly used PolyJet and ProJet printers. Preliminary 
work regarding jetting was published back in 2011, still focusing on process 
capability (Singh, 2011). Not long after, investigations on fatigue properties was 
conducted using elastomer and PolyJet printing (2012), and later the fatigue of 
multiple materials that was only possible with PolyJet at the time (Moore & 
Williams, 2012; Moore & Williams, 2015). 
 
 
As early as 2012, variability of PolyJet printing was investigated based on the 
cause and effect Ishikawa diagram presented, and found that orientation was a 
very determining factor of tensile strength (Barclift & Williams, 2012). Research 
conducted by a group from Zurich, Switzerland, carried out a very specific and 
quite systematic analysis on jetting process orientation effects (Mueller et al., 
2015). Later studies better highlighted the effects of orientation though the 
studies were more focused on multi material interface issues as PolyJet was able 
to dispense multiple types of materials (Das et al., 2018; Lumpe et al., 2019). 
Among the key players of material jetting printing, ProJet has rarely been 
employed in research, and even for literature that is available on them, the 
research was not mainly on orientation (Ibrahim & Hafsa, 2014; Kasparova et 
al., 2013; Limmahakhun et al., 2017). 
 
 
1.3 Problem Statement  
 
 
The Rapid Manufacturing (RM) process has evolved from rapid prototyping, and 
this promotes product evolution from prototyping to the production of functional 
end-use parts. These end-use parts are fully functional and no more a prototype 
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(Yuan et al., 2021), therefore long term time-dependent properties must be taken 
into account. Fatigue properties is one attribute that once seemed not associated 
to and unnecessary with rapid prototyping (RP) but nowadays is very important 
for RM. AM-part properties depend on structural and process parameters rather 
than purely on material properties (Mueller et al., 2015); therefore, each printing 
orientation or process condition should have their fatigue study conducted before 
the part is fabricated. Hence, it is essential to predict the lifetime of products 
manufactured by AM/RM because most of them were initially only prototypes 
where fatigue life was not a concern. Particularly for the AM jetting type, until 
2018, it was reported that there are still very few studies regarding fatigue 
behaviour (Dizon et al., 2018). Therefore, new research data on this will be very 
useful for the researchers to understand the in use behaviour of jetting 
manufactured product.  
 
 
Anisotropic is one characteristic inherent to additive manufacturing. Because of 
the printing mechanism where layers of material are added upon the previous 
one, all AM technology products are anisotropic. The mechanical characteristic 
depends on the printing orientation and is different in each direction, the weakest 
in the z-direction. As the issue is caused by the printing mechanism, each 
technology will give different levels of distinction when tested from different 
directions. Jetting type of AM is one technology yielding differences in X and Y-
directions (Das et al., 2018) caused by the printing mechanism (Lumpe et al., 
2019). However, no specific research has studied on the magnitude of the x and 
y differences. Z-orientation mechanical properties, on the other hand, has 
usually been assumed to be the worst disadvantage of 3D printing and therefore 
has been ignored because of challenges to print in a standing upright position 
(Miller et al., 2017). 
 
 
AM is formed from a layer-by-layer basis of molten or fused materials. Numerous 
research has determined that mechanical failure originates from within. For 
example, porosity concentrated in the interlayer planes and unfused powder 
particles can initiate cracks in Selective Laser Sintering (SLS) type of AM (Safai 
et al., 2019). As for Fused Deposition Modeling (FDM), abundant voids, air 
pores, and interlayer gaps were among interconnection issues commonly 
initiating failure when tested. As for jetting AM, the manufacturing process the 
parts had gone through may trigger/initiate failure. The mechanism of layers 
bonded to other layers fused by high temperature or UV light curing would not 
make the part as perfect and strong as one solid built material. There are 
combinations of bindings, and beneath the interlayers, there are sources of 
mechanical failure that also need attention and investigating. Jetting also have 
issues of marking formations on its product surface (Mueller et al., 2015) but the 
effect of these markings on mechanical performance has never been explored 
before. 
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1.4 Objectives  
 
 
The aim of this research is to perform a series of works to characterize products 
from specific materials and processing methods. The objectives of the study are 
as follows; 
 
1) To investigate mechanical performance, failure mode, and fatigue 
properties of 3D printed end-use parts. 
 
2) To determine the effect of anisotropic features on the strength of 
additively manufactured parts. 
 
3) To characterize the interconnection in between layers of functional end-
use parts fabricated by 3D printing. 
 
4) To analyse the correct parameters reflected to quality of the product 
produced using 3D printing. 
 
 
1.5 Scopes and limits of study 

 
 

The study was conducted within the scope as follows: 
 
1) The selected material in this study was VisiJet M3 Black, claimed by 3D 
Systems as Polypropylene-like. Reference properties for VisiJet M3 was as in 
the MSDS provided by the supplier. As it was not stated anywhere, the 
mechanical properties might not be from testing on 3D printed samples. 

 
2) For printing, the machine, ProJet 3510 HD, was used only in HD mode, with 
other parameters at default settings. 

 
3) Characterisation was unrestricted to any specific future application. 
Mechanical testing was to characterize common properties only. While in 
dynamic loading there were various ranges of loading types and frequencies, the 
study focused on the most popular, tension-tension fatigue test with trial-and-
error approach to select for the most suitable frequency. 
 
 
This research study was also with some limitations. 
 
1) Materials employed in this research was subjected to availability. VisiJet M3 
Black was one of the materials that came as a package with the ProJet 3510 HD 
3D Printer. Therefore, the material was selected to be characterised throughout 
this research study mainly because of availability. In fact, other materials 
printable with the machine were more commonly studied by researchers with 
more desirable properties and wider potential applications. 
2) Other limitations included of the machine itself. The printer was subjected to 
scheduled routine maintenance. Thus, fabricated samples might be from 
several different batches. 
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3) Despite some studies reporting on the effects of batching and time gaps 
between tests, these effects were neglected in this study. In fatigue 
characterisation, whole batches for one orientation did not show perfect tests as 
it was first intended and as per standard. However, because of time constraints 
to repeat the tests, it was decided to just accept the condition and justify the 
findings through discussion. 
 
 
1.6 Thesis Structure 

 
 

Chapter 1 INTRODUCTON: The overview of AM in general was briefly 
introduced. This chapter also has highlighted research background and problem 
statements involving issues concerning knowledge gaps in the AM field. This 
chapter states the objectives, scope and limits of the study, and finally why this 
research work is important has been explained as the novelty of research. 
 
 
Chapter 2 LITERATURE REVIEW: This chapter describes the history of AM, as 
understood by the researchers and the need of the technology as end use 
product fabricating technique. This chapter also explains and distinguishes 
different types of 3D printing techniques, printing orientation overview and 
issues, also the past research on several types of characterizations and finally 
some popular applications of AM products. 
 
 
Chapter 3 METHODOLOGY: This chapter explains in detail of parameter 
selection for printing, orientation, mechanical experimental tests, dynamic 
loading, SEM investigation and simulation works. This chapter also describes 
procedures taken to conduct all the experimental works and justification of 
selecting all related instruments employed to achieve the objectives of this study. 
 
 
Chapter 4 RESULTS AND DISCUSSION: This chapter presents and discusses 
all the results from the experimental test. The findings from the SEM analysis 
were discussed and synthesized with the theoretical data from literature study. 
Finally, this chapter discusses issues in jetting, the effect of orientation and 
potential source of failure from the study. 
 
 
Chapter 5 CONCLUSION AND RECOMMENDATIONS: This chapter concludes 
how the whole research achieved the objectives, highlights research findings 
and presents recommendations for future work. 
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