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GREEN 5G MASSIVE MIMO AND HYBRID NETWORKS

By

VAHID KHODAMORADI

October 2021

Chair : Prof. Ir. Dr. Aduwati Binti Sali, PhD
Faculty: Engineering

Massive multiple-input-multiple-output (MaMIMO) is considered as the promising
technology for 5th generation (5G) wireless communication systems since it can con-
siderably improve energy efficiency (EE). Besides, the integration of conventional
MaMIMO with other technology, including simultaneous wireless information and
power transfer (SWIPT) and Heterogeneous Networks (HetNets), has shown promi-
nent potentials to satisfy the Quality of Service (QoS) of 5G systems. However,
existing research studies concentrated on system EE enhancement, leaving oppor-
tunities on new roads to be identified. Therefore, further research problems can be
determined to propose new research directions for better energy-efficient system de-
sign. This thesis addresses state-of-the-art MaMIMO technology and its integration
with SWIPT and HetNets. Hence, this work aims to recognize new opportunities to
achieve effective energy-efficient system design that can be divided into three parts.

The first part investigates energy-efficient downlink power transmission in multi-
cell MaMIMO systems. A new base station (BS) transmit power adaptation model
named BSTPA is proposed under zero-forcing beamforming (ZF-BF) scheme and
perfect channel state information (CSI). The analytical closed-form expression of the
BSTPA is derived in which the BS transmitted power is adapted to channel condition
and user-level QoS, including data rate requirement and maximum allowable outage
probability to minimize the total BS radiated power. Then, a new corresponding it-
erative EE optimization algorithm is proposed based on the BSTPA model to further
improve the system’s EE. The proposed algorithm maximizes the EE by jointly op-
timizing the minimum data rate requirement, the number of BS antennas and users.
The results indicate that the proposed BSTPA model achieves better EE improve-
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ment up to 32% compared to the energy-efficient equal power allocation (EE-EPA)
algorithm as the conventional scheme, especially for small per-antenna circuit power
consumption.

The second part of the thesis focuses on the energy-efficient system design of the
downlink MaMIMO enabled SWIPT based on power splitting (PS) and ZF-BF tech-
niques. A new system model is proposed in which each user equipment (UE) utilizes
the harvested power for pilot transmission. Closed-form expressions of UE’s energy
harvesting (EH) and achievable data rate are first derived. Then, the EE maximiza-
tion problem is formulated to jointly optimize the CE time duration, the PS ratios,
and the BS transmit power allocation and antennas number concerning the data rate
requirement and the maximum BS power transmission constraints. However, a new
low-complex and alternative optimization (LCAO) algorithm is proposed to tackle
the non-linear and non-convex characteristics of the original optimization problem
with an acceptable computational complexity. The results indicate that the proposed
LCAO algorithm outperforms the equal power allocation (EPA) and max-min algo-
rithms up to 15% and 4% better EE improvement.

In the last part, MaMIMO enabled SWIPT system is integrated with HetNets tech-
nology. Therefore, a new system model is proposed based on separated SWIPT
where only macro UEs (MUEs) exploit the harvested energy from received signal
power and cross-tier interference for pilot transmission. The analytical closed-form
expressions of MUEs’ EH and data rate are derived. An EE maximization problem
is then formulated with respect to the required data rate and MBS transmission ca-
pacity. Hence, a new iterative EE optimization (IEEO) algorithm is proposed that
individually optimize pilot transmission duration, PS coefficients, macro BS (MBS)
transmit power and antennas number, respectively. The results demonstrate that
IEEO improves EE up to 6.7% and 9.9% compared to EPA and max-min algorithms.
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RANGKAIAN HIBRID

Oleh

VAHID KHODAMORADI

Oktober 2021

Pengerusi: Prof. Ir. Dr. Aduwati Binti Sali, PhD
Fakulti: Kejuruteraan

Input-berbilang-output-berbilang masif (MaMIMO) dianggap sebagai teknologi
yang berpotensi untuk sistem komunikasi tanpa wayar generasi ke-5 (5G) kerana
dapat meningkatkan kecekapan tenaga (EE). Selain itu, persepaduan MaMIMO kon-
vensional dengan teknologi lain termasuk maklumat tanpa wayar serentak dan pe-
mindahan kuasa (SWIPT) dan Rangkaian Heterogen (HetNets), telah menunjukkan
potensi yang menonjol untuk memenuhi Kualiti Perkhidmatan (QoS) sistem 5G.
Walau bagaimanapun, kajian penyelidikan yang ada tertumpu pada peningkatan sis-
tem EE memberi peluang dan laluan baharu untuk dikenal pasti. Oleh itu, masalah
penyelidikan selanjutnya dapat ditentukan untuk mencadangkan arah penyelidikan
baharu untuk reka bentuk sistem yang lebih cekap tenaga. Tesis ini membahas
teknologi MaMIMO yang canggih dan persepaduannya dengan SWIPT dan HetNets.
Oleh itu, hasil kerja ini bertujuan untuk melihat peluang baharu untuk mencapai reka
bentuk sistem cekap tenaga yang berkesan yang boleh dibahagikan kepada tiga ba-
hagian.

Bahagian pertama menyiasat penghantaran kuasa paut turun yang cekap tenaga
dalam sistem MaMIMO berbilang sel. Model penyesuaian kuasa pemancar ste-
sen pangkalan (BS) baharu yang diberi nama BSTPA dicadangkan di bawah skema
pembentuk alur daya sifar (ZF-BF) dan maklumat keadaan saluran sempurna (CSI).
Ungkapan bentuk tertutup beranalisis dari BSTPA berasal dari kuasa yang dihantar
BS disesuaikan dengan keadaan saluran dan QoS tahap pengguna, termasuk keper-
luan kadar data dan kebarangkalian gangguan maksimum yang dibenarkan untuk
meminimumkan jumlah kuasa terpancar BS. Kemudian, algoritma pengoptimuman
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EE berulang sepadan yang baharu dicadangkan berdasarkan model BSTPA untuk
meningkatkan lagi EE sistem. Algoritma yang dicadangkan memaksimumkan EE
dengan bersama-sama mengoptimumkan keperluan kadar data minimum, bilangan
antena BS dan pengguna. Hasilnya menunjukkan bahawa model BSTPA yang di-
cadangkan mencapai peningkatan EE yang lebih baik hingga 32% berbanding den-
gan algoritma pemuatan kuasa sama tenaga (EE-EPL) yang cekap tenaga sebagai
skema konvensional. Ini terutama untuk penggunaan kuasa litar antena yang kecil.

Bahagian kedua tesis ini memfokuskan pada reka bentuk sistem cekap tenaga dari
SWIPT yang diaktifkan oleh MaMIMO paut turun berdasarkan teknik pemisahan
kuasa (PS) dan ZF-BF. Model sistem baharu dicadangkan di mana setiap peralatan
pengguna (UE) menggunakan kuasa yang diperoleh untuk penghantaran perintis.
Ungkapan bentuk tertutup daripada pengumpulan tenaga UE (EH) dan kadar data
yang dapat dicapai mula-mula diperoleh. Kemudian, masalah pemaksimuman EE
dirumuskan untuk bersama-sama mengoptimumkan jangka waktu CE, nisbah PS,
serta peruntukan kuasa transmisi BS dan bilangan antena berkenaan keperluan kadar
data dan kekangan transmisi kuasa BS maksimum. Walau bagaimanapun, algoritma
pengoptimuman alternatif dan kurang kompleks (LCAO) baharu dicadangkan untuk
mengatasi ciri-ciri bukan linear dan bukan cembung daripada masalah pengoptimu-
man asal dengan kekompleksan perkomputan yang boleh diterima. Hasilnya menun-
jukkan bahawa algoritma LCAO yang dicadangkan mengatasi algoritma peruntukan
kuasa yang sama (EPA) dan algoritma maksimum-minimum hingga 15% dan pen-
ingkatan EE 4% lebih baik.

Pada bahagian terakhir, sistem SWIPT yang diaktifkan oleh MaMIMO disatukan
dengan teknologi HetNets. Oleh itu, model sistem baharu dicadangkan berdasarkan
SWIPT yang dipisahkan, di mana hanya UE makro (MUE) mengeksploitasi tenaga
yang diperoleh daripada kuasa isyarat yang diterima dan gangguan rentas per-
ingkat untuk penghantaran perintis. Ungkapan bentuk tertutup beranalisis daripada
pengumpulan tenaga EH dan kadar data MUE diperoleh. Masalah pemaksimuman
EE kemudian dirumuskan berhubung dengan kadar data yang diperlukan dan ka-
pasiti penghantaran MBS. Maka, algoritma pengoptimuman EE berulang (IEEO)
baharu dicadangkan, yang secara automatik mengoptimumkan tempoh penghan-
taran juruterbang, pekali PS, kuasa penghantaran makro BS (MBS) dan nombor
antena. Hasilnya menunjukkan bahawa IEEO meningkatkan EE hingga 6.7% dan
9.9% berbanding dengan EPA dan algoritma maksimum-minimum.

iv
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CHAPTER 1

INTRODUCTION

This chapter first presents an overview on the Green 5-th generation (5G) wireless
communication networks followed by the related problems occurring in these wire-
less systems. Then a brief objectives and methodology is introduced to answer how
support the aforementioned problems and achieving the research objectives. Finally,
the research contributions are listed followed by thesis organization at the end of this
chapter.

1.1 Background

The concept of green communication is a rapidly growing approach in a wide
spectrum of communication technology and industrial fields. The main idea is
to concentrate on reducing pollution and minimizing risk to the environment in
all stage of product and processes. Besides, the energy consumption is a critical
concern for network providers as the information and communication technology
(ICT) industry is globally consuming up to 10% of the total energy consumption
[1]. The ICT energy consumption is potentially increasing due to the fast increase in
wireless and network services and extra bandwidth needed for the next generation of
communication systems. However, this ICT energy consumption comes at the price
of a sizable carbon footprint that is estimated to 5% of the global CO2 emissions
[2]. This CO2 emission is increasing as rapidly as network services. Moreover, it
is anticipated that Mobile data traffic will grow seven-fold from 2017 to 2022 [3]
which means that more than 70% of the ICT industry will be wireless by 2022.

According to the reports, Base Station (BS) consumes up to 80% of the total power
in cellular networks [2]. Therefore, the ICT total energy consumption motivates
the academia and industry to consider green cellular networks as an essential step
that can reduce the impact of wireless communications on the environment. It
becomes more critical that there are intense activities aim at globally decreasing
the carbon footprint and total energy consumption of cellular networks by 20% in
2020 [4]. Eventually, the aim of green communication is optimizing the networks
energy efficiency (EE) so that guarantee the users’ quality of service (QoS) demands.

With the rise of instantaneous communication, it is expected to push almost
everything integrated into the internet across the globe. The number of devices that
connect to the internet is anticipated to reach 100 billions by 2030 [5], including
both human and machine communications. For this reason, the ICT industry is

1
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moving toward 5G and beyond (B5G) of communication networks. 5G systems
are expected to provide a peak data rate up to 20 Gbits/sec, an average achievable
data rate more than 100 Mbits/sec, and connectivity of a considerable number of
devices to the internet. The aim is improving this aggressive spectrum reuse and
high spectral efficiency to significantly boost the capacity of wireless networks.
To this end, massive Multi-Input-Multi-Output (MaMIMO) systems, simultaneous
wireless information and power transfer (SWIPT) and Heterogeneous Networks
(HetNets) are three key technologies having great potentials to be candidates
of satisfying the targets of 5G systems [6–8]. On the other hands, these three
technologies are expected to achieve high EE, but they are energy wasteful as
their power consumption increase exponentially [9–11]. For this reason, energy
consumption has become a primary concern in the design and operation of 5G
wireless communication systems. Indeed, the EE has become one of the critical
pillars of 5G systems that emerged as a new prominent figure of eligibility due to
economic, operational, and environmental concerns.

The MaMIMO system, also known as large-scale MIMO or very large MIMO,
refers to a wireless system that BSs are equipped with more than 100 small antennas
(a very large antenna array). It can simultaneously serve tens of user equipment
(UE) with the same time-frequency resources [12]. A fundamental property of
MaMIMO is that in the most propagation environments, the transmission channels
become increasingly favorable. In these desirable propagation channels, the linear
processing is almost optimal because the effect of inter-user interference and
uncorrelated noise with simple downlink pre-coders and uplink de-coders can be
disappeared. Hence, due to the large array and highly efficient spatial multiplexing
gain, a large spectral efficiency (SE) and EE will be obtained [13, 14]. As well
as, the published result in [15] proves that with a simple power control algorithm,
MaMIMO becomes a scalable technology that can uniformly serve all the UEs
with high QoS. By equipping the BS with a very large antenna array, the effect of
small-scale fading can be averaged out which makes pair-wisely orthogonal channel
vectors among BS and UEs [16]. For these reasons, MaMIMO can be a promising
candidate for developing 5G wireless communication systems.

Meanwhile, data traffic’ tremendous growth has limited the energy consumption
of the cellular networks that can no longer be economical and cost-effective for
low power devices such as the Internet of things (IoT) and wireless sensor nodes.
Therefore, a more consistent battery recharge or battery replacement is essential to
extend the network lifetime, resulting in maintenance cost mounting. Lately, SWIPT
technology has been introduced as a steady and continuous energy supply for the
wirelessly energy-constrained systems, which appears to be the novel research
boundary of combining wireless communication and wireless power transmission
[11, 17, 18]. Nevertheless, SWIPT points to the scenario in which a transmitter
broadcasts electromagnetic-waves to its intended recipient capable of utilizing the
power of the electromagnetic-waves for information decoding (ID) and energy
harvesting (EH) at the same time. For this reason, SWIPT can be a promising
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technology candidate for wireless communication networks since wireless UEs with
a limited battery capacity will simultaneously receive information and recharge their
battery without the need for external power sources [18].

In the recent years, HetNets have been considered a wide solution that have great
potentials to improve the coverage and capacity of wireless networks performance
as we already moved to the green 5G cellular networks [19–21]. In such HetNets,
various classes of low-cost and low-power BSs, known as small BSs (SBS), are
deployed within the traditional macro BS (MBS) to ensure the seamless connectiv-
ity. HetNets are consisting of different SBSs such as micro, pico, and femto cells
with different power transmission and coverage area. HetNets can bring the UEs
and BSs closer to each other results in increasing UEs’ throughput while reducing
the transmitted signal power. In fact, enhancing networks coverage with small cell
deployment has brought about considerable improvement in the SE and EE of the
cellular networks that make HetNets as a promising candidate to satisfy the targets
of green communications in 5G wireless networks.

To this end, wireless communication networks increasingly move to the architecture
with high-density and heterogeneity deployment to overcome the ever-increasing
traffic demand that is expected in the near future. The combination of MaMIMO
enabled SWIPT system with HetNets can introduce the new green wireless com-
munication era for 5G because HetNets can significantly decrease the wireless
power-loss. Hence, the MaMINO enabled SWIPT with HetNets enables wireless
mobile terminals to harvest power from their ambient strong radio-frequency (RF)
signals broadcasted or beamformed by BSs and thus allowed their functionality
without power outage risk [22].

To summarize, EE has become a critical concern for green 5G communication sys-
tems due to increasing demands for wireless technology and data rate. Therefore, it is
essential to meet all UEs’ QoS requirements while minimizing the power consump-
tion of the network. In fact, EE is the primary topic in the development of 5G wire-
less communications that attached to the green communication concept [23]. Due
to the high potential of MaMIMO, SWIPT and HetNets, the combination of them
is expected in the development of next-generation of wireless communication net-
works. In such hybrid systems, multiple SCs coexist with a MBS that equipped with
MaMIMO technology. For this reason, these two technologies are inherently com-
plementary. On one hand, the MBS with massive MIMO offers a large number of
degree of freedom (DoF) in the spatial domain, that can avoid cross-tier interference.
However, as the number of macro user equipment (MUE) grows, the throughput of
the MaMIMO system is limited by channel estimation overhead and pilot contam-
ination [12]. On the other hand, the integration of SWIPT with MaMIMO can re-
markably improve the system’s performance and EE due to the ability of MaMIMO
in providing narrow and sharp beam for UEs. Due to these great benefits, MaMIMO,
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SWIPT and HetNet has potentially the advantage of energy saving that significantly
has drawn attention recently [24–27].

1.2 Problem Statements

In the following, the main problems of this study have been addressed and listed as

(i) In the concept of green wireless communication networks, the evolution of
BS power transmission to boost the EE becomes more challenging in multi-
cell MaMIMO systems since UEs sufferers from inter-cell interference (ICI)
and the intertwined factors that impact the downlink transmitted power and
EE of BS [2]. Most of the existing works do not take into account different
user’s QoS requirements. These models also depend on a fixed transmit power,
which cannot reflect the actual EE levels concerning QoS requirements.

(ii) To the author’s best knowledge, no study yet investigated the EE improvement
by adapting the downlink BS power transmission to channel condition and
different QoS requirements (including data rate requirement and maximum
allowable outage probability). The earlier studies do not present a compre-
hensive overview of the impact of optimized system design parameters and
user-level QoS on downlink power transmission and overall system EE [2, 7].
Therefore, to evaluate EE improvement, an optimization algorithm is needed
based on the BS transmitted power adaptation model and QoS constraints.

(iii) In the downlink of MaMIMO enabled SWIPT systems, a striking limitation
of most prior studies is situated in ignoring the BS circuit power consumption
or considering it as a fixed model. This could be a practically misleading out-
come as the system energy consumption changes with different system design
parameters such as the number of active users, the number of BS antennas,
achievable data rate, user’s QoS constraints, and the type of filters at transmit-
ter/receiver. Additionally, the optimal parameters were proven only through
simulation [28, 29]. Although these optimal parameters are useful but can-
not provide a complete insight into how jointly QoS constraints and different
system design parameters influence the system’s power consumption and EE.

(iv) In energy-constrained wireless communication networks, most of the works
have intended to design the energy-efficient MIMO enabled SWIPT sys-
tems with HetNets. These studies have widely investigated the integration
of SWIPT systems with HetNets under both TS and PS schemes for various
MIMO scenarios. Nevertheless, MaMIMO technology has been ignored, and
SWIPT systems can not exploit the ambient electromagnetic energy signal
based on the deployed large antenna array at BSs. Besides, these works are
mainly interested in deploying wireless energy harvesting at the SUEs or de-
ployed EH nodes at SBSs, leading to failure in utilizing a large-scale antennas
array at MBSs to reduce radiated and total power consumption. Furthermore,
the impact of cross-tier interference on MUEs energy harvesting and informa-
tion decoding where the MBS employs MaMIMO technology has not been
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investigated [30, 31]. More precisely, due to the channel estimation’s imper-
fection, the amount of EH used in the pilot transmission will directly affect the
MBS transmitted power and system EE performance. So far, the optimality of
the MaMIMO enabled SWIPT system with HetNet is mainly conditional on
EH’s input power level and all types of received signal power, including cross-
tier interference. Hence, an energy-efficient system design is very challenging.

1.3 Research Objectives

The main objectives of this study concerning the aforementioned problems can be
listed as follow:

(i) To formulate a mathematical model that identifies different system design pa-
rameters which adapt the BS transmitted power to channel condition and user-
level QoS requirements in multi-cell MaMIMO systems.

(ii) To propose an EE maximization algorithm based on the formulated BS trans-
mitted power adaptation model to enhance the system’s EE while guaranteeing
QoS constraints.

(iii) To propose a new EE maximization framework using sequential fractional pro-
gramming approach in the downlink of MaMIMO enabled SWIPT systems
based on the closed-form expressions of the harvested energy and achievable
data rate. The proposed algorithm jointly optimizes the channel estimation
time, power-splitting coefficients, BS transmit power vector and number of
antennas.

(iv) To propose a new EE maximization framework using decomposition ap-
proach with respect to the closed-form expressions of the harvested energy and
achievable rate in MaMINO enabled SWIPT systems with HetNets. The pro-
posed algorithm jointly optimizes the pilot transfer duration, power-splitting
coefficients, BS transmit power vector and number of antennas.

1.4 Research Scope and Study Module

This thesis presents a critical analysis on the state-of-the-art to recognize new
opportunities for green 5G wireless communication network design with the
support of MaMIMO technology. The aim is to develop a crucial outlook on
how EE maximization can be attempted in classical MaMIMO and its integration
with SWIPT and HetNets technologies in the case of green 5G architecture. To
accomplish this, different stages in the design of MaMIMO systems, varying from
BSs computational operations to the hardware architecture, are investigated for
EE maximization opportunities. The analysis starts with EE maximization for
classical MaMIMO networks. It continues to "hybrid systems," where MaMIMO
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operates in conjunction with other 5G technologies candidate, namely SWIPT and
HetNets. Each hybrid system has its own set of characteristics that can be adopted
to develop a new energy-efficient system design. For this reason, this thesis reviews
the current state-of-the-art to determine the key research directions that strive for
energy-efficient design in hybrid MaMIMO systems. It should be noted that most
of the existing studies have concentrated on some particular directions, which left
some new opportunities to be identified. As a result, further research problems
can be determined to propose new research directions for future work. Therefore,
with the newly identified opportunities and research directions, energy-efficient hy-
brid MaMIMO systems are believed to be promising candidates for green 5G design.

The current study’s scope and the summary of the approaches to accomplish the
determined objectives have been shown in figure 1.1. The colored boxes show the
direction to reach the objectives mentioned earlier, and the dashed line differentiates
the emerging technologies of the proposed system model in each objective. It should
be noted that the un-colored boxes denote the other technologies and scenarios that
are not covered in this study.

1.5 Brief Methodology

Regarding the problems mentioned earlier, followed by the four objectives, the
proposed methodology to achieve the green design goals of this study can be sub-
divided into three phases illustrated in Figure 1.2. The first step aims to recognize
the new roads to more energy-efficient system design in MaMIMO systems as
the predominant 5G technology. Therefore, phase one presents the downlink of
a multi-cell MaMIMO network with zero-forcing beamforming (ZF-BF), which
verified with the literature reviews (demonstrated in Chapter 3). A closed-form
expression of the BS transmitted power adaptation model termed BSTPA is derived
which adjusts the downlink BS transmission power to channel condition and QoS
limitations (w.r.t Objective 1). Also, the impact of system design parameters and
QoS on the average EE per BS is investigated to propose a new optimization
algorithm that maximizes the EE (w.r.t Objective 2). The proposed system model
is then tested for BS transmitted power and average EE per BS where uniform data
rate requirement and maximum allowable outage probability are considered as the
user-level QoS to obtain the optimal system design parameters.

In the following, this study seeks to identify the new opportunities for better
energy-efficient system design in the concept of green 5G wireless communication
networks with support of MaMIMO technology and hybrid networks that integrated
with important 5G technologies including SWIPT and HetNets. Hence, a hybrid
single-cell MaMIMO enabled SWIPT system based on the power splitting (PS)
scheme and ZF-BF is considered in the second phase. Imperfect channel state
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information (CSI) is assumed since the perfect CSI is not practical in MaMIMO
networks (demonstrated in Chapter 4). In the proposed system model, each UE
utilizes a portion of the received signal power for channel estimation and pilot
transmission. Then, the asymptotic tight lower-bound of EH and achievable rate of
UEs are derived. Based on the derived closed-form expression of EH and data rate,
the EE maximization problem is formulated to propose a low-complex alternative
optimization algorithm named LCAO that iteratively aims to achieve the different
optimal design parameters concerning users QoS and maximum BS transmission
capacity (w.r.t Objective 3). The computational complexity of the proposed LCAO
algorithms is then analyzed, and the optimality and convergence are validated
compared to the exhaustive search. Besides, the performance of the proposed LCAO
algorithm is examined with two conventional power allocation strategies.

Finally, phase three extends the work to hybrid MaMIMO enabled SWIPT sys-
tems with HetNets as another key 5G technology. The optimal downlink of a new
MaMIMO enabling SWIPT system with HetNets is investigated for the third phase
(demonstrated in Chapter 5). The impact of cross-tier interference from dense de-
ployed SBSs on the EH and data rate is examined. In the proposed system model,
The nearest users, also known as macro user equipment (MUE), exploit a portion
of the harvested energy from the received signal powers, including cross-tier inter-
ference and employing it for pilot sequence power transmission and further signal
processing. Additionally, the far UEs are connected to the dense deployed SBSs for
seamless connectivity. A closed-form expression of the MUE’s EH and achievable
rate are derived. Eventually, a system EE maximization problem is formulated in
which a more realistic power consumption model is proposed to exhibit how different
system design parameters influence energy-efficient system design while maintain-
ing QoS and maximum MBS power transmission constraints. A new optimization
algorithm termed IEEO is designed aims to achieve optimal design parameters while
maintaining UEs’ QoS requirements (w.r.t Objective 4). Finally, the complexity,
optimality and convergence of the proposed IEEO algorithm are analyzed.

1.6 Research Contributions

The Research contributions are listed as follows:

(i) A new method termed BSTPA is proposed that adapts the BS transmit-
ted power to channel conditions and user-level QoS in classical multi-cell
MaMIMO networks. For this purpose, an analytical closed-form expression
of the BS transmitted power is derived for unique data rate requirement and
maximum allowable outage probability as QoS constraints. The aim is to min-
imize the total BS transmission power to enhance the average EE per BS to
achieve the green wireless communication goal.

(ii) The impact of different system design parameters (including the number of
UEs served by BS, number of antennas at BS, and data rate requirement) and
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QoS limitations on the BS transmitted power and average EE per BS are inves-
tigated and analyzed. This analysis provides new insights into the interaction
between the propagation environment, system design parameters, and differ-
ent components of the total BS power consumption model under QoS require-
ments. Then, a corresponding iterative optimization algorithm to maximize
the average EE per BS is proposed to obtain the optimal design parameters.
The proposed algorithm aims to achieve the optimal EE value globally and the
optimal amount of data rate, the number of BS antennas, and the number of
UEs. Furthermore, the computational complexity of the proposed algorithm is
examined, and the performance of the proposed optimization algorithm based
on the BSTPA model is compared with the energy-efficient equal power allo-
cation (EE-EPA) strategy presented in [32].

(iii) Propose a SWIPT system based on the PS scheme and ZF-BF for the down-
link of a massive MIMO network. In the proposed scenario, each UE mainly
utilizes the energy harvesting for the channel estimation while the rest is sup-
plied to the user’s battery for further signal processing. Then, the closed-
form expressions of the users’ harvested energy and achievable data rate are
derived. Based on the asymptotic rate, an EE maximization problem is for-
mulated while satisfying the UEs’ QoS and the BS power transmission re-
strictions. Since the formulated EE maximization problem is non-convex and
non-linear that demands considerable challenges, a low-complex alternative
optimization algorithm named LCAO is proposed. The optimal channel es-
timation time and the PS coefficients at the UEs side in closed-form and the
optimal transmit power vector and antenna numbers at the BS side are jointly
derived. The proposed LCAO algorithm is illustrated theoretically in details,
and its complexity, optimality and convergence are also investigated. Finally,
the performance of the LCAO algorithm is compared with equal power allo-
cation (EPA) and max-min fairness strategies as two standard and widely used
methods [33].

(iv) A dense deployed HetNet with MaMIMO SWIPT enabling system based on
the PS scheme and ZF-BF is proposed. MUEs exploit a portion of the EH with
the aid of SBSs’ cross-tier interference power for pilot sequence transmission
power, and the rest is utilized in signal processing. The average cross-tier
interference is introduced and its impact on the EH and the achievable data rate
of MUEs is investigated. Moreover, a new system EE maximization algorithm
named IEEO is designed while guarantee QoS and BS transmission power
capacity constraints followed by jointly achieving the optimal PS coefficients,
MBS transmitted power and number of antennas. Finally, the complexity,
optimality and convergence of the IEEO algorithm are examined. Finally, the
performance of the proposed optimization algorithm is compared with EPA
and max-min fairness strategies.
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1.7 Thesis Organization

The remainder of this thesis is organized as follows:

Chapter 2 provides a brief overview of 5G wireless communication and enabled
technologies, emphasizing the MaMIMO transmission scenario and its integration
with SWIPT and HetNets technologies. The energy-efficient MaMIMO design in
the concept of green wireless communication criteria is reviewed, and the QoS
requirements and design parameters are addressed. Moreover, the motivation of the
study and the relevant existing study are presented. Finally, the chapter is concluded,
followed by a brief discussion on the outline and the significance of this research.

Chapter 3 presents the downlink of a classical multi-cell MaMIMO network
employing ZF-BF, where the large-scale antennas array deployed at the BSs serve
multiple single-antenna UEs. The channel model, the received signal model and
signal-to-interference-plus-noise-ratio (SINR) are introduced, followed by the
proposed BS transmitted power adaptation model named BSTPA. Then, the total
power consumption and EE model are included. An EE maximization problem
based on the BSTPA model is formulated, and a corresponding optimization
algorithm is designed to achieve the maximum EE point with optimal system design
parameters. Moreover, the complexity of the proposed optimization algorithm is
analyzed. Finally, the simulation and analytical results are presented, confirming
the better performance of the proposed BSTPA model in contrast with the EE-EPA
method.

Chapter 4 introduces the downlink of a single-cell MaMIMO enabled SWIPT
network employing PS scenario and ZF-BF with imperfect CSI. The system and
channel models are then described in order to analyzes the average harvested
energy and achievable data rate of UEs. Afterwards, the EE and the total BS power
consumption models are shown and the EE maximization problem is formulated.
Therefore, an iterative optimization algorithm termed LCAO is designed to obtain
the optimal channel estimation time, the PS coefficients, the BS transmit power
vector and the number of BS antennas. The simulation and numerical results
are presented, and the study’s findings are compared with two benchmarks (EPA
and max-min fairness) to validate the better performance of the proposed LCAO
algorithm. Finally, the chapter is concluded in the end.

Chapter 5 proposes the optimal downlink of HetNets with a MaMIMO enabled
SWIPT system based on the PS scenario and employed ZF-BF with imperfect
CSI. The channel model and assumptions are introduced to analyze the EH and
achievable data rate of MUEs. Besides, a new total MBS power consumption model
is presented to formulate a system EE maximization problem. Then, an alternative

11



© C
OPYRIG

HT U
PM

optimization algorithm named IEEO is designed to achieve the pilot transmission
time allocation, the optimal PS ratios, the MBS transmit power vector and the
number of BS antennas while satisfying MUEs QoS and MBS maximum power
transmission capacity constraints. The simulation results are presented to validate
the proposed system model performances. Lastly, the optimality of the proposed
IEEO algorithm is evaluated theatrically and numerically.

Chapter 6 concludes this study, and some recommendations and directions are in-
troduced for future works.
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