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Faculty  : Engineering 
 
 
Near-threshold voltage (NTV) operation digital integrated circuits have come into 
sight in recent decades due to the need for energy-efficient design for battery-
powered devices. While earning the energy benefits from the NTV operation, the 
challenges of the performance degradation and variability are preventing the 
NTV design to be widely implemented in most computing applications. Improving 
energy efficiency while maintaining performance becomes the primary goal for 
the NTV design. The standard cell library optimization should be carefully 
considered to achieve better energy, performance, and area of the design. This 
dissertation presents the joint optimization techniques of standard cell height 
tuning with two different transistor layout structures, namely full diffusion (FD) 
layout structure and inverse narrow width effect (INWE)-aware layout structure. 
An increased number of optimization parameters and techniques affect the 
evaluation efficiency of the standard cell library at the circuit level. The evaluation 
efficiency (i.e., synthesis runtime) requires to be improved using the modeling 
technique to fasten the time-consuming process while maintaining the accuracy. 
An area-efficiency curve modeling framework has been proposed in this 
dissertation to reduce the runtime to generate the area-delay tradeoff curve for 
the standard cell library evaluation.  
 

The tuning of standard cell height with FD layout structure results in 5.5% higher 
performance when using a taller cell height (i.e., 14-track) library, and 55.4% 
lower energy when using a shorter cell height (i.e., 7-track) library. As compared 
to the FD layout structure, the INWE-aware layout structure shows higher 
energy-delay improvement due to the INWE that reduces the threshold voltage 
when using a narrow width transistor. Two INWE-aware layout structures, 
namely multiplier and multi-finger, have also been explored in this study. The 
proposed reduced height (i.e., 6-track) library with multi-finger layout structure 
results in 16% performance improvement and 14% area improvement as 
compared to the 8-track multiplier library. Lastly, the proposed area-efficiency 
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curve modeling framework can reduce about 16.5X to 18.5X of synthesis runtime 
with around 2.74% to 5.27% error from the uniform interval curve generation 
method.  
 

In conclusion, the optimal NTV-operated standard cell library in terms of energy, 
performance, and area can be achieved by using the lower track height multi-
finger layout structure as compared to FD and multiplier layout structure. 
Besides, the evaluation of the standard cell library on area-performance tradeoff 
can be sped up through the proposed area-efficiency curve modeling framework. 
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PENILAIAN AND PENGOPTIMUMAN PERPUSTAKAAN SEL STANDARD 
UNTUK OPERASI VOLTAN DEKAT-AMBANG 

 

Oleh 
 

LIM YANG WEI 
 

Mei 2022 
 
 

Pengerusi : Fakhrul Zaman Rokhani, PhD 
Fakulti  : Kejuruteraan 
 
 
Litar bersepadu digital yang beroperasi dengan voltan dekat ambang (NTV) 
telah bermuncul sejak beberapa dekad kebelakangan ini kerana reka bentuk 
yang cekap tenaga diperlukan dalam peranti berkuasa bateri. Walaupun 
manfaat tenaga dapat diperolehi daripada operasi NTV, cabaran kemerosotan 
prestasi dan kebolehubahan menghalang reka bentuk NTV dilaksanakan secara 
meluas dalam kebanyakan aplikasi pengkomputeran. Peningkatan kecekapan 
tenaga sambil mengekalkan prestasi telah menjadi matlamat utama untuk reka 
bentuk NTV. Pengoptimuman perpustakaan sel standard harus dipertimbangkan 
dengan teliti untuk mencapai tenaga, prestasi, dan kawasan reka bentuk yang 
lebih baik. Disertasi ini membentangkan teknik pengoptimuman penalaan 
ketinggian sel standard bersama dengan dua struktur susun atur transistor yang 
berbeza, iaitu struktur susun atur difusi penuh (FD) dan struktur susun atur kesan 
lebar sempit songsang (INWE). Peningkatan bilangan parameter dan teknik 
pengoptimuman akan mempengaruhi kecekapan penilaian perpustakaan sel 
standard pada peringkat litar. Kecekapan penilaian (iaitu masa sintesis) perlu 
dipertingkatkan dengan menggunakan teknik pemodelan untuk 
mempercepatkan proses yang memakan masa dan mengekalkan ketepatan 
penilaian pada masa yang sama. Rangka kerja pemodelan keluk kecekapan-
kawasan telah dicadangkan dalam disertasi ini untuk mengurangkan masa jalan 
dalam menjanakan keluk keseimbangan kawasan-lengah untuk penilaian 
perpustakaan sel standard. 
 

Penalaan ketinggian sel standard dengan struktur susun atur FD telah 
menghasilkan prestasi 5.5% lebih tinggi apabila menggunakan ketinggian sel 
yang lebih tinggi (iaitu 14-trek), dan tenaga 55.4% lebih rendah apabila 
menggunakan ketinggian sel yang lebih pendek (iaitu 7-trek).  Berbanding 
dengan struktur susun atur FD, struktur susun atur INWE menunjukkan 
peningkatan tenaga-lengah yang lebih tinggi disebabkan oleh INWE yang 
mengurangkan voltan ambang apabila menggunakan transistor lebar yang 
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sempit. Dua struktur susun atur INWE, iaitu pengganda dan berbilang jari, juga 
telah diterokai dalam kajian ini. Perpustakaan cadangan yang mengurangkan 
ketinggian (iaitu 6-trek) dengan struktur susun atur berbilang jari telah 
menghasilkan peningkatan prestasi 16% dan pengurangan kawasan 14% 
berbanding dengan perpustakaan pengganda 8-trek. Akhir sekali, rangka kerja 
pemodelan keluk kecekapan-kawasan dapat mengurangkan 16.5X hingga 
18.5X masa sintesis dan 2.74% hingga 5.27% ralat berbanding dengan kaedah 
penjanaan keluk yang menggunakan selang seragam.  
 

Kesimpulannya, pengoptiuman perpustakaan sel standard yang beroperasi 
dengan NTV dari segi tenaga, prestasi, dan kawasan boleh dicapai dengan 
menggunakan ketinggian trek yang lebih rendah dan struktur susun atur 
berbilang jari berbanding dengan struktur susun atur FD dan susun atur 
pengganda. Di samping itu, penilaian perpustakaan sel standard dalam 
keseimbangan kawasan-prestasi boleh depercepatkan melalui rangka kerja 
pemodelan keluk kecekapan-kawasan yang dicadangkan. 
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CHAPTER 1 
 

INTRODUCTION 
 
 
1.1  Background 
 

Over the decades, the exponentially increased transistor density in the 
integrated circuits (IC) due to the Complementary-Metal-Oxide-Semiconductor 
(CMOS) technology scaling has allowed more functionalities to be compacted in 
a single chip and become a system-on-chip (SoC) [1]. The increasing complexity 
in the SoC enables the standard cell-based design approach to fasten the time-
to-market of the product, where the standard cells are the pre-design logic gates 
that able to be reusable for different circuit block design [2]. The collection of the 
standard cells in a library form can be optimally designed for different SoC 
requirements such as high-performance, low power, or smaller area.  
 

The appearing of multi-functional SoC also leads to the diversification of 
semiconductor applications into different market segments such as healthcare, 
agriculture, automotive, communication, and consumer electronics. The diversity 
of applications shifted the primary design concern of integrated circuits from the 
speed and area to the power and energy consumption due to the different 
requirement needs. For instance, the battery-operated devices that are used for 
Internet-of-Things (IoT), wearables, and biomedical sensors require a limited 
energy budget to sustain the battery operating lifetime [3]. Even the high-
performance computation servers used in data centers require limited power 
usage due to high operational costs [4]. 
 

Focusing on power or energy minimization in the design does not imply that the 
design performance should be ignored. The appropriated optimization should 
either minimize the energy consumption for a given timing requirement or 
maximize the performance within an energy budget [5]. This energy-
performance relationship has arisen numerous research on the optimization 
techniques across various layers of design abstraction, from the device and 
circuit to the micro-architecture level. Several common optimization techniques 
include transistor sizing [6], [7], gate sizing [5], [8], supply voltage scaling [5], [9], 
threshold voltage tuning [5], [10], body biasing [11], pipelining and parallelism 
[9], power-gating [12], and clock-gating [12]. Jointly implementation of the 
techniques across the layers could achieve the global optimal solution. However, 
careful consideration is needed to avoid redundant area overhead and/or 
performance degradation. 
 

Among the existing optimization techniques, supply voltage scaling is a well-
known technique for improving the energy efficiency of the circuit due to the 
quadratic and linear dependency of supply voltage on the dynamic and leakage 
energy respectively [5], [14], [15]. One of the reasons that the energy 
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consumption is reduced with the technology node scaling is because of the 
scaling of supply voltage. However, the supply voltage has almost remained 
constant around 65nm node and no longer delivers significant energy gains as 
shown in Figure 1.1 [13]. This is because substantially voltage downscaling 
exacerbates the performance degradation [14], [16].  
 

 
Figure 1.1 : Energy consumption reduction and supply voltage scaling over 
the process technology scaling. (Reproduced from [13]). 
 

Nevertheless, the ultra-low voltage design approach has come into sight in 
recent years due to the acceptable range of performance from a hundred kHz to 
a few MHz designs in the IoT and biomedical applications [17]. The supply 
voltage is aggressively scaled from the nominal voltage down to the near-
threshold (NTV) and sub-threshold (STV) voltages for the ultra-low voltage 
approach. Figure 1.2 illustrates the magnitude of energy reduction and delay 
degradation in a wide voltage scaling range. As the voltage scales down to the 
STV, the increase of leakage energy due to the increase of circuit delay 
eventually dominates the dynamic energy and results in a minimum energy point 
(MEP) as seen in the figure. Though the MEP is located in the STV region, many 
applications could not support this voltage range due to the exponential decrease 
in the circuit performance. As compared to STV operation, NTV operation 
sacrifices some of the energy savings with relatively higher performance. The 
performance gain in the NTV significantly expands the application space from 
the STV operation [17], [18]. 
 

Despite that the STV/NTV designs have been well explored in academic 
research, still, it is not common in the industry area [19]. Two major challenges 
that affect the robust operation in the ultra-low voltage regions are performance 
degradation and process variability. These forces the changes of the design 
techniques on the architecture, circuit, as well as standard cell library [3], [13], 
[14], [17], [19]–[25]. Because of the contradiction of energy and speed of the 
circuit, the optimization of both energy and performance is difficult to be delivered 
at the same time. The energy-performance optimization in the STV/NTV designs 
should be minimizing the energy via voltage scaling while pushing the speed 
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through other design techniques. To proliferate the ultra-low voltage design 
approach for energy-efficient design, more efforts are required to improve the 
performance and robustness of the circuit to achieve a certain application need. 
 

 
Figure 1.2 : Circuit energy and delay over a wide voltage scaling range. 
(Reproduce from [17]). 
 

1.2  Problem Statement 
 

In the past, digital integrated circuit designs in a fully custom manner potentially 
maximize the performance with high density and low power characteristics. 
However, the increased complexity of the chip that requires deliberate design for 
stringent performance targets takes a huge amount of human and time effort 
[26]. In the modern digital IC design, the standard cell-based design approach 
has been introduced as the key matter to meet time-to-market requirements. 
With the aid of the electronic design automation (EDA) tool, the IC can be 
constructed by a group of pre-designed and characterized logic gates, which are 
known as standard cells. These standard cells with different logic functions and 
drive strengths are usually provided by the silicon foundry or created in-house. 
The collection of the standard cells in a group is called standard cell library, and 
they can be designed and optimized to meet different power, performance, area 
(PPA) design targets.  
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Most of the currently available digital standard cell libraries in the market are well 
optimized for super-threshold voltage operation [22], [25]. Because of the 
different transistor current characteristics in the STV/NTV region as compared to 
the super-threshold voltage region [14], [16], [17], the existing standard cell 
libraries are not optimal in terms of PPA when operating at ultra-low voltage 
region. Therefore, optimization of standard cell libraries that operates at 
STV/NTV regions is highly desirable for energy-efficient digital circuits. 
 

To address the performance degradation issue in STV/NTV design, the 
transistors in the standard cell need to be carefully resized [27]–[29]. Minimum 
transistor sizes that result in the minimum energy could worsen the delay 
variability and deteriorate the robustness of standard cell [30]; while the transistor 
sizes that ensure the reliability of standard cell is impractically large [14]. Joint 
design techniques with transistor sizing should be considered for ultra-low 
voltage standard cell design to have robust operation and better PPA 
optimization. In the super-threshold voltage standard cell design, cell height is 
one of the important parameters that are used to address the different PPA 
targets of the circuits. Taller height cells provide larger current drives but with 
larger area and power consumption; In contrast, shorter height cells result in 
relatively lower power and area with weaker drive strength [31]–[33]. However, 
the cell height parameter does not take much attention from the researcher that 
works on STV/NTV design. 
 

Since the transistor drive current is exponentially dependent on the threshold 
voltage in the STV/NTV region, the device parasitic effect such as inverse narrow 
width effect (INWE) and reverse short channel effect (RSCE) now shows a 
significant impact on the transistor’s delay [22]. In contrast to the traditional 
method, the transistor sizing with INWE and RSCE consideration could lead to 
higher current drive, and thus, faster performance. However, the effectiveness 
of the INWE and RSCE are depends on the process and might cause the 
increase of leakage current and area. The proposed INWE-aware transistor 
implementation for ultra-low voltage operation in [22] can realize in either multi-
finger or multiplier layout structure. Although the transistor sizes are the same 
for both layout structures, they exhibit different energy-delay results [34]. 
However, the previous works’ exploration on the INWE-aware layout structures 
comparison only evaluated on the inverter cell using the ring oscillator circuit, 
which does not present the results of the other complex circuit blocks that contain 
different cell functions. Again, the impact of standard cell height on energy and 
performance has not been studied in the previous research. 
 

For the standard cell libraries evaluation within the context of the circuit blocks, 
the exploration of the energy (or area) performance tradeoff of a certain tuning 
parameter can be observed through the energy efficiency curve. The 
energy/area efficiency curve, which sometimes is known as the energy/area-
delay tradeoff curve [35] or Pareto optimal curve [36], is the optimal energy/area-
delay boundary corresponding to the specific parameter(s) tuning in the 
energy/area-delay design space. To obtain the energy efficiency curve in the 
standard cell-based design approach, multiple synthesis runs are required to 
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result in various energy/area-delay solutions. The number of synthesis runs is 
depended on the energy/area-delay range target, and the prior study in [37] 
performed about 25-30 synthesis runs to obtain an energy (and area) efficiency 
curve. For the impractically large circuits, it might take a few hours to days in 
performing the multiple synthesis runs [38]. The evaluation of multiple standard 
cell tuning parameters (i.e., supply voltage, INWE-aware layout, and standard 
cell height) in ultra-low voltage design even increases the number of syntheses 
runs. This causes the standard cell libraries evaluation by using the energy/area 
efficiency curve to become more tedious and time-consuming. Therefore, a fast 
estimation or modeling of the energy/area efficiency curve is required for libraries 
evaluation. 
 

1.3  Aim and Objectives 
 

The main aim of this research is to propose energy-performance-area optimized 
standard cell libraries for near-threshold voltage operation. The following 
objectives are set to support the aim: 
 

1. To develop an area-efficiency curve modeling framework for analyzing 
and evaluating the area-performance tradeoff of the standard cell 
libraries at the circuit block level. 

 
2. To develop standard cell library using the joint techniques of transistor 

sizing with full diffusion layout structure and cell height tuning in 
optimizing the energy and performance. 

 
3. To develop the INWE-aware layout structure with reduced cell height for 

energy-efficient standard cell library. 
 

1.4  Thesis Scope 
 

The optimization of a digital integrated circuit can be performed over different 
layers of design abstraction from device, circuit to micro-architecture as 
aforementioned. The scope of this thesis focuses on the standard cell library 
optimization and evaluation since the standard cells are the fundamental building 
blocks of the digital integrated circuit. The standard cell library optimizations 
mainly focus on the NTV operation to achieve better energy efficiency than 
requires by the battery-powered applications, such as IoT sensors, wearable, 
and biomedical devices. NTV operation not only benefits from the energy saving, 
but it also has relatively higher performance as compared to STV operation. 
Generally, the optimization of digital integrated circuits targets the PPA. 
However, energy consumption is being considered in this study instead of power, 
where energy is the derivation of the power and performance.  
 

Multiple EDA tools were employed to develop the standard cell libraries as well 
as the implementation of Application Specific Integrated Circuit (ASIC) for the 
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evaluation of libraries. During the standard cell libraries development, Cadence 
Virtuoso was used for schematic and layout custom design, Mentor Calibre was 
used for physical verification, Synopsys Hspice was used for functional 
verification, and Synopsys Liberty NCX was used for standard cell 
characterization. Whereas during the ASIC implementation, Synopsys VCS was 
used for register transfer level (RTL) and gate-level simulation, Synopsys Design 
Compiler was used for RTL synthesis and optimization, Synopsys IC Compiler 
was used for place and route, Synopsys PrimeTime was used for timing closure 
signoff, and Mentor Calibre was used for physical verification signoff. 
 

In this study, several ASIC benchmark circuits with different functions and 
various number of gates, ranging from 400 to 200,000 gates were used to 
evaluate the developed standard cell libraries. Those circuits include the 32-bit 
Brent-Kung adder [39], AMBA AHB controller [40], Synopsys DW8051 processor 
core [41], ARM Cortex-M0 processor core [42], and AES-256 encryption core 
[43]. The data path block, 32-bits Brent-Kung adder is self-developed based on 
the Brent Kung adder architecture [39], while the AMBA AHB controller is an 
open-source bus controller block obtained from the ARM Design Start website 
[40]. Both 8-bits DW8051 and 32-bits Cortex-M0 processor cores are proprietary 
circuits owned by the Synopsys and ARM respectively. Since they are 
proprietary circuits, the Verilog RTL for both processors are encrypted and 
unable  to viewed by the designer. Although the RTL could not be viewed, the 
implementation of synthesis, place and route still can be performed using the 
EDA tools. The AES-256 encryption core benchmark is taken from the 
OpenCores website [43]. For the modeling of the area-efficiency curve, the 
benchmark circuits from ISCAS’89 [44], which contain both combinational and 
sequential cells, were employed. 
 

The CMOS process technologies that employed for the standard cell library 
design and evaluation throughout the thesis were different. Three existing 
commercial standard cell libraries which developed in TSMC 65nm process were 
used for evaluating the proposed area-efficient curve modeling framework 
because these libraries were commonly used by the industry design and 
academic research. Whereas the NTV standard cell library development with FD 
layout structure and INWE-aware layout structure were implemented in Silterra 
110nm and 130nm process respectively due to the limited access to the leading 
process design kit (i.e., 65mn and beyond) and the chip tape-out requirement 
that based on the research grant funding. 
 

Since the NTV for Silterra 110nm and 130nm process is ranging from 0.4V to 
0.6V, any supply voltage value within this range can be used for the NTV design 
operation. However, 0.6V was applied for the standard cell library with the FD 
layout structure to fulfill the timing requirement of the DW8051 design. Whereas 
0.4V was applied for the standard cell library with INWE-aware layout structure 
due to the effect of INWE to the device current is much larger at 0.4V as 
compared to 0.6V. 
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1.5  Thesis Organization 
 

This section provides an overview of the thesis structure. 
 

Chapter 1 briefly introduces the background of research on the ultra-low voltage 
design approach, problem statement, and the aim of the research. 
 

Chapter 2 presents the literature review on the state-of-the-art research. The 
details of STV and NTV design techniques and challenges are also discussed. 
Besides, the related works to the standard cell library optimization in ultra-low 
voltage regions are presented in the same chapter. 
 

Chapter 3 discusses the design flows of ASIC implementation and standard cell 
library development in this research. The discussion includes the EDA tools 
used, design environment setup and constraints, design-related parameters, and 
the benchmark circuits for evaluation.  
 

Chapter 4 presents a modeling framework for the area-efficiency curve that use 
to evaluate the standard cell library at the circuit level. This chapter describes 
the existing area-efficiency curve generated using the commercial synthesis tool 
and then demonstrates the proposed framework to model the area-efficiency 
curve. The model framework is evaluated using multiple standard cell libraries 
and benchmark circuits.  
 

Chapter 5 proposes a joint optimization technique that considers the transistor 
sizing and standard cell height tuning in optimizing the energy and performance 
for NTV operation. A transistor sizing method with layout consideration is 
discussed. The latter part of the chapter discusses the implementation of 
different standard cell height libraries incorporated with the proposed transistor 
sizing method. 
 

Chapter 6 explores the impact of different device layout structures that utilize 
INWE on energy, performance, and area for NTV operation. This chapter also 
proposes a reduced cell height architecture for further energy-performance 
optimization. The evaluation of the proposed structure is demonstrated in cell- 
and block-level design. 
 

Chapter 7 concludes the contributions of this research and ends with some 
recommendations of the possible future work.  
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