
 

 
 
 

UNIVERSITI PUTRA MALAYSIA 
 

DEVELOPMENT OF ELASTOMERIC BEARING UTILIZING STEEL CORE 
WITH GRANULAR AND POLYMER FILLER SYSTEM FOR STRUCTURES 

AND BRIDGES 
 

 
 
 
 
 
 
 
 
 

TAN KAR CHUN 
 
 
 
 
 
 
 
 
 
 
 

     FK 2022 74 



© C
OPYRIG

HT U
PM

i 

DEVELOPMENT OF ELASTOMERIC BEARING UTILIZING STEEL CORE

WITH GRANULAR AND POLYMER FILLER SYSTEM FOR STRUCTURES 

AND BRIDGES

By 

TAN KAR CHUN 

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, 

in Fulfilment of the Requirements for the Degree of Doctor of Philosophy 

January 2022 



© C
OPYRIG

HT U
PM

 

iii 

COPYRIGHT 

 

 

All material contained within the thesis, including without limitation text, logos, icons, 

photographs, and all other artwork, is copyright material of Universiti Putra Malaysia 

unless otherwise stated. Use may be made of any material contained within the thesis for 

non-commercial purposes from the copyright holder. Commercial use of material may 

only be made with the express, prior, written permission of Universiti Putra Malaysia. 

 

Copyright © Universiti Putra Malaysia  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



© C
OPYRIG

HT U
PM

 

iv 

DEDICATION 

 

 

This work is dedicated to my dearest mother for her unconditional love and support, 

and Luna for the happiness she brought to our family. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 



© C
OPYRIG

HT U
PM

 

 

i 

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 

the requirement for the degree of Doctor of Philosophy 

 

 

DEVELOPMENT OF ELASTOMERIC BEARING UTILIZING STEEL CORE 

WITH GRANULAR AND POLYMER FILLER SYSTEM FOR STRUCTURES 

AND BRIDGES 

 

 

By 

 

 

TAN KAR CHUN 

 

 

January 2022 

 

 

Chairman :   Associate Professor Farzad Hejazi, PhD 

Faculty :   Engineering 

 

 

Elastomeric bearing is the most common base isolation system for structure and bridges 

subjected to vibration and ground motion. To improve the energy dissipation 

performance of the base isolator, a lead core is implanted to enhance the damping and 

stiffness of elastomeric bearing. However, the most notable impact from lead-core 

rubber bearing is the adverse effect brought to human and environment by lead material. 

 

 

Therefore, in this study, an attempt has been made to innovate an elastomeric bearing 

equipped with steel core and filler system to improve the performance of bearing while 

posing minimal impact to human and environment. Two types of filler, namely sand and 

epoxy were implemented. The steel core was introduced to improve the shear stiffness 

of filler. The aim of this study is to develop an innovative elastomeric bearing that shows 

improvement in performance when compared to conventional elastomeric bearing and 

lead-core rubber bearing.  

 

 

Numerical models were developed for the proposed device according to prepared design 

details. Simulation was conducted using finite element method to evaluate the 

performance of proposed isolation and confirm the initial design details.  

 

 

Thereafter, the prototypes were manufactured and then experimentally tested under the 

combination of axial load and lateral displacement to assess the performance of propose 

base isolation devices.  
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Effective stiffness and energy dissipation are used as the evaluation parameters, as they 

are commonly used to define the base isolator spring-dashpot model during structural 

analysis. The results from numerical analysis were deemed acceptable since the stiffness 

and damping component derived from it were within the acceptable error tolerance when 

compared against that derived from experimental result. Based on both numerical and 

experimental result, the proposed bearing systems were found possessing greater shear 

stiffness compared to the conventional elastomeric bearing and lead-core rubber bearing.  

 

 

Upon validation of finite element model, numerical parametric study was conducted 

based on the developed models. The purpose of this study is to evaluate the effect of 

material properties and loading conditions on the performance of proposed elastomeric 

bearing. 

 

 

Then, application case study was conducted by the mean of finite element analysis by 

integrating the base isolator into a G+5 building. From the analysis, the base isolators 

were able to elongate the vibration period of structure and reduces the peak spectral 

acceleration acting on the structure. They were proven effective in reducing the base 

shear acting on the structure, and eventually reduce the structural burden when ground 

motion occurs. 

 

 

In overall, the implementation of steel core and filler system provides a reliable 

improvement to the performance of conventional elastomeric bearing. Among the 

proposed innovations, fully filled sand system is the best for its tremendous improvement 

in bearing characteristics, as well as convenience during fabrication and maintenance. 
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Galas elastomer ialah sistem pengasingan asas yang paling biasa untuk struktur dan 

jambatan yang tertakluk kepada getaran dan gerakan tanah. Untuk meningkatkan prestasi 

pelesapan tenaga pengasing asas, teras plumbum ditanam untuk meningkatkan redaman 

dan kekakuan galas elastomer. Walau bagaimanapun, kesan yang paling ketara daripada 

galas getah teras plumbum ialah kesan buruk yang dibawa kepada manusia dan alam 

sekitar oleh bahan plumbum. 

 

 

Oleh itu, dalam kajian ini, percubaan telah dibuat untuk menginovasikan galas elastomer 

yang dilengkapi dengan teras keluli dan sistem pengisi untuk meningkatkan prestasi 

galas sambil menimbulkan kesan minimum kepada manusia dan alam sekitar. Dua jenis 

pengisi iaitu pasir dan epoksi telah dilaksanakan. Teras keluli diperkenalkan untuk 

meningkatkan kekukuhan ricih pengisi. Matlamat kajian ini adalah untuk 

membangunkan galas elastomerik inovatif yang menunjukkan peningkatan dalam 

prestasi jika dibandingkan dengan galas elastomer konvensional dan galas getah teras 

plumbum. 

 

 

Model berangka telah dibangunkan untuk peranti yang dicadangkan mengikut butiran 

reka bentuk yang disediakan. Simulasi telah dijalankan menggunakan kaedah elemen 

terhingga untuk menilai prestasi pengasingan yang dicadangkan dan mengesahkan 

butiran reka bentuk awal. 

 

 

Selepas itu, prototaip telah dihasilkan dan kemudian diuji secara eksperimen di bawah 

gabungan beban paksi dan anjakan sisi untuk menilai prestasi peranti pengasingan asas 

yang dicadangkan. 
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Kekakuan yang berkesan dan pelesapan tenaga digunakan sebagai parameter penilaian, 

kerana ia biasanya digunakan untuk mentakrifkan model periuk spring-dashpot 

pengasing asas semasa analisis struktur. Keputusan daripada analisis berangka dianggap 

boleh diterima kerana komponen kekakuan dan redaman yang diperoleh daripadanya 

berada dalam toleransi ralat yang boleh diterima jika dibandingkan dengan yang 

diperoleh daripada keputusan eksperimen. Berdasarkan kedua-dua keputusan berangka 

dan eksperimen, sistem galas yang dicadangkan didapati mempunyai kekukuhan ricih 

yang lebih besar berbanding dengan galas elastomer konvensional dan galas getah teras 

plumbum. 

 

 

Selepas pengesahan model unsur terhingga, kajian parametrik berangka telah dijalankan 

berdasarkan model yang dibangunkan. Tujuan kajian ini adalah untuk menilai kesan sifat 

bahan dan keadaan pembebanan ke atas prestasi galas elastomer yang dicadangkan. 

 

 

Kemudian, kajian kes aplikasi telah dijalankan dengan purata analisis unsur terhingga 

dengan menyepadukan pengasing asas ke dalam bangunan G+5. Daripada analisis, 

pengasing asas dapat memanjangkan tempoh getaran struktur dan mengurangkan 

pecutan spektrum puncak yang bertindak ke atas struktur. Mereka telah terbukti berkesan 

dalam mengurangkan ricih asas yang bertindak pada struktur, dan akhirnya 

mengurangkan beban struktur apabila gerakan tanah berlaku. 

 

 

Secara keseluruhan, pelaksanaan teras keluli dan sistem pengisi memberikan 

peningkatan yang boleh dipercayai kepada prestasi galas elastomer konvensional. Antara 

inovasi yang dicadangkan, sistem pasir terisi penuh adalah yang terbaik untuk 

peningkatan yang luar biasa dalam ciri galas, serta kemudahan semasa fabrikasi dan 

penyelenggaraan. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Introduction 

Structure tends to respond dynamically to applied lateral forces such as wind, earthquake 

and tide. When a structure is moving or vibrating, additional stress and strain, mostly in 

cyclical pattern will be developed in structural elements. These responses will eventually 

cause deterioration in those elements over long run. 

To remedy this unfavourable action, structural enhancement has been researched over 

past decades. Such enhancement comes in three major forms today: base isolation, 

passive energy dissipation and active control. 

Base isolation system is effective in reducing structural dynamic response, especially 

when the structure is subjected to ground motion. To do so, the isolator, most commonly 

elastomeric bearing, must be vertically stiff to sustain the load that comes from the dead 

weight of structure and occupants’ daily activities, yet laterally flexible to reduce the 

transfer of huge force coming from the ground to superstructure. Meanwhile, elastomeric 

bearing that equips with high damping material e.g. rubber, will start to dissipate 

excessive energy and stop the structural vibration. 

Commercially, laminated rubber bearing which consists of alternating layers of rubber 

and reinforcing steel is the most common type of device for its simplicity and low cost. 

Another widely implemented elastomeric bearing is lead-core rubber bearing. By 

introducing lead plug as the core of elastomeric bearing, the performance of bearing has 

been proven more promising than laminated rubber bearing. In research and 

development, less known alternatives such as fibre-reinforced rubber bearing, 

enhancement of existing types of bearing, or hybrid system with complementary 

mechanisms are intensively researched to produce a competitive alternative that 

performs better and cost less. 

1.2 Background and earlier works 

Laminated rubber bearing with the purpose of isolating superstructure and substructure 

was introduced in year 1954. Layers of rubber sheet and reinforcing steel plate provide 

vertical and horizontal stiffnesses that enable such device to accomplish its task. Prior to 

that, a bridge isolator was only made of natural rubber, and its function was solely 

absorbing impact (Markou & Manolis, 2016). 
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Major leap in elastomeric bearing technology was achieved when lead core was added 

to existing laminated rubber bearing system and therefore created lead-core rubber 

bearing (Robinson, 1982). As a result, the shear resistance of bearing device improves, 

and this drastically improves the energy dissipation capacity of bearing while being 

compared to laminated rubber bearing. Another advancement was achieved when the 

idea of replacing reinforcing steel plate in laminated rubber bearing with fibre 

reinforcement material was conceived. This modification produced an elastomeric 

bearing that costs less while giving consistent performance. 

Factors affecting the performance of these types of elastomeric bearing have been 

consistently studied. For laminated rubber bearing and fibre-reinforced rubber bearing, 

global geometry of bearing, which often described by primary and secondary shape 

factors directly influences the bearing’s peak displacement, energy dissipation capacity 

and failure mode (Montuori et al., 2016, Gauron et al., 2018, Zhou et al., 2018). For lead-

core rubber bearing, factor such as diameter of lead core affects the overall performance 

of bearing (Ahmadipor & Alam, 2017). 

Problems related to elastomeric bearing have been identified at material level. For lead-

core rubber bearing, the main component is made of toxic heavy metal that brings 

adverse impact to human health and environment (Gottesfeld et al., 2017, Gałuszka et 

al., 2018). In the view of mechanical aspect, lead core is susceptible to heating due to 

rigorous movement, and this affects the overall performance of bearing (Ozdemir & 

Dicleli, 2012). For laminated rubber bearing and fibre-reinforced rubber bearing, 

majority of the issues are related to rubber. Stiffening of rubber may help in enhancing 

the shear resistance of bearing, but it weakens the bearing’s ability to isolate structure 

and dissipate structural vibration (Li et al., 2016). As a result, greater stress will be 

developed in superstructure. When subjected to high tensile stress, rubber ruptures and 

this leads to destruction of bearing (Tubaldi et al., 2016). Damaged bearing usually 

exhibits uncontrollably large displacement when subjected to lateral force and exposes 

the structure to the risk of unseating failure and collapse (Kim et al., 2006). 

1.3 Statement of problem 

Most issues related to the mechanical performance of an elastomeric bearing is 

associated with its constituent material – rubber. 

When bearing sustains large shear force, it will undergo large deformation. Such 

displacement can cause bridge unseating failure and lead to collapse of superstructure. 

Nonetheless, such situation is not only caused by large shear force and accompanying 

deformation. When the bearing’s lateral stiffness is reduced or lost, the lateral capacity 

of bearing will be decreased tremendously, and large deformation can easily occur. 

Moreover, rubber hardens when it is subjected to unusually large strain. The hardening 

process causes the rubber to lose its flexibility and ability to dissipate vibration. As a 

result, this causes the bearing to lose its primary function as an isolator.  
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A notable advancement in elastomeric bearing is the use of lead plug as core, aiming to 

enhance the lateral stiffness and damping capacity of bearing. However, the use of lead 

has been proven poses negative impact to human health and environment. 

An innovative elastomeric bearing completed with novel mechanisms is required to 

resolve the issues as outlined above. The lead core enhances the stiffness and damping 

of elastomeric bearing. To replace the hazardous lead core, proposed mechanism must 

be able to provide improvements in the same aspect. The proposed system may consist 

of a stiff material that aims to provide lateral stiffness to the bearing, and high damping 

material that enhance the energy dissipation of the device. On top of that, rubber 

deformation needs to be controlled to avoid associated damage. The current technology 

relies on the component of elastomeric bearing in resisting the displacement applied on 

it, rather than restraining the deformation of bearing to the allowable magnitude. 

Therefore, the innovation needs displacement control mechanism to accomplish this. 

However, innovation alone is not enough to make an impact in the industry. For the 

innovation to be widely implemented, comprehensive design guide should be developed 

and made accessible by the industry. By following the design procedure properly, 

bearing with consistent performance could be produced. Also, numerical analysis model 

is required for the engineer to check the adequacy of structural design of the innovative 

elastomeric bearing under various design criteria, and provide convenience for future 

research and improvement. Further assessment of the proposed elastomeric bearing is 

needed through case study, where the elastomeric bearings are implemented to a 

structure. The numerical analysis model compliments with the case study, where the 

output of numerical analysis can be used to determine the parameters required to conduct 

structural analysis. 

1.4 Identified gaps 

The identified gaps are as follows: 

 

1. Need of novel bearing with displacement control mechanism to restrict rubber 

deformation and avoid undesired damage & superstructure unseating problem, 

2. Need of avoid the use of lead, which is hazardous to human and environment 

while improving the performance of bearing, 

3. Need of numerical analysis model to simulate the behaviour of an elastomeric 

bearing with the proposed mechanism under various loading condition, and 

4. Need of design guide to enable engineer and manufacturer to determine the size 

of elastomeric bearing with the proposed mechanism based on various design 

criteria. 

5. Need of a case study on a building to identify the effect of implementation of 

proposed innovative elastomeric bearing. 
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1.5 Objectives of study 

The main objective of this study is as follow: 

 

1. To develop an innovative elastomeric bearing as a replacement of lead-core 

rubber bearing by utilizing the steel core and granular and polymer filler system 

with displacement control mechanism. 

 

 

To achieve this main objective, the following specific objectives need to be fulfilled: 

 

1. To develop manual design process for innovated elastomeric bearing, 
 

2. To evaluate the performance of developed elastomeric bearing in terms of 

bearing characteristics through conducting experimental test and finite element 

simulation, 
 

3. To determine the effect of bearing material properties and loading conditions 

on the performance of proposed elastomeric bearings by the mean of finite 

element analysis. And 
 

4. To assess the performance of the developed elastomeric bearing through 

application to a reinforced concrete structure subjected to earthquake excitation. 

 

 

1.6 Hypothesis of the study 

In the present study, the following hypothesis are made: 

 

1. Implementing the steel core and granular and polymer filler system in 

elastomeric bearing improves the effective stiffness and damping ratio in 

comparison to the conventional laminated bearing and it can be used as a 

replacement of lead-core rubber bearing, 
 

2. Utilization of displacement control mechanism in elastomeric bearing restricts 

the movement of the bearing and prevent any excessive displacement, and 
 

3. Implementation of proposed elastomeric bearing can improve a building’s 

structural response when it is subjected to ground motion, compared to the fixed 

base condition. 
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1.7 Scope and limitation of work 

The scopes of this research are: 

 

1. Development of an innovative elastomeric bearing by introducing a mechanism 

that improves the performance of bearing and controls the bearing displacement, 

2. Use of material that brings minimal impact to health and the environment, as a 

replacement of hazardous lead core, 
 

3. Development of innovative elastomeric bearing design guide in accordance 

with currently implemented code of practice, namely BS5400 and EN 1337, 
 

4. Development of numerical analysis model using finite element method and 

conduct analysis to determine the hysteresis behaviour of proposed bearings, 

and derive their bearing characteristics, 
 

5. Conduct numerical parametric study on the innovative elastomeric bearing 

under various material properties and loading conditions, namely rubber and 

filler properties, applied displacement, loading pattern, frequency and history, 
 

6. Manufacturing of proposed elastomeric bearing prototypes and a conventional 

laminated rubber bearing as benchmark, 
 

7. Test of the prototype under the combination of compression and cyclic shear as 

per the design condition, 
 

8. Verification of numerical analysis based on experimental test result, in terms of 

hysteresis curve, derived bearing characteristics and spring-dashpot model 

parameters, 
 

9. Perform numerical analysis on a case study building with and without the 

proposed innovative elastomeric bearing, as well as lead-core rubber bearing 

for comparison. 

 

 

The limitations of this research are: 

 

1. Temperature, which is another factor that can affect the properties of rubber, is 

not considered, 
 

2. The effect of loading history on innovative elastomeric bearing is not studied 

experimentally, 
 

3. The function of system in limiting the lateral deformation of bearing when 

subjected to large force and displacement is not tested experimentally, 
 

4. The response of building implementing the innovative elastomeric bearing, 

especially the effect of implementation on building drift is not studied 

experimentally, and 
 

5. Comparison of the device level performance between innovative elastomeric 

bearing and lead-core rubber bearing experimentally. 
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1.8 Layout of the thesis 

This thesis is divided into 5 chapters. The brief description of each chapter is described 

as below: 

Chapter 1 summarizes the state of development in seismic isolation system and the 

identified gaps in the field. This chapter also highlights the objectives of study that aims 

to improve the identified problems. 

Chapter 2 presents the review of previous works related to performance based seismic 

design and seismic isolation system. The advancement and state of development of 

seismic isolation system are highlighted. Studies on the potential material for innovation 

and numerical analysis method for bearing are presented in this chapter as well. 

Chapter 3 presents the methodology of the study. The methodology is divided into 4 

stages: preliminary, model development, experiment and numerical. The methods and 

considerations that aligned to the objectives of study are highlighted in detail in this 

chapter. 

Chapter 4 presents the result and discussion of the study. The results from each stage are 

presented and arranged according to the stages as stated in methodology. Discussions of 

the result are presented as well. 

Chapter 5 presents the conclusions of the study. The fulfilment of study objectives is 

justified in this chapter. Recommendations are made to guide future research related to 

the proposed innovative elastomeric bearing. 
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