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Chair  : Associate Professor Ahmad Fikri Abdullah, PhD  
Faculty  : Engineering 
 
 
Around 70% of global disasters are related to hydro-meteorological events such 
as drought, floods, and cyclones. Therefore, researchers and experts carried out 
many studies on flood hazards in order to reduce the impact of flood magnitude 
and flood frequency. In Malaysia, a telemetric forecasting system is currently 
been used in flood monitoring systems. However, data information obtained from 
this system is one spatial dimension and one point-based station, thus it cannot 
represent the dynamics of the surface water extent. Therefore, this study 
introduces a visual surveillance concept to monitor the flood event in a specific 
area, based on surveillance cameras and computer vision approaches to obtain 
instant flood inundation information during flood events. A deep learning 
approach was proposed for water segmentation so that it can be applied to 
various water scenarios and backgrounds. However, conventional image 
segmentation techniques were also carried out to ensure the usage of deep 
learning is worth it. The conventional segmentation methods used in this work 
are thresholding, region growing, and hybrid technique known as GeoRegion. 
The findings demonstrated that these methods are handcrafted and the 
algorithms need to be changed when applying to different images, which is not 
practical to be used during flood disasters. Hence, deep learning technique was 
chosen for water segmentation procedure in this work. Two different networks 
were applied in this study, namely DeepLabv3+ and SegNet, for detecting water 
regions before estimating water levels from surveillance images. Water level 
estimation was predicted based on the elevations from LiDAR data. Based on 
the experimental results, it was found that the DeepLabv3+ network performed 
better than the SegNet network by achieving above 93% for overall accuracy and 
IoU metrics, and approximately 82% for boundary F1 score (BF score). The 
Spearman’s rank correlation obtained between water level measured by the 
sensor and water level estimated from the proposed framework was 0.92 which 
indicates a strong relationship. By integrating the estimated water level with a 3D 
model developed from LiDAR data, flood simulation was performed. Besides, 
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volume of water was also computed from the 3D model. The findings 
demonstrate that the water volume increased as water level increased. Lastly, a 
graphical user interface was developed for water segmentation and water level 
estimation analysis that could be applied during the flood events. Hence, the 
proposed work can help in improving the current monitoring and emergency 
warning abilities against flood events, serving as a complement to the currently 
used quantitative precipitation forecasts and in-situ water-level measurements. 
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PEMBANGUNAN ANGGARAN ARAS AIR SUNGAI DARIPADA KAMERA 
PENGAWASAN BAGI SISTEM PEMANTAUAN BANJIR MENGGUNAKAN 

TEKNIK PEMBELAJARAN MENDALAM 
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September 2022 
 
 

Pengerusi : Profesor Madya Ahmad Fikri Abdullah, PhD 
Fakulti  : Kejuruteraan 
 
 
Sekitar 70% daripada bencana global berkaitan dengan peristiwa hidro-
meteorologi seperti kemarau, banjir dan taufan. Oleh itu, penyelidik dan pakar 
banyak menjalankan kajian tentang bahaya banjir bagi mengurangkan kesan 
magnitud banjir dan kekerapan banjir. Di Malaysia, sistem ramalan telemetrik kini 
digunakan dalam sistem pemantauan banjir. Walau bagaimanapun, maklumat 
data yang diperoleh daripada sistem ini adalah berbentuk satu dimensi spatial 
dan stesen berasaskan titik, justeru ia tidak dapat mewakili keluasan air 
permukaan yang dinamik. Oleh itu, kajian ini memperkenalkan konsep 
pengawasan visual untuk memantau kejadian banjir di kawasan tertentu, 
berdasarkan kamera pengawasan dan pendekatan penglihatan komputer untuk 
mendapatkan maklumat banjir segera semasa kejadian banjir. Pendekatan 
pembelajaran mendalam telah dicadangkan untuk mengenalpasti kawasan 
berair supaya ia boleh digunakan pada pelbagai senario dan latar belakang. 
Walau bagaimanapun, teknik pembahagian imej konvensional juga telah 
dijalankan untuk memastikan penggunaan pembelajaran mendalam berbaloi. 
Kaedah pembahagian konvensional yang digunakan dalam kerja ini ialah 
thresholding, region growing dan teknik hibrid yang dikenali sebagai GeoRegion. 
Penemuan menunjukkan bahawa kaedah ini adalah buatan tangan dan 
algoritmanya perlu diubah apabila digunakan pada imej yang berbeza, dan ianya 
tidak praktikal untuk digunakan semasa bencana banjir. Oleh itu, teknik 
pembelajaran mendalam telah dipilih untuk prosidur pembahagian air dalam 
kerja ini. Dua rangkaian berbeza telah digunakan dalam kajian ini, iaitu 
DeepLabv3+ dan SegNet, untuk mengesan kawasan air sebelum menganggar 
paras air daripada imej pengawasan. Anggaran aras air telah diramalkan 
berdasarkan ketinggian daripada data LiDAR. Berdasarkan keputusan 
percubaan, didapati bahawa rangkaian DeepLabv3+ berprestasi lebih baik 
daripada rangkaian SegNet dengan mencapai melebihi 93% untuk ketepatan 
keseluruhan dan intersection-over-union (IoU), dan kira-kira 82% untuk skor 
sempadan F1 (BF score). Korelasi pangkat Spearman yang diperolehi antara 
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paras air yang diukur oleh penderia dan paras air yang dianggarkan daripada 
rangka kerja yang dicadangkan ialah 0.92 yang menunjukkan hubungan yang 
kukuh. Dengan menggunakan anggaran paras air dan model 3D yang 
dibangunkan daripada data LiDAR, simulasi banjir telah dilakukan. Selain itu, 
isipadu air juga dikira daripada model 3D. Penemuan menunjukkan bahawa 
isipadu air meningkat apabila paras air meningkat. Akhir sekali, antara muka 
grafik pengguna telah dibangunkan untuk pembahagian air dan analisis 
anggaran paras air yang boleh digunakan semasa kejadian banjir. Oleh itu, kerja 
yang dicadangkan boleh membantu dalam meningkatkan pemantauan semasa 
dan kebolehan amaran kecemasan terhadap kejadian banjir, selain daripada 
berfungsi sebagai pelengkap kepada ramalan hujan kuantitatif yang digunakan 
pada masa ini dan pengukuran aras air di lapangan. 
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1. CHAPTER 1

INTRODUCTION 

1.1 Overview 

Flood frequency was increased by 33% in 2020 as compared to the average 
occurrence for the past 10 years (2010 – 2019) (UNDRR, 2020a). The flood issue 
has gained global attention with significant efforts made to develop effective flood 
prevention and monitoring solutions. Researchers and experts around the world 
have carried out many studies that included the use of modern techniques such 
as artificial intelligence to reduce the impact of flooding events. This chapter 
discusses the study background as well as its scope and limitations.  

1.2 Flood definition 

A flood is defined as a rise in water body and overflowing water into land that is 
usually dry. Different societies often have different perspectives on the definition 
of flood. From the ecological perspective, a flood is defined as an unusual 
discharge that exceeds the riverbanks; hence, inundating the floodplain. On the 
other hand, a hydrologist defines flood as high discharges that cause a sudden 
peak in water level and lead to the inundation of land adjacent water bodies. 
Contrarily, from the social perspective flood is defined as discharge of a water 
body that causes damage (Havinga et al., 2006). Ward (1978) defined flood as a 
natural process of overflowing water body into land that is not normally 
submerged. In 2020, the frequency of floods rose to 61.66% of the total 313 major 
natural disasters that occurred worldwide (UNDRR, 2020a). Figure 1.1 illustrates 
the frequency of natural disasters according to disaster types in 2020. 
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Figure 1.1: Number of occurrences according to disaster types worldwide 
in 2020 (UNDRR, 2020a)  
 
 
1.3 Floods in Malaysia 
 

Malaysia is located in Southeast Asia, which is geographically located outside 
the “Pacific Rim of Fire” (Chan, 2015). Therefore, Malaysia is free from severe 
natural disasters, such as earthquakes, volcanic eruptions, and typhoons. Even 
though Malaysia does not suffer from such extreme disasters, Malaysia still 
experiences disasters, such as floods, landslides, and drought. Flood is the most 
common natural disaster in Malaysia due to its geographical location and 
characteristics. Figure 1.2 illustrates the frequency distribution of disasters in 
Malaysia for 2018. Furthermore, Malaysia has the highest percentage (67%) of 
the population exposed to floods amongst ASEAN member states from July 2012 
to January 2019, as reported in the ASEAN Risk Monitor and Disaster 
Management Review (AHA Centre, 2019b).  
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Figure 1.2: Distribution of disasters by hazards shows that flood is the most 
frequent disaster in Malaysia in 2018 (AHA Centre, 2019a) 
 
 
Overall, 189 river systems are flowing directly into the sea throughout Malaysia, 
including Sabah and Sarawak. It was reported that 10.1% or 33, 298 km2 of 
Malaysian land is exposed to flood risk (DID, 2012).  Floods in Malaysia can be 
classified as flash and monsoon floods. Flash flood is a sudden event and it rises 
and falls rapidly, while monsoon flood lasts for days. Nonetheless, this work 
focuses only on monsoon floods in Malaysia. 
 
 
1.3.1 Causes of floods  
 

There are two main causes of flood, which are natural and human-induced. 
Omran et al. (2018) reported that the massive flood that happened in Kelantan 
in 2014 was contributed equally by natural and human factors. The basic cause 
of flood in Malaysia is influenced by monsoon winds, heavy rainfall, and runoff. 
Malaysia has two monsoon seasons each year, which are the northeast 
monsoon that occurs from November to March, and the southwest monsoon 
which occurs from May to September. Since heavy rainfall and strong winds 
occur during the monsoon season, flood risk is higher during that period. Pahang, 
Kelantan, and Terengganu often experience floods due to heavy rains during the 
northeast monsoon.  
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Other than the monsoon, climate change is another worrying factor that 
contributes to extreme changes in weather and temperature. These changes 
indirectly melt glaciers and increase sea levels, which eventually cause an 
increase in the number of flood disasters. Furthermore, sediments carried by 
rivers from higher slope areas are deposited and this reduces the river capacity, 
which contributes to serious flood incidents. Therefore, the water easily overflows 
the riverbanks during floods. In addition, the topography of an area is one of the 
major factors that determine its flood susceptibility. A low-level area is highly 
affected by floods during rainfall, especially if it is located near rivers.  
 
 
On the other hand, many man-made activities influence the flooding problem. It 
was revealed that human factors, such as land clearing, unmanaged drainage 
systems, and uncontrolled development, contributed more weightage to flood 
events in Sarawak (Abid et al., 2021). Deforestation and land clearing are some 
development processes that could increase the flood risk. Land clearing for 
agricultural purposes by irresponsible parties in Kuala Krai, Kelantan had 
decreased the number of trees and increased the probability of flood occurrence 
(Omran et al., 2018). Unplanned urban development, uncontrolled construction 
works, and a major change in land use could also contribute to the flooding 
problem. In developing countries, urbanisation usually starts from downstream to 
upstream, which increases the impacts and damages of floods. 
 
 
Moreover, urban cities like Kuala Lumpur are susceptible to floods due to less 
storage capacity in the urban basin and more surface runoff. Klang Valley, for 
instance, experienced an increased runoff with respect to urban development in 
that area (DID, 2009). Artificial surfaces like cement, concrete and tar could not 
absorb water as dense vegetation area does; hence, the rainfall immediately 
ends up in drains and rivers. Therefore, too much water flows into the river which 
exceeds its discharge capacity, and thus results in flooding events. Unmanaged 
drainage was one of the factors that contributed to the massive flood in Kuala 
Krai, Kelantan (Omran et al., 2018). Lack of action from the authorities in cleaning 
the drainage and widening the drainage systems have worsened the flood 
situation in 2014.  
 
 
In addition, exploitation of hill land for rapid housing, uncontrolled agriculture, and 
other developments damages the hill environment and affect downstream areas 
(Weng Chan, 1997), which lead to flooding problem. Besides, human-induced 
flood may occur due to poor designs such as constructions at bridges and 
culverts. Lastly, low levels of civic consciousness amongst Malaysians who 
continue to throw rubbish into rivers and drains can contribute to flood incidents. 
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1.3.2 Recent flood events 
 

In the past five years, Malaysia experienced several natural disasters, including 
floods. The recent flood struck on 18 December 2021, causing more than 50,000 
people to be evacuated and at least 50 deaths. The 11 affected states were 
Selangor, Pahang, Kelantan, Terengganu, Kuala Lumpur, Perak, Melaka, Negeri 
Sembilan, Sabah and Sarawak. Two days of torrential rain caused the worst 
floods in years, which led rivers to overflow and caused floods in towns and 
villages; hence, major roads were cut off. Many motorists were stranded and 
trapped in their vehicles for hours. Figure 1.3 illustrates the timeline of flood from 
2017 to 2021. 
 
 

 
 
Figure 1.3: History of floods from 2017 to 2021 in Malaysia 
 
 
Records showed that major floods normally occur at the end of the year and 
Kelantan, Terengganu, Pahang, and Johor were amongst the states that were 
frequently hit by floods, especially during the monsoonal seasons. 
 
 
1.4 Flood monitoring system in Malaysia 
  

After the severe flooding events in December 2014, the Malaysian Government 
established National Disaster Management Agency (NADMA), which allows 
better coordination between agencies related to natural disasters. NADMA 
enables the implementation of a new flood forecasting and warning project called 
the National Flood Forecasting and Warning System (NaFFWS) through the 
Department of Irrigation and Drainage (DID). NaFFWS is an integrated system 
for flood forecasting and river monitoring with dissemination of flood warning that 
uses telemetry data, radar data and forecasts.  
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NaFFWS can forecast monsoon floods seven days in advance and provide 
dissemination of flood warnings two days earlier. NaFFWS was successfully 
developed in three catchments in Malaysia and now it has been broadened to 11 
more river basins before the scheme is extended nationwide (Wallington, 2017). 
The system uses historical rainfall and flow data and then develops models of 
runoffs, river channels, and flood plains before combining the data with weather 
forecasts and ground measurements to predict water levels. Lastly, the system 
is configured to run continuously and operationally, which also automatically 
generates forecasts and warnings.  
 
 
Since 2000, DID has adopted a telemetry system to monitor real-time rainfall and 
water levels from hydrological stations, and the data are transmitted to DID 
offices for local use. The rainfall and water level data are also published in 
Infobanjir.water.gov.my, which is an Internet-based national flood monitoring 
system established for the public. However, there are times when the system 
encountered data transmission problems or the rainfall or water level sensors 
had technical issues (Bopi et al., 2016).  
 
 
Besides, DID has already installed several surveillance cameras at different 
water level monitoring stations in Selangor. The cameras are used to observe 
the situation on-site and monitor the water level of river.  Images from the camera 
are shared with the public on the official website of InfoBanjir Selangor at 
http://infobanjirjps.selangor.gov.my/camera.html and the images on the website 
will be updated every 15 minutes. 
 
 
1.5 Problem statement 
 

In Malaysia, the DID has adopted a telemetry system to monitor real-time water 
levels using in-situ water level sensors from hydrological stations. These data are 
used in real-time flood monitoring and can also be used to provide flood 
forecasting. Nevertheless, the main restriction of this means is the failure of the 
sensor when the water level exceeds the sensor position during flood events. 
When it happens, the water level sensors will fail to give accurate readings. 
Besides, due to high installation and maintenance costs, the installation of the 
sensors is often neglected in the small-scale river areas, which results in data 
scarcity to describe the local situation (Lo et al., 2015). Because of the limitations 
of current practice, a visual sensing technique is proposed as an alternative to 
obtain real-time flood information. Surveillance camera has become a popular 
option to be used as the input source for flooding events monitoring, especially 
in small-scale areas (Filonenko et al., 2015; Lo et al., 2015). Besides, DID has 
installed surveillance cameras or closed-circuit television (CCTV) cameras at 
several water level monitoring stations, mostly in Selangor, so that the authority 
can instruct residents to evacuate when water is at the dangerous level. After the 
massive floods in December 2021, a total of 120 CCTV cameras were installed 
nationally and will be operational in 2022 (Bernama, 2021). Moreover, Kuala 
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Lumpur City Hall (DBKL) is planning to install 4,000 surveillance cameras in the 
city to visually detect floods as well as to help the authorities in flood rescue 
operations (Jaafar, 2022). Nonetheless, there is no proper discussion on how the 
authorities would use the technology other than by observing the on-site situation 
remotely. It will be a waste not to make full use of the existing infrastructure.  
 
 
Extraction of water regions is an important task in utilising surveillance images in 
flood studies. The water regions can be identified by using various computer 
vision techniques. Many studies were conducted on the application of computer 
vision including deep learning approach in flood disasters by using satellite 
imagery (Martinis et al., 2015; Silveira & Heleno, 2009; Thayammal et al., 2021; 
Zhou et al., 2020) and unmanned aerial vehicles (UAVs) (Ansari et al., 2021; 
Gebrehiwot et al., 2019; Popescu et al., 2015, 2017; Rahnemoonfar et al., 2021). 
However, the usage of computer vision to exploit surveillance images in flood 
applications is still lacking. Focusing on flood applications in specific, only a few 
researchers adopted deep learning technique to extract water information from 
surveillance images. Due to its expensive cost in terms of computational 
resources and intensive training, deep learning should only be used if the given 
problem could not be solved by simpler methods to justify the cost of using it. 
Therefore, this research proposes to apply computer vision techniques, from the 
conventional computer vision-based to deep learning-based, to find the most 
reliable method that can be used for water segmentation during flood events. In 
order to fully utilise the surveillance technology, the potential of estimating water 
levels from segmented images is investigated. Having to depend on stick gauges 
or objects present in the fields could limit the practicality of water level estimation 
from surveillance images. Since LiDAR data offer higher accuracy of digital 
elevation model (DEM), this present work suggests to use virtual markers 
extracted from LiDAR data for water level estimation coupled with the segmented 
surveillance image. Apart from that, the lack of flood data, especially during/after 
flooding events and limited information on flooded areas in small/local events 
make it difficult to validate the flood forecasting models (Molinari et al., 2019). A 
3D model could help in providing water volume information and describing The 
ability to capture water level values and record them in a structured database 
might be useful when there is a problem with the telemetry system. Therefore, a 
smart flood monitoring system by developing a graphical user interface 
specifically designed for water segmentation and water level estimation is 
proposed. 
 
 
1.6 Research questions 
 

The proposed study aims to address the following research questions: 
 

i. Can deep learning be used efficiently in extracting water region 
information by using surveillance images?  

 
ii. Can water levels be estimated from surveillance images and LiDAR 

data? 
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iii. Can water volume be determined from 3D model generated from LiDAR 

data? How to extract and record data in a structured manner (database) 
automatically from the surveillance cameras? 

 
 
1.7 Objectives 
 
 
The main aim of this study is to develop a smart flood monitoring system by 
identifying water regions and estimating water levels from surveillance 
technology. The specific objectives of this research are as follows:  
 

i. To investigate the efficiency of conventional image processing and deep 
learning approaches to segment flooded regions from surveillance 
images. 

 
ii. To estimate water levels by exploiting the segmented images coupled 

with elevation values extracted from light detection and ranging (LiDAR) 
data. 
 

iii. To compute water volume from 3D model generated from LiDAR data 
and to design a graphical user interface (GUI) for segmenting water 
regions and extracting water levels and status from surveillance images.  

  
 
The result of this study will be valuable in improving the flood monitoring system 
as well as reducing the impact of flooding by developing better practices and 
advanced tools for flood management systems in Malaysia. 
 

 
1.8 Scope and limitations 
 

The main scope of work for this study is to identify the water regions using several 
segmentation techniques and estimate water levels by integrating the results with 
the elevation values extracted from LiDAR data before developing a graphical 
user interface (GUI) from surveillance technology so that near real-time 
information could be obtained during the flooding events. This work only covers 
flood disasters that had happened until December 2021. Besides, it focuses on 
flood monitoring during the flooding events without discussing the whole flood 
management cycle. The present study only focuses on river floods and the extent 
of flood to adjacent areas along the river. As this study uses a single surveillance 
camera, the study only covers narrow rivers with width of 30 m. It is also assumed 
that the surveillance camera is fixed and there are no changes in terms of camera 
angles from time to time.  
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Another limitation of the proposed study is the limitation of waterbody detection 
due to the bridge or pier that is present in the image. Therefore, the water region 
could not be detected accurately if it is located under the bridge or pier. Besides, 
only daytime images were used since this study used an RGB camera that 
requires light to produce a good quality image. In this study, the proposed water 
segmentation approach can be applied to various river images regardless of the 
image locations. However, the suggested water level estimation was highly 
dependent on locality. To do the water level estimation, it needs to have prior 
elevation information; hence, the concept does not apply to all images. Besides, 
this study did not consider sedimentation issues that may influence the water 
level of rivers.  
 
 
1.9 Thesis outline                                                                                       
 

The thesis is organised into six chapters. Chapter 1 provides an overview of the 
research with a brief explanation about its relevance. The chapter includes the 
research questions and objectives, scope and limitations. Chapter 2 consists of 
a literature review that covers several related topics. Chapter 3 explains the setup 
for data acquisition by using surveillance cameras, image segmentation methods 
and deep learning semantic segmentation. It also describes the process of 
designing a smart data collection by using a graphical user interface (GUI) for 
extracting water information from surveillance images. Chapter 4 addresses the 
results and findings for each research objective. Chapter 5 discusses the 
experimental results and related explanations of the proposed work. Lastly, 
Chapter 6 summarises conclusions of the proposed work as well as provides 
recommendations for future studies. 
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