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The slow turnaround time issue dwindling with a new planned space mission which 

is to cater for a rapid Earth’s surface observation demand had stimulated the growing 

interest in the concept of responsive space mission. Weighing on all the factors that 

involved, initiating a brand new dedicated single spacecraft mission proved to be 

rather time-consuming and not cost-effective, especially when the acquisition of an 

instantaneous critical land information is prioritized for. Therefore, the best solution 

to this problem is to slew the existing distributed space platform to the desired land 

area of interest. In this research, a case study was conducted by manipulating the 

satellite formations that are operating in orbit to fulfill the demands for the responsive 

space. The selection of the spacecraft formation flying mechanism meant to address 

the stated problem was due to its better performances delivered, simple structures, 

high reliability and longer operating lifetime compared to any other approaches 

available in the field. Both findings on the orbit and ground segment analyses derived 

from the formation flying application will be presented with the main objective is to 

acquire the optimum results for solving the problems. Particularly for an orbital 

analysis subject, each stage of the flight to be examined along with its corresponding 

configuration until the formation established on the final responsive orbit to 

determine the right amount of fuel needed. This case study employed three different 

modes of finite-thrust impulse namely, the one-impulse transfer, the two-impulse 

transfer, and the three-impulse transfer maneuver to find the required local minimum 

and the global minimum delta-V during the formation orbital transfer phase. As for 

the ground segment analysis, formation performances were measured based on four 

implicit variables, namely the formation ground area of coverage, the overlap 

coverage area, the formation ground swath length, and the formation relative 
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geodesic. Cross-studies of these inter-dependent parameters were conducted at 

varying formation distances, altitudes, as well as inclinations, to acquire some specific 

trends so as to determine the optimum configuration for the excellent formation 

ground metric performance. 

 

 

Case study results revealed the practicality of employing satellite formation flying to 

address the needs for a responsive space mission both in terms of the orbital fuel 

preference and the ground metric requirement. The novel graphing techniques 

exploiting the plots of some dependent variables enables the decision to be made 

faster. Furthermore, the proposed technique has the advantage of providing multiple 

potential solutions instead of a single solution that is acquired through the 

conventional approach of solving the derived analytical approximated formulation. 

For an orbital transfer phase, the solutions to the problem of fuel optimization 

constituting different types of finite impulse transfers can be found from the selected 

graphs, which contain some distinct signature features. In the event where the leader-

follower formation is established, the higher amount of consumed retrograde fuel is 

necessary to retain the longitudinal separation between them as the formation 

separates farther. Several other factors that contribute to this delta-V variation include 

the total transfer time until target site arrival, the operating initial orbit semi-major 

axis, and the number of orbit revolution made. While the formation reconfiguration 

stage is equally critical, the fuel amount needed is found to be directly proportional 

to the increment in the formation distances. In addition to these factors, the formation 

ground assessment revealed that by positioning the formation at the right altitude 

within the low Earth orbit region while orbiting the Earth at high polar orbit 

inclination angle at near distance formation will produce the criterion of optimal 

desired ground performance. The criterion is the large acquisition of land coverage 

area, which has longer and wider ground coverage swath while possessing the least 

possible relative geodesic anomaly. Further investigation found that the occurrence 

of geodesic lengthening and shortening phenomenon were mainly influenced by the 

factor of sub-satellite point at high latitude positioning and the right azimuthal angle. 

Consequently, the presence of inconsistent relative geodesic attributes has 

significantly altered the overall computation accuracies of the ground area of 

coverage and its swath length properties. 
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PENERBANGAN FORMASI 

Oleh 

NOR AFFENDY BIN YAHYA 

Februari 2022 

Pengerusi : Prof. Dato' Dr.-Ing. Ir. Renuganth Varatharajoo, PhD 

Fakulti               : Kejuruteraan 

 

 

Isu berkaitan dengan tempoh reaksi yang lambat yang mempengaruhi rancangan 

misi angkasa yang baru yakni untuk memenuhi keperluan spontan pencerapan 

permukaan bumi telah merangsang minat ke arah konsep misi angkasa responsif. 

Dengan mengambilkira semua faktor yang berkaitan, perancangan untuk 

merekabentuk misi kapal angkasa yang baru terbukti memakan masa yang panjang 

dan tidak efektif dari segi kos terutamanya apabila pemerolehan data spontan 

permukaan bumi yang kritikal amat diutamakan. Jadi, penyelesaian terbaik kepada 

permasalahan ini adalah dengan melencong sekumpulan platform angkasa yang 

sedia ada ini supaya ia terbang melalui kawasan permukaan Bumi yang 

dikehendaki. Di dalam penyelidikan ini, satu kajian kes telah dijalankan dengan 

memanipulasikan formasi satelit yang sedang beroperasi di orbit untuk memenuhi 

objektif-objektif misi responsif angkasa. Pemilihan mekanisma penerbangan 

formasi satelit yang bertujuan untuk menyelesaikan masalah kajian kes adalah 

disebabkan oleh faktor-faktor prestasi yang lebih baik, strukturnya yang ringkas, 

kebolehharapan yang tinggi, dan jangka hayat operasi yang panjang berbanding 

dengan kaedah-kaedah lain yang ada dalam bidang tersebut. Hasil kajian berkaitan 

analisis segmen orbit dan permukaan bumi yang diperolehi dari pengaplikasian 

penerbangan formasi akan dibentangkan dengan objektif utama untuk 

memperolehi keputusan optimum bagi menyelesaikan masalah-masalah tersebut. 

Bagi subjek analisis orbit, setiap fasa penerbangan dengan konfigurasi tertentu yang 

terbang sehingga formasi itu mengorbit Bumi di orbit akhir responsif akan dianalisa 

secara spesifik untuk menentukan sukatan yang betul bagi bahan bakar yang 

diperlukan. Kajian kes ini menganalisa 3 jenis mod impuls tujah terhingga iaitu 
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kemudi impuls tunggal, kemudi 2-impuls dan kemudi 3-impuls untuk mencari nilai 

delta-V minimum lokal dan global yang diperlukan semasa fasa pindahan orbit 

formasi. Untuk analisis segmen Bumi, prestasi formasi diukur berdasarkan kepada 

4 pembolehubah tersirat iaitu liputan luas tanah formasi, luas liputan tertindih, 

kepanjangan petak tanah formasi, dan geodesik relatif formasi. Kajian bersilang 

semua parameter-parameter yang tersangkut-paut ini pada jarak formasi, 

ketinggian altitud dan kecondongan orbit yang berbeza-beza dijalankan untuk 

mendapatkan corak spesifik yang akan membawa kepada konfigurasi optimum 

untuk prestasi ukuran terbaik bagi formasi di permukaan Bumi. 

 

 

Keputusan kajian kes menunjukkan kesesuaian penggunaan aplikasi penerbangan 

formasi satelit bagi memenuhi kehendak misi angkasa responsif dari segi keperluan 

jumlah bahan bakar di orbit dan ukuran permukaan Bumi yang diperlukan. Teknik 

baru yang dicadangkan ini yang mengeksploitasi plot-plot graf yang terdiri daripada 

pembolehubah-pembolehubah bersandar telah membolehkan keputusan dibuat 

dengan lebih pantas. Selain itu, teknik alternatif yang diperkenalkan mempunyai 

kelebihan untuk memberikan potensi penyelesaian pelbagai berbanding hanya satu 

penyelesaian sahaja yang diperolehi melalui kaedah konvensional iaitu penyelesaian 

formula teranggar analitikal yang diterbitkan. Bagi fasa pindahan orbit, penyelesaian 

kepada masalah pengoptimuman bahan bakar yang merangkumi pelbagai jenis kes 

impuls terhingga boleh diperolehi dari graf-graf terpilih yang mempunyai ciri-ciri 

spesifik graf yang unik. Dalam situasi di mana formasi ketua-pengikut telah dibentuk, 

dengan pertambahan jarak formasi, jumlah bahan bakar untuk tujahan songsang 

yang diperlukan adalah lebih tinggi bagi mengekalkan penjarakkan longitudinal 

antara mereka. Faktor-faktor lain yang menyumbang kepada variasi delta-V ini 

termasuklah jumlah masa untuk pindahan sehingga ketibaan di tapak Bumi yang 

disasarkan, paksi semi-major untuk orbit awal yang beroperasi dan bilangan kitaran 

orbit yang dibuat. Sedang peringkat rekonfigurasi formasi juga tidak kurang 

pentingnya, jumlah bahan bakar yang diperlukan didapati berkadar terus dengan 

peningkatan jarak formasi. Tambahan pula, penilaian permukaan Bumi formasi 

mendapati bahawa dengan meletakkan formasi pada ketinggian dalam lingkungan 

orbit rendah Bumi sambil mengelilingi Bumi pada sudut kecondongan orbit polar 

tinggi pada jarak formasi yang dekat akan membolehkan kita mencapai kriteria-

kriteria prestasi permukaan Bumi optimum yang diingini. Kriteria ini adalah kawasan 

liputan tanah yang besar yang mempunyai petak liputan tanah yang lebar dan 

panjang di samping memiliki anomali geodesik relatif seminimum mungkin. 

Penyiasatan lanjut mendapati pembentukan fenomena kependekkan dan 

kepanjangan geodesik adalah dikonfigurasikan oleh faktor kedudukan titik sub-

satelit pada latitud tinggi dan sudut azimuthal yang betul. Kesannya, kehadiran ciri-

ciri tidak sekata ini telah mengubah seluruh ketepatan pengiraan kawasan 

permukaan Bumi yang diliputi dan sifat-sifat kepanjangan petak permukaan Bumi. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Satellite Formation Flying Background 

 

The concept of satellite flying in formation has been revolutionizing the way the 

space missions are defined and managed. The on-going trends and numbers of 

current and future space missions revolve around the applications of spacecraft 

formation flying (FF) are well-summarized in [1]. To date, numerous missions 

utilizing on the FF technology have been established such as, the Gravity Recovery 

and Climate Experiment (GRACE) [2], TANDEM-X [3], Magnetospheric Multi-Scale 

(MMS) [4] and the PRISMA mission initiated by the Swedish space agency [5]. These 

flight-proven FF missions unveiled the vast potential of such technology for future 

advanced space explorations. Obviously, the dominance of FF concept over the 

traditional monolithic space platform can be well described by its redundant 

characteristics which effectively extending mission lifetime, enabling greater 

coverage, reducing system complexity, and lowering the risk of mission failure 

while minimizing the overall mission costs. 

 

 

Within the context of Earth observation study, any mission adapting to an FF 

concept would most likely to optimize its ground performance measure output. Due 

to this, there is no doubt that the satellite formation flying application would be 

suitable for the mission where responsive ground monitoring task is urgently 

needed. Alternatively, instead of initiating a brand-new mission to cater for a 

specific demand which is costly and time-consuming, slewing the existing FF 

platform towards the desired ground spot area would be the best solution. So far, 

not many literatures emphasize on the usability of spacecraft formation flying for a 

ground responsive orbit mission. Like for instance, [6] and [7] conducted some 

preliminary studies on the responsive orbit mission subject by means of a single 

spacecraft application, while [8] attempted on designing a responsive orbit using 

some sort of computational method which employs multiple-objective evolution 

technique. Also, [9] compared different modes of propulsion systems available to 

determine the satellite reachability and fuel efficiency in the responsive mission for 

ground track analysis. Furthermore, the effectiveness of solutions to the responsive 

orbit problem for the accomplishment of specific ground area monitoring can be 

measured based on their characteristics of fast response or turnaround time, the 

minimum cost incurred, the excellent ground measure acquisition (e.g., large 

coverage and wide length) and the hybrid potential capacity for other tactical 
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applications. On the other hand, [10] suggested the use of fractionated space 

architecture that will provide the solution to this problem. It should be emphasized 

that for most responsive orbit case studies conducted, the main objective is to 

optimize the total amount of fuel consumption during the entire mission duration.  

 

 

As explained in earlier, the ground merit quality is also equally important as the 

orbital assessment to evaluate the FF responsive mission effectiveness. Features like 

the maximum area of coverage, the optimum swath length coverage, the minimum 

land coverage overlap area, and the duration of target area accessible time defined 

by the locus of coverage characteristics are some of the fundamental parameters 

defining the satellite ground performances. Since less priority is always given to this 

research area segment, it is indeed worthwhile to explore the full potential benefits 

that can be gained from the deployment of such mission. Finally, with the incurrence 

of minimum on-orbit fuel and optimal ground performance, the spacecraft 

formation flying responsive mission will likely be a huge success in the future. 

 

 

1.1.1 Problem Statements 

 

Normally, when a sudden unexpected distress event occurs, the time taken to 

respond to such a scenario is always a critical factor. In many cases, where rapid 

and consistent monitoring over the affected ground site is urgently demanded, the 

applicable reaction time is usually very slow, partly constrained by the lack of 

available and appropriate observation platform. Initiating and launching a new 

dedicated mission on the other hand, proved to be costly and time-consuming [11]. 

Other issues surrounding this new mission are long turnaround time to operation, 

prone to delay factor, high risk of failure and low mission success reliability [12]. 

Although good spatial and site temporal resolution are the prerequisite criteria for 

the mission, the application of single monolithic spacecraft operation cannot 

accommodate the requirements for much frequent site visits [13]. The disadvantages 

of a single satellite operation trigger the efforts to search for a better alternative 

solution. 

 

 

In other circumstances, when an existing space platform has been selected to 

conduct the mission, the conflict arises as to how to choose for the most rightful 

satellite candidate in orbit to ensure that the whole mission would be a successful 

one. Typical issues associated with the platform search include the estimated total 

amount of fuel needed for orbital repositioning until the establishment in the final 

responsive orbit and the desired satellite initial orbit semi-major axis parameters. 

On top of these two parameters, the determination for an orbital transfer fuel 
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amount is considered as an utmost priority as this parameter constitutes the largest 

propellant consumption that will affect the longevity of spacecraft operating life. 

Available literatures on this field of study, currently do not specifically emphasize 

on the problem of fuel optimization for any given responsive space mission. Instead, 

the solutions to the generalized cases of spacecraft fuel optimization problem are 

usually tedious, and require complicated mathematical skills to solve them [14]. 

 

 

In any occasion, the ground performance for a single spacecraft cannot be compared 

to that of the multi-satellite configuration performances. In reality, the single 

satellite application often suffers from major drawbacks like poor coverage area, low 

temporal resolution and obviously possess high chances of failure that may 

jeopardize the whole planned mission [15]. Although the concept of satellite flying 

in formation can resolves the problems associated with mono-satellite operation, the 

technical challenges involved for ideal positioning of these spacecrafts remain an 

ongoing study. Other than that, when employing satellite formation flying to cater 

for a dedicated responsive mission demand, the search for optimum ground 

characteristics such as the total coverage area, the overlap coverage area, the 

coverage swath length, and the relative geodesic become important issues to deal 

with. It turns out that those optimum criterias stated are actually derived from 

excellent spacecraft formation configuration flying at a specified minimum distance 

from each other, while operating at relevant altitude over the Earth and ideal orbit 

inclination angle, which later become the subjects to be solved in this case study. 

 

 

Finally, all the issues brought up earlier need to be resolved effectively so that the 

mission will achieve its purposes and gain maximal benefits. 

 

 

1.1.2 Motivations  

 

The current trend of launching complex multi-tasking single-use spacecraft to 

accomplish multiple mission objectives is indeed inefficient, especially when 

viewed from the economic perspective and operational reliability. This standalone 

platform is just capable of offering limited spatial resolutions or a constrained area 

of coverage, though it is fully-equipped with a set of high precision instruments. On 

the other hand, utilizing a fleet of simple and redundant satellites will ensure better 

coverage of the ground. Those previously mentioned weaknesses, inspired mission 

designers to seek for better alternatives and solutions towards ensuring a successful 

mission. 
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In the meantime, existing techniques dealing with responsive mission problem 

caused engineers to solve complicated analytical models in order to find a solution. 

Normally, the method applies to determine the amount of fuel needed to execute 

the mission, tends to be tedious, time-consuming and often results in a single 

solution without choices. Therefore, to overcome all these problems, a much simpler 

and more modular approach to the solution determination must be found.  

 

 

Technically, when it comes to searching for the desired satellite formation flying on-

orbit performance, many issues arise. Factors like the minimum amount of delta-V 

required and the best possible configuration specified by the formation distance, 

altitude and inclination characteristics to achieve the optimal performances are 

some of the key important critical features to be sought after. In addition to this, the 

difficulty of deciding on the most ideal formation initial orbit semi-major axis 

parameter against the requirements for optimum formation ground coverage 

performances, is in fact, among the reasons that motivate the research in this thesis.  

 

 

Finally, for a dual-satellite formation flying initiated for a responsive mission 

purpose, some desired characteristics will enable an optimum total delta-V transfer 

maneuver, while having good resolution of the specific ground site, and arrives over 

the site at the minimal allocated time demand. These are examples of requirements 

that need to be explicitly addressed and resolved. As a summary, the main 

motivation is to search for the overall best solution by addressing the problems and 

challenges faced as stated before, so that the case study scenario can be tackled 

effectively. 

 

 

1.1.3 Simulation and Modeling 

 

All simulations and modeling in this thesis were done using the MATLAB 

programming software developed by MathWorks. This software enables satellite 

formation flying orbital simulation to be conducted through the propagation of its 

individual spacecraft orbit. Such realistic simulation that mimics the real-world 

scenario can help mission designers to understand and identify the presence of any 

possible disturbance or influence that might affect the satellite trajectory in the orbit. 

In some ways, MATLAB also meant for solving complex analytical solutions, 

thereby allowing further analysis into the problem to be investigated. By right, 

attending to the solutions would partly reduce the overall costs of satellite mission. 

In our case study, MATLAB is used further to model most of the mathematical 

expressions derived to search for the optimal results to the problem. 
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Results compilation were also made using MATLAB data structure function, which 

enable for the construction of graphs. The ease of using MATLAB functions to plot 

multiple graphs simultaneously has largely assisted in expediting the search for an 

optimal final solution. Besides MATLAB, other softwares like Microsoft Excel, Word 

and Mathematica also have been used throughout the case study for data processing 

and analysis purposes. Finally, MATLAB indeed is a powerful numerical 

computation and graphical tool software, which helps in conducting swift data 

analysis with reliable prediction as well as good accuracy through a virtual 

environment simulation platform without having to invest in real physical 

prototypes or tedious testing and measurement processes.   

 

 

1.2 Research Aims 

 

In general, the aim of this research is to find solutions to the governing problems of 

the satellite formation flying responsive mission performance topic. To accomplish 

that, multiple modes of impulse thrust were tested to measure their effectiveness 

and suitability in delivering optimum performances. By neglecting all the effects of 

perturbations except for the Earth's gravitational attraction, all the possible options 

are navigated thoroughly for the desired mission criteria and specifications before 

final decision is made. These outputs include all the best settings for a formation 

mission to operate in terms of the formation initial orbit semi-major axis preference, 

the total turn-around time prior to mission establishment, the fuel consumption and 

the satellite ground performance figure-of-merits. 

 

Particularly, there are several main objectives that need to be accomplished 

throughout this research works which are: 

 

i. To determine the global minimum delta-V amount for the formation 

transfer maneuver besides acquiring the local minimum delta-V values for 

each mode of impulses demonstrated through the application of novel 

graph analysis method. 

ii. To investigate and measure the ground performance merits for a satellite 

formation flying responsive mission by means of several key parameters 

which are the maximum area of coverage, the overlap coverage area, and 

the maximum ground swath length distance. 

iii. To study the properties and effects of the formation flying relative geodesic 

by varying their formation distances and altitudes. 
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1.3 Scope of the Study 

 

The research conducted in this thesis focuses on analyzing the performances of 

satellite formation flown on a responsive space mission. Particularly, their 

performances are measured both in terms of on-orbit features and ground merit 

characteristics. By distinguishing the resulting trends and relationships that exist 

between variables found in each segment of study, this would enable us to decide 

on the best possible settings for the satellite formation to operate in order to achieve 

our mission objectives. 

 

  

Specifically, investigations into the desired properties of the on-orbit satellite 

formation which revolves around the subject for determining the amount of fuel 

needed to execute each phase of the flight were conducted. The direct correlation 

trend between the amount of fuel consumed and the variability of formation 

distance parameter shall be revealed by the resulting graphs. These graphs were 

analyzed in details to validate the hypotheses. Apart from that, special focus shall 

also be given to determine the amount of orbital transfer fuel necessary which is the 

most crucial parameter throughout the research study. We shall demonstrate 

various modes of finite-based impulse application during satellite formation orbital 

transfer simulation to explore the possibility of obtaining the fuel optimal condition 

scenario. Next, the results yield from the graphs were further analyzed to identify 

the presence of specific signatures that point to the optimal fuel solutions. In 

connection to this, the relationship of other parameters such as the assigned 

formation initial orbit semi-major axis, the total turn-around time until the mission 

establishment and the number of required orbit revolution to the main working 

variable were also highlighted to supplement our research findings. 

 

 

As with the ground segment performance, several important variables such as the 

formation maximum area of coverage, the overlapped coverage area and the swath 

length of coverage were analyzed in details. These parameters are very critical 

towards the acquisition of the optimal ground area of coverage. The graphs 

employing such variables were constructed against varying factors of the formation 

distances, altitudes and orbit inclination angles. By doing the cross-reference study, 

this allows the designers to assess information on the most ideal formation ground 

requirements, which aims at maximizing the acquisition of the total land coverage 

area and having the longest possible ground swath length while minimizing the 

overall effect of the ground coverage overlap. On the other hand, the formation-

related geodesic properties were also investigated in this thesis. The contributing 

factors and their significant effects towards the accuracies of actual distance 

measure were rectified and elaborated further. Finally, all the results obtained were 
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compiled and the conclusions on the best recommended performance settings for 

the satellite formation flying responsive mission were made. 

 

 

1.4 Outline of Thesis 

 

This thesis comprises of six main chapters namely, the introduction, the literature 

review, the theoretical modelling, the research methodology, results and discussion 

and finally, the conclusion section. In Chapter 1, the research problems and the goals 

to accomplish the objectives are defined. Chapter 2 provides detailed insights into 

all related research topics that include their historical reviews and some analytical 

derivations on the specific research topics. This section serves as the fundamental 

guidance towards understanding of the development in research areas to be 

studied. These study topics are the satellite formation flying, the responsive space 

mission, the spacecraft fuel optimization, the satellite geodesy, the spacecraft 

performance merits and the graph matching technique analysis. In Section 3, the 

appropriate analytical approximated solutions for the selected case studies are 

modeled and derived. After that, Chapter 4 briefly discusses the research 

methodologies used for carrying out such studies. When the case studies are 

completed, data analysis follows after. Chapter 5 disseminates all the outcomes 

resulting from the simulations of analytical models. These findings were discussed, 

and the decision was made based on the results to acquire the case study optimal 

performances. In the end, Chapter 6 concluded all the achievements made in solving 

the case study problems while specifying the research novelties and contributions. 

Additionally, some recommendations were also suggested for future works on 

some research areas.  
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