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In Malaysia, there are abundant agricultural wastes generated from 15,000
hectares of pineapple plantation. The current study focuses on fully utilising the
pineapple leaf fiber (PALF) extracted from the Yankee variant sourced from a
plantation in Telok Panglima Garang as a reinforcement material in composite,
hence converting the agriculture waste into a potentially useful and sustainable
resource. The physical, chemical, thermal, as well as mechanical properties of
untreated and silane treated PALF were investigated in this study. Three types
of composites, pineapple leaf fiber composite (P), pineapple leaf fiber/glass
fiber composite (GPG), glass fiber composite (GGGG) were evaluated for low
velocity impact (LVI) properties. Visual inspection, computed tomography (CT)
scan, digital detector array (DDA) radiography and infrared (IR) thermography
techniques were applied to detect the damage evolution of the impacted
composites. The broad peaks at 1317.81 and 1100 cm-1 of the Attenuated
Total Reflectance (ATR) analytical graph indicate silane compound bonding
with PALF. In addition, there are no significant changes to the configuration of
the silane’s treated PALF due to its crystallinity. Treated PALF displays thermal
stability improvement by 5.9%, with degradation occurring at the temperature of
360°C. The surface area of the treated PALF displays broader peaks,
indicating greater surface roughness compared to untreated PALF. The tensile
strength test on single fiber shows PALF display highest tensile strength when
treated for three hours compared to one and five hours respectively. The
untreated PALF composite (UT-PALFC) possess 7.1% higher storage modulus
than treated PALF composite (T-PALFC), indicating untreated fiber attribute to
high dynamic property in composite. Meanwhile, the thermomechanical
analysis shows the sequence of linear coefficient of thermal expansion (CTE)
of the treated and untreated fiber composites as follows: T-PALFC > Neat
epoxy > UT-PALFC. On the other hand, the low impact analysis shows three
varying impact energy ranges at 1-2J, 2-9J and 9-12J for P, GPG, GGGG
respectively. The addition of glass fiber in GPG composites further delayed
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damage initiation time and propagation throughout the sample by about 8.5%
compared to GGGG composite as shown in LVI. Visual inspections as
captured in photographic images show different damage modes in the
presence of woven fiberglass mat in GPG compared to P. CT-scan images
show significant cross-section cracks on impacted GPG and GGGG
composites compared to P. Compared to IR thermography technique that only
shows the general area of damage, the DDA radiography captures significant
surface damages on impacted P, GPG and GGGG composites. For example,
the DDA captures significant damage in GPG at 9J with an area of 84% less
than IR thermography. However, CT-scan, DDA radiography and IR
thermography failed to capture occurrence of surface delamination as observed
in visual inspection. This shows that the NDT techniques used in this research
need to be complimented with other tools for clearer interpretation of the extent
impacted damage in composite. Overall, the newly developed hybrid GPG
composite shows great potential in structural applications such as drone
because of its favourable impact resistance properties.
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MUHAMMAD IMRAN BIN NAJEEB

April 2022

Pengerusi : Prof. Ir. Ts. Mohamed Thariq Bin Haji Hameed Sultan,
PhD, PEng, CEng, PTech

Fakulti : Kejuruteraan

Di Malaysia, terdapat lambakan sisa pertanian yang dihasilkan daripada
15,000 hektar ladang nanas. Penyelidikan ini tertumpu kepada penggunaan
serat daun nanas (PALF) daripada variasi Yankee yang diperoleh dari sebuah
ladang di Telok Panglima Garang, Selangor. PALF dijadikan sebagai bahan
tetulang di dalam pembuatan komposit, dengan ini menjurus ke arah
menukarkan sisa pertanian kepada sumber yang berguna dan mampan. Sifat
fizikal, kimia, haba dan mekanikal PALF yang tidak dirawat dan yang dirawat
dengan silane telah disiasat di dalam kajian ini. Kesan impak halaju rendah
(LVI) terhadap tiga jenis komposit iaitu komposit serat daun nanas (P),
komposit serat daun nanas/serat kaca (GPG), komposit serat kaca (GGGG)
telah diuji. Kerosakan LVI terhadap pelbagai komposit tersebut telah dinilai
menggunakan teknik-teknik visual, imbasan komputer tomografi (CT),
radiografi pengesan jajaran digital (DDA) dan termografi infra merah (IR).
Ikatan kimia antara silane dengan PALF di kesan pada puncak 1317.81 dan
1100 cm-1 di dalam graf analisis jumlah pemantulan terkurang (ATR). Di
samping itu, tiada perubahan ketara terhadap konfigurasi PALF yang dirawat
dengan silane disebabkan sifat kehablurannya. PALF yang dirawat
memaparkan peningkatan kestabilan terma sebanyak 5.9%, dan degradasi
berlaku pada suhu 360°C. Luas permukaan PALF yang dirawat terpapar dalam
bentuk cerun yang lebih melandai, menunjukkan kewujudan permukaan yang
lebih kasar berbanding PALF yang tidak dirawat. Ujian kekuatan tegangan
terhadap serat tunggal menunjukkan PALF memaparkan kekuatan tegangan
tertinggi apabila dirawat selama tiga jam berbanding dengan serat yang
dirawat selama satu dan lima jam. Komposit PALF yang tidak dirawat (UT-
PALFC) mempunyai modulus penyimpanan 7.1% lebih tinggi berbanding
komposit PALF yang dirawat (T-PALFC), ini menunjukkan serat yang tidak
dirawat menyumbang kepada kepada sifat dinamik yang tinggi di dalam
komposit. Sementara itu, analisis termomekanikal menunjukkan jujukan pekali
linear pengembangan terma (CTE) bagi komposit serat yang dirawat dan tidak
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dirawat seperti berikut: T-PALFC > Epoksi > UT-PALFC. Analisa kesan impak
halaju rendah terhadap tiga komposit tersebut dijalankan dengan
menggunakan julat tenaga yang berbeza-beza iaitu 1-2J, 2-9J dan 9-12J untuk
P, GPG, dan GGGG masing-masing. Penambahan serat kaca di dalam
komposit GPG melambatkan lagi masa permulaan kerosakan dan
penyebarannya ke seluruh sampel sebanyak kira-kira 8.5% berbanding dengan
komposit GGGG seperti yang ditunjukkan di dalam analisis LVI. Pemeriksaan
visual seperti yang dipapar dalam imej fotografi menunjukkan mod kerosakan
yang berbeza dengan kewujudan kain serat kaca tenunan dalam GPG
berbanding dengan P. Imej keratan rentas menggunakan imbasan CT
menunjukkan kewujudan retakan yang lebih ketara di dalam komposit GPG
dan GGGG berbanding dengan P. Berbanding dengan teknik termografi IR
yang hanya menunjukkan kawasan kerosakan secara umum, alat radiografi
DDA membuktikan kerosakan yang ketara pada permukaan komposit P, GPG
dan GGGG selepas hentaman halaju rendah. Sebagai contoh, ujian DDA
menunjukkan kerosakan yang ketara terhadap GPG pada 9J dengan keluasan
kawasan kerosakan sebanyak 84% lebih rendah berbanding yang dikesan
menggunakan teknik termografi IR. Walaubagaimanapun, imbasan CT,
radiografi DDA dan termografi IR gagal mengesan ketidaksamaan pada
permukaan seperti yang diperhatikan di dalam pemeriksaan visual. Ini
menunjukkan bahawa teknik NDT yang digunakan di dalam penyelidikan ini
perlu digandingkan dengan peralatan-peralatan lain untuk memberi tafsiran
yang lebih jelas terhadap kerosakan yang berlaku kepada komposit yang
terjejas. Secara keseluruhannya, komposit hibrid GPG yang baru dibangunkan
menunjukkan potensi yang besar di dalam aplikasi struktur seperti dron
memandangkan ianya menunjukkan daya ketahanan rintangan yang baik
terhadap impak.
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T-PALFC 10wt% treated pineapple leaf fiber epoxy composite cure
using hot press

UT-PALFC 10wt% pineapple leaf fiber epoxy composite cure using hot
press

Wt% Weightage percentage

XRD X-Ray Diffractor
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CHAPTER 1

INTRODUCTION

This chapter outlines the research background, the introduction of natural fiber
and its composites, research problem statement, objectives, research
questions and scopes of the study.

1.1 Background

Pineapple (Ananas comosus (L.) Merr.) an exotic plant of South American
origin is currently a much treasured commercial crop in Malaysia. The
Portuguese colonials introduced the pineapple plant to Malaya (now known as
Malaysia) in the 16th century, and tapped into its commercial viability. Malaysia
eventually became one of the main global exporters of pineapple fruit, and
stands to be a leading player in the sector if it succeeds in tapping into the
commercial viability of every part of the plant from its roots to shoots; hence
reducing wastage and promoting sustainability. The height and width of a
typical mature pineapple plant range between 1m - 2m. The main
morphological structures of a pineapple plant include crown, fruit, leaf, aerial
sucker and roots, as shown in Figure 1.1.

Figure 1.1: Pineapple plant morphological structure
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Pineapple plantations are found in almost all the states in Malaysia, with Johor
recording the largest total area (8639 hectares), followed by Sarawak (1780
hectares) and Pahang (1100 hectares) in the year 2018 (Lembaga
Perindustrian Nanas Malaysia, 2018), as in Figure 1.2

Figure 1.2: Pineapple plantation area across Malaysia

Data from the Jabatan Pertanian Malaysia plant varieties registry indicates at
least 12 pineapple plants varieties are grown in Malaysia. Table 1.1 shows a
list of commercially grown pineapple varieties (Lembaga Perindustrian Nanas
Malaysia, 2021; Lembaga Perindustrian Nanas Malaysia - Negeri Kedah/Perlis,
2021). Among all the pineapple variants grown in Malaysia, the Yankee variant
posses the longest leaf. The sweet-tasting fruit is aptly nicknamed “Sweet
Selangor”, as this variant is widely grown in the state, including Telok Panglima
Garang in the district of Kuala Langat. The light geen-coloured tapered shaped
fruit of the Yankee variant bears between 100 and 120 diagonally positioned
eye dots, and weighs between 1kg and 2.1kg each shown in Figure 1.3. This
particular plant variant produces juicy and sweet-tasting fruits, hence attributing
to its high demand in the local market.
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The Malaysian authorities are supportive of the pineapple industry
development, and have incorporated it as part of the national agenda as
outlined in the 12th Malaysian Plan (RMK12). This sector can potentially grow
to much greater heights if relevant parties, including researchers and industry
players, tapped into the commercial viability of every part of the plant from
roots to shoots.

Figure 1.3: Yankee pineapple fruit (Lembaga Perindustrian Nanas
Malaysia, 2018)

Table 1.1: Pineapple variety in market

Pineapple Variety Registration
code

Category

Moris AC 1 Queen

Sarawak AC 2 Cayenne

Gandul AC 3 Spanish

Maspine AC 4 Hybrid

Josapine AC 5 Hybrid

Yankee AC 6 Queen
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Table 1.1: Continued

Pineapple Variety Registration
code

Category

Moris Gajah AC 7 Queen

N36 AC 8 Hybrid

MD2 AC 9 Hybrid

View of Sunset AC 10 -

Madu Kaca AC 11 Cayenne

Keningau Diamond AC 12 Cayenne

The harvesting season for pineapple plants can differ, depending on the
variants. Generally, the harvesting period varies from 12 to 24 months. During
harvesting, the pineapple stem is cut just below the fruit using gardening
shears. The fruits are valued according to variant and size, while the rest of the
plant parts are generally disposed of as waste. The leaf is rich in fiber
compared to the other parts of the pineapple plant. The fibers can be extracted
using various processes including manual scraping, retting or degumming, and
application of mechanical instruments. In some cases, the combination of
multiple methods are required to extract the fibers.

The application of fiber in the fabric production sector has long been
established in the textile industry. In the Philippines, fabric made of woven
pineapple leaf fibers are used to make traditional clothes as well as high-end
fashionable attire (Richard, 2020). A United Kingdom-based company, uses
pineapple leaf fiber as a base material for its leather products (Ananas Anam -
About Us, n.d.). These examples proved the fact that pineapple fibers are in
high demand in such high-end revenue-generating industries.

The interest in using plant fibers in composites for structural application has
been growing in recent years. For example, automotive giant Ford Motor
utilises rice husk, wheat straw, and many other renewable resources as
reinforcement material for its car components (Austin, 2017). On average, the
total weight of bio-based or renewable material content in Ford cars varies
between 9–18 kilogrammes. Porsche had since 2019 been utilising natural
fiber mix sourced primarily from renewable raw materials to make its 718
Cayman GT4 Clubsport MR’s double door and rear wing (Racing cars with
body parts made from renewable raw materials, 2020; Bio-composites for cars,
n.d).
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Innovation in natural fiber-based composites is made possible due to the
growing database of characterisation of natural fibers and their structural
properties in polymers. Such data is useful for ongoing research and
development in the search for fiber composites with desired characteristics and
strength in primary and secondary structure applications.

1.2 Problem Statement

In Telok Panglima Garang, Selangor, the existing practice of burning and
disposing of agricultural waste in pineapple plantations poses a serious
environmental concern. Some farmers are unaware that they can swap the
agriculture waste for cash if they can find the right stakeholders banking on
commercially viable wastes. Disposing the fiber-rich pineapple leaves as
agricultural wastes equals loss of additional earning for farmers.

Unfortunately the interest in extracting pineapple leaf fibers is generally lacking
because of the tedious and inefficient extraction process using existing
machines. Additional processes are required, as the fibers extracted from the
leaves are irregular in size and are not fine enough. The entire process is time-
consuming and labour-intensive, rendering it inefficient. Therefore, it is critical
to make the necessary improvisation to the existing machine to enhance
productivity.

The great potentials of pineapple leaf fibers in diverse applications ranging
from craft to advanced material in the composite applications are well
documented in literature. The utilisation of renewable resources in various
applications is fast gaining traction globally, as the trend is shifting in favour of
environment-friendly products, particularly agro-based products. The newly
discovered fiber extracted from the Yankee variant pineapple leaf warrants the
need to further analyse its physical, mechanical and thermal properties (Shah,
2018). Further investigations are critical because chemical compositions differ
from one variant to another (Faruk et al. 2012).

Fibers in their natural form are known to exhibit poor interfacial bonding in a
polymer matrix. Previous studies have shown that surface treatment of natural
fiber is essential to enhance its bonding with the polymer matrix (Sahu & Gupta
2020). However, the effect of the surface treatment on the fiber and composite
varied, depending on the type of chemical used and the characteristics of the
fiber (Sood & Dwivedi 2018). Therefore it is vital to carry out investigations into
the compatibility of the fiber post chemical treatment by carrying out tests to
ascertain its chemical, mechanical and thermal properties.
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Materials are vulnerable to impact in any applications, especially in composite
applications. Impact damage can adversely affect the performance and
compromise the reliability of composite materials. Therefore, it is critical to
assess post impact properties of composites. Impact damage can occur either
during in-service applications or handling during the manufacturing process.
Most studies showed impact resistance of composites are further enhanced
when plant fibers are hybridised with a synthetic fibers (Chapman & Dhakal,
2019; Sarasini et al., 2013).

Furthermore, it is difficult to detect composite damage in natural fiber because
of its non-homogeneous nature. It is even more challenging to detect and
analyse the damage where natural fibers are used as composite reinforcement.
This is attributable to the inconsistent properties of natural fibers due to age,
geographical location and climate conditions (Sahu & Gupta 2020). In-depth
investigations using various non-destructive testing (NDT) applications are
needed to ascertain compatibility of composites post impact.

Currently there is no available literature focusing on damage characterisation of
composites subjected to low-velocity impact, indicating a gap found in this area
of research. Hence, this research focuses on the characterisation of Malaysian
pineapple (Yankee) leaf fiber composites and evaluating composite damages
post low-velocity impact aimed at establishing compatibility of such composites
in engineering applications, including in making light-weight drone structures.

1.3 Research Objectives

The main objective of this research work is to study the low-velocity impact
properties of pineapple leaf fiber composites from the Yankee variant and to
evaluate the damage of the impacted composites using non-destructive testing
(NDT). To address the main objective, several specific objectives were
conducted as follows:

i. To carry out pioneering evaluation into the properties of pineapple leaf
fiber from Yankee variant.

ii. To investigate the effect of variable silane treatment hours on the physical,
chemical, thermal and mechanical properties of pineapple leaf fiber.

iii. To determine the flexural, dynamic and thermo-mechanical properties of
both silane-treated and untreated pineapple leaf fiber composites.

iv. To carry out a novel study on the damage propagation and properties of
Yankee pineapple leaf fiber subjected to low velocity impact using NDT
techniques.
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1.4 Research Scope

The research scope in this study is listed as follows, stating the limitations and
boundaries:

i. The design process approach in developing only the improvised machine
blade through the Theory of Inventive Problem-solving (TRIZ) method and
computational software of ANSYS Explicit Dynamics.

ii. The detailed machine blade design is not disclosed in the thesis because
patent application is in progress at material time.

iii. The pineapple leaf fiber was sourced from the Yankee variant grown in
Telok Panglima Garang, Selangor.

1.5 Thesis Organisation

This thesis is divided into five chapters, detailing research of pineapple leaf
fiber composite using Malaysian Yankee variant pineapple plant.

i. Chapter 1 outlines the research background, introduction of natural fiber
and composites, research problem statement, objectives, questions and
scopes.

ii. Chapter 2 focuses on literature review on fiber extractor machines, TRIZ
methodology, and finite element analysis. This chapter also presents
previous studies on the properties of natural fibers and pineapple leaf fiber
composite; and summary of non-destructive evaluation techniques applied
on composites ii.to assess post impact characteristics.

iii. Chapter 3 details the entire process applied in this research work.

iv. Chapter 4 presents critical discussions based on research findings in the
current study.

v. Chapter 5 presents specific conclusions drawn for each objective,
summary of the overall findings, and suggestions for improvement in
future research.
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