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Epithelial-mesenchymal transition (EMT) is a process where epithelial cells 

transform into mesenchymal cells type like fibroblasts and myofibroblasts. In the 

process, the epithelial cells lose their epithelial phenotype with reduced apical-

basal polarity, while acquiring new mesenchymal traits with increased 

invasiveness. Accumulation of the mesenchymal cells also leads to the deposition 

of collagen in the extracellular matrix (ECM). It is well established that EMT 

contributes to the progression of fibrosis and cancer diseases. Therefore, a 

therapeutic method that inhibits the EMT process would be required. Transforming 

growth factor-beta (TGF-β) is a potent inducer of the EMT process. Previous 

studies had demonstrated that inhibition of the TGF-β receptor type 1 (also named 

ALK5) could inhibit EMT. However, current progress on the clinical development 

of novel ALK5 inhibitor has not been encouraging, often due to safety concerns of 

the novel drug leads. Since traditional de novo drug discovery comes with high 

risks, pharmaceutical companies have begun to use drug repurposing strategy for 

drug development. Drug repurposing or repositioning is a strategy of finding new 

therapeutic purposes for current existing drugs in the clinical market. Due to the 

fact that these drugs had been established to be safe for use, it would reduce the 

concerns of safety risks in human. In this study, drug repurposing approach was 

used to identify clinically approved drugs that can inhibit the EMT process via 

targeting TGF-β activity. Initial computational screening of clinically approved 

drugs via molecular docking had revealed several drugs with strong binding affinity 

(-10.8 to -9.6 kcal/mol) to ALK5 based on the reference range of known ALK5 

inhibitors ranging from -11.2 to -9.5 kcal/mol. The shortlisted drug candidates 

include ergotamine, telmisartan, saquinavir, indinavir, nelfinavir and celecoxib. 

Subsequently, these drugs were tested experimentally in normal human bronchial 

epithelial cell line, BEAS-2B induced by TGF-β1. In the experiments, the 
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morphology changes from cobblestone shape of epithelial cells towards elongated 

shape of mesenchymal cells were not prevented by the drug treatments. In 

addition, the drugs did not exhibit inhibitory effects on the downregulation of 

epithelial proteins (E-cadherin) and upregulation of mesenchymal proteins 

(vimentin and α-smooth muscle actin). Based on these observations, it is 

postulated that the results from molecular docking were false positives. It is 

recommended that future studies involving molecular docking method would 

require better optimization and improvement by performing cross-docking 

validation prior to screening and including the negative controls during screening. 

The tested drugs in this study could serve as negative controls in future screening 

against ALK5 protein. 
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Peralihan epitelium-mesenkima (EMT) merupakan satu proses dimana sel-sel 
epitelium berubah menjadi sel-sel mesenkima seperti fibroblas dan 
myofibroblas. Di dalam proses tersebut, sel-sel epitelium kehilangan fenotip 
epitelium mereka disebabkan oleh pengurangan polariti apikal-basal, sementara 
memperolehi ciri mesenkima yang baru dengan peningkatan invasif. 
Pengumpulan sel-sel mesenkima turut membawa kepada pemendapan kolagen 
di dalam matriks ekstrasel (ECM). Seperti yang diketahui umum, EMT 
merupakan penyumbang kepada perkembangan penyakit fibrosis dan kanser. 
Oleh itu, satu kaedah terapeutik yang boleh merencat proses EMT amat 
diperlukan. Transformasi faktor pertumbuhan-beta (TGF-β) merupakan 
pendorong kuat dalam proses EMT. Kajian terdahulu telah menunjukkan 
bahawa perencatan reseptor TGF- β jenis 1 (juga dipanggil ALK5) boleh 
merencat proses EMT. Namun begitu, kemajuan semasa perkembangan klinikal 
perencat baharu ALK5 tidak memberangsangkan, selalunya berpunca daripada 
masalah keselamatan mengenai dadah yang baharu. Memandangkan 
penemuan ubat secara tradisional de novo mempunyai risiko tinggi, syarikat 
farmaseutikal telah mula menggunakan strategi penggunaan semula ubat bagi 
pembuatan ubat. Penggunaan semula atau reposisi ubat merupakan strategi 
untuk mencari penggunaan terapeutik baru bagi ubat yang sedia ada di pasaran 
klinikal. Oleh kerana ubat-ubatan tersebut telah terbukti selamat untuk 
digunakan, ini akan mengurangkan kebimbangan terhadap risiko keselamatan 
pada manusia. Dalam kajian ini, penggunaan semula ubat telah digunakan untuk 
mengenal pasti ubat-ubat yang telah diluluskan secara klinikal yang dapat 
merencatkan proses EMT dengan mensasarkan aktiviti TGF-β. Saringan awal 
komputasi ubat yang telah diluluskan secara klinikal melalui pendokkan 
molekular mendedahkan beberapa ubat-ubatan mempunyai ikatan afiniti yang 
kuat dengan ALK5, termasuk ergotamine, telmisartan, saquinavir, indinavir, 
nelfinavir dan celecoxib. Seterusnya, ubat-ubatan tersebut diuji secara 
eksperimen pada sel bronkus manusia normal, BEAS-2B yang dirangsang oleh 
TGF-β1. Di dalam eksperimen ini, rawatan ubat tidak dapat menghalang 
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perubahan morfologi daripada epitilum sel berbentuk batu buntar ke bentuk sel 
mesenkima yang memanjang. Tambahan lagi, ubat-ubatan tersebut tidak 
menunjukkan kesan perencatan terhadap penurunan regulasi protein epitelium 
(E-cadherin) dan peningkatan regulasi protein mesenkima (vimentin dan otot 
lembut α-aktin). Berdasarkan pemerhatian ini, disimpulkan bahawa keputusan 
daripada pendokkan molekular merupakan positif palsu. Adalah disarankan agar 
kajian akan datang melibatkan pendokkan molekular memerlukan 
pengoptimuman dan peningkatan yang lebih baik. Ubat-ubatan yang diuji di 
dalam kajian ini boleh berfungsi sebagai kontrol negatif di dalam saringan 
terhadap protein ALK5 pada masa akan datang.   



© C
OPYRIG

HT U
PM

v 

ACKNOWLEDGEMENTS 

I would like to express my gratitude to my supervisor, Prof. Daud Ahmad Israf Ali 
for his advice and guidance throughout the course of my degree. His experiences 
had helped me to overcome many hardships in the project. His encouragement 
had also kept me motivated during the difficult time in my study.  

I would also like to thank my co-supervisor, Dr. Tham Chau Ling and Dr. Hanis 
Hazeera Harith for their valuable inputs and suggestions in my research project. 
Their constructive feedbacks had led to many improvements to the project over 
the course of my study. A special thanks to Dr. Siti Farah Binti Md Tohid for her 
lesson on molecular docking. 

Next, I would like to express my appreciation to Mr. Zulkhairi Zainol for his 
technical insistence during the usage of any equipment in the Cell Signaling 
Laboratory. Many thanks to my seniors, Nazmi and Amy for their guidance and 
advices in cell culture experiments. I also want to give thanks to the other lab 
mates, Aida, Audrey, Kong Yen, Yee Han, Vivi and Fatiah for their support.  

Lastly, I would like to express my deepest thanks to my family who have given 
their continuous love and support for me. Without them, I will not be able to 
overcome many challenges that I faced throughout the study.  



© C
OPYRIG

HT U
PM

vii 
 

This thesis was submitted to the Senate of Universiti Putra Malaysia and has 
been accepted as fulfilment of the requirement for the degree of Master of 
Science. The members of the Supervisory Committee were as follows: 
 
 
Daud Ahmad bin Israf Ali, PhD 
Professor  
Faculty of Medicine and Health Science 
Universiti Putra Malaysia  
(Chairman) 
 
Tham Chau Ling, PhD  
Associate Professor  
Faculty of Medicine and Health Science 
Universiti Putra Malaysia  
(Member) 
 
Hanis Hazeera binti Harith, PhD  
Senior Lecturer  
Faculty of Medicine and Health Science 
Universiti Putra Malaysia 
(Member) 
 

 
 
 
 
 

________________________ 
ZALILAH MOHD SHARIFF, PhD 
Professor and Dean 
School of Graduate Studies 
Universiti Putra Malaysia 
 
Date: 19 May 2022 

 

 

 

  



© C
OPYRIG

HT U
PM

ix 
 

Prof. Dr. Daud Ahmad Israf Ali 

Assoc. Prof. Dr. Tham Chau Ling 

Dr. Hanis Hazeera Harith 

Declaration by Members of Supervisory Committee  

This is to confirm that: 

 the  research conducted and the writing of this thesis was under our 
supervision; 

 supervision responsibilities as stated in the Universiti Putra Malaysia 
(Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to. 
 
 
 

Signature:   

Name of Chairman 
of Supervisory 
Committee: 

  

 
 
 
Signature: 

  

Name of Member of 
Supervisory 
Committee: 

  

 

 
Signature: 

  

Name of Member of 
Supervisory 
Committee: 

  

 

 

 

 

 

 

  



© C
OPYRIG

HT U
PM

x 
 

TABLE OF CONTENTS 
 

 Page 

ABSTRACT i 
ABSTRAK iii 
ACKNOWLEDGEMENTS vi 
APPROVAL vii 
DECLARATION viii 
LIST OF TABLES xii 
LIST OF FIGURES xiii 
LIST OF ABBREVIATIONS xv 
  

CHAPTER      
   

1 INTRODUCTION 1 
 1.1   General objective 3 
 1.2   Specific objective 3 
    
2 LITERATURE REVIEW 4 
 2.1 TGF-β physiological function and 

pathological role 
4 

 2.2 TGF-β: from activation to signalling  5 
  2.2.1      Synthesis of TGF-β 5 
  2.2.2      Activation of latent TGF-β 6 
  2.2.3      TGF-β receptor activation 6 
  2.2.4      TGF-β intracellular signalling  7 
 2.3 Epithelial-mesenchymal transition 8 
 2.4 Preclinical and clinical studies on ALK5 

inhibitors 
9 

  2.4.1 Preclinical studies on ALK5 
inhibitors 

9 

  2.4.2 Clinical studies on ALK5 
inhibitors 

12 

 2.5 Drug repurposing and molecular docking 12 
   
3 METHODOLOGY  15 
 3.1 Materials 15 
 3.2 Methods 15 
  3.2.1       Protein structure retrieval 15 
  3.2.2       Ligand structure retrieval  15 
  3.2.3 Preparation of proteins and 

ligands 
16 

  3.2.4 Molecular docking 16 
  3.2.5 Cell culture  18 
  3.2.6 Cell proliferation, cell viability 

and cytotoxicity (MTS assay) 
18 

  3.2.7 Cell treatment 18 
  3.2.8 Western blot 19 



© C
OPYRIG

HT U
PM

xi 
 

  3.2.9 Statistical analysis 20 
   
4 RESULTS AND DISCUSSION 21 
 4.1   General 21 
 4.2   Molecular docking 21 
              4.2.1      Selection of 3TZM 21 
              4.2.2      Validation of docking protocol 21 
              4.2.3      Protein-ligand interaction of  23 
                            known ALK5 inhibitor  
              4.2.4      Protein-ligand interaction of  28 
                            clinically approved drugs  
 4.3   Cytotoxicity of drug candidates  32 
 4.4   Determining optimal induction time 34 
 4.5   Effects of drug candidates on cell  35 
         morphology  
 4.6   Effects of drug candidates on EMT  40 
         markers  
   
5 SUMMARY, CONCLUSION AND 

RECOMMENDATIONS FOR FUTURE 
RESEARCH 

48 

   
REFERENCES 49 
APPENDICES 61 
BIODATA OF STUDENT 62 
LIST OF PUBLICATIONS 
 

63 

 

  



© C
OPYRIG

HT U
PM

xii 
 

LIST OF TABLES 
 

Table    Page 
   

2.1 Summary of ALK5 inhibitors 
 

11 

2.2 Summary of computational methods used in drug 
repurposing 
 

14 

4.1 Binding affinity and data of interactions resulting 
from the molecular docking of known ALK5 inhibitors 
into TGF-β receptor type 1 protein 
 

24 

4.2 Binding affinity and data of interactions resulting 
from the molecular docking of clinically approved 
drugs into TGF-β receptor type 1 protein 

28 

   
 

  



© C
OPYRIG

HT U
PM

xiii 
 

LIST OF FIGURES 
 

Figure    Page 
   

2.1 Schematic representation of the TGF-β activation 
pathway 
 

8 

3.1 Interface of Drug ReposER 
 

16 

3.2 Flowchart of in silico methodology 
 

17 

4.1 Poseview 2D interaction diagram of (A) Co-
crystallised SB431542 and (B) Redocked 
SB431542 
 

22 

4.2 Magnified ribbon representation of superimposed 
co-crystal structure of ALK5-SB431542 complex 
and the redocked ligand  
 

23 

4.3 Poseview 2D interaction diagram of known ALK5 
inhibitors 
 

27 

4.4 Poseview 2D interaction diagram of top six drugs 
 

30 

4.5 Cell viability assay of BEAS-2B cells after 
treatment of (A) Ergotamine (B) Telmisartan (C) 
Saquinavir (D) Indinavir (E) Nelfinavir and (F) 
Celecoxib 
 

33 

4.6 Effect of different TGF-β1 induction time on the 
EMT markers in BEAS-2B cells 
 

35 

4.7 Effect of drugs on the cell morphology in TGF-β1-
induced BEAS-2B cells 
 

39 

4.8 Effect of Ergotamine on EMT markers in TGF-β1-
induced BEAS-2B cells 
 

40 

4.9 Effect of Telmisartan on EMT markers in TGF-β1-
induced BEAS-2B cells 
 

41 

4.10 Effect of Saquinavir on EMT markers in TGF-β1-
induced BEAS-2B cells 
 

42 

4.11 Effect of Indinavir on EMT markers in TGF-β1-
induced BEAS-2B cells 
 

43 

4.12 Effect of Nelfinavir on EMT markers in TGF-β1-
induced BEAS-2B cells 
 

44 



© C
OPYRIG

HT U
PM

xiv 
 

4.13 Effect of Celecoxib on EMT markers in TGF-β1-
induced BEAS-2B cells 
 

45 

6.1 Cell seeding optimization for MTS assay 
 

61 

6.2 Standard curve for BCA assay 61 
 

 

 

 

 



© C
OPYRIG

HT U
PM

xv 
 

LIST OF ABBREVIATIONS 
 
 

ADT  Autodock Tools 
 
AIDS  Acquired immunodeficiency syndrome 
 
ALK  Activin receptor-like kinase 
 
ASO  Antisense oligonucleotide 
 
BCA  Bicinchoninic acid assay 
 
BDL  Bile duct ligation 
 
BEGM  Bronchial Epithelial Growth Medium 
 
CCL4  Carbon tetrachloride 
 
Co-Smad  Common partner Smad 
 
COX-2  Cyclooxygenase 2 
 
CTBP  C-terminal binding protein 
 
DMSO  Dimethylsulfoxide 
 
DNA  Deoxyribonucleic acid 
 
ECM  Extracellular matrix 
 
EDTA  Ethylenediaminetetraacetic acid 
 
EGF  Epidermal growth factor 
 
ELISA  Enzyme-linked immunosorbent assay 
 
EMT  Epithelial-mesenchymal transition 
 
FHD  First-in human dose 
 
GSI  Glomerular Sclerosis Index 
 
IL  Interleukin 
 
I-Smad  Inhibitory Smad 
 
LAP  Latency-associated peptide 
 
LTBP  Latent TGF-β binding protein 
 



© C
OPYRIG

HT U
PM

xvi 
 

MMP  Matrix metalloproteinase 
 
mRNA  Messenger ribonucleic acid 
 
MTS  3-(4,5-Dimethylthiazol-2-yl)-5-(3-  
  carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H- 
  tetrazolium  
 
PBS  Phosphate buffer saline 
 
PDB  Protein Data Bank 
 
PVDF  Polyvinylidene fluoride 
 
RIPA  Radioimmunoprecipitation assay 
 
RMSD  Root mean square division 
 
R-Smad  Receptor-regulated Smad 
 
SDS-PAGE  Sodium dodecyl Sulfate-Polyacrylamide Gel 
  Electrophoresis 
 
shRNA  Short hairpin ribonucleic acid 
 
TF  Transcription factor 
 
TGF-β  Transforming growth factor-beta 
 
Treg  Regulatory T cell 
 
TSP  Thrombospondin 
 
TβR  TGF-β receptor 
 
uPA  Urokinase-type plasminogen activator 
 
UUO  Unilateral urethral obstruction 
 
ZO  Zona occludens 
 
α-sma  Alpha-smooth muscle actin 

 



© C
OPYRIG

HT U
PM

1 
 

CHAPTER 1 
 
 

INTRODUCTION 
 
 

Epithelial-mesenchymal transition (EMT) is a process where epithelial cells 
acquire mesenchymal traits while losing their epithelial phenotype. This process 
was first recognised in embryonic development, where the pluripotent epiblast 
forms the mesoderm and endoderm via EMT (Hay, 1995; Kim et al., 2018). The 
EMT process also plays a major role in wound healing. During the re-
epithelialization phase of wound healing, the EMT process allows the epithelial 
cells to acquire the invasive phenotype of mesenchymal cells, so that the cells 
can migrate and close the wounds (Stone et al., 2016). The EMT process can 
be involved in pathological conditions such as fibrosis and cancer metastasis 
when it is not adequately regulated (Barriere et al., 2015). When EMT is 
adequately regulated, the epithelial cells transform into mesenchymal cell-types 
such as fibroblasts and myofibroblasts for the production and deposition of 
extracellular matrix (ECM) components that would help in the wound healing 
process. However, pathologically prolonged induction of EMT would result in 
persistent myofibroblast activation and excessive deposition of ECM 
components, which eventually lead to fibrosis (Stone et al., 2016). In cancer, the 
epithelial cells transform to a mesenchymal cell type with the ability of invasion 
and migration through ECM, which allows them to metastasise via the blood and 
lymphatics (Ramos et al., 2017).  
 
 
Transforming growth factor-beta (TGF-β) is a multifunctional cytokine that is 
known to be a potent inducer of the EMT process. TGF-β has many important 
physiological roles including regulation of inflammation, proliferation, 
differentiation, and apoptosis (Prud’homme, 2007). However, it can become 
problematic if the level of TGF-β goes unchecked. Chronic inflammation and 
elevated levels of TGF-β can lead to excessive induction of the EMT process. 
As a result, the mesenchymal cells and ECM components will replace the normal 
parenchymal tissue. While TGF-β can suppress the tumour growth in the early 
phase of neoplasia, excessive TGF-β induction of EMT can promote cancer 
metastasis in the later phase of malignant tumour development (Prud’homme, 
2007). All these problems have highlighted the importance to develop a new 
therapy that can inhibit the EMT process by targeting TGF-β activity. 
 
 
To date, various research projects have tried to develop novel inhibitors of TGF-
β for the treatment of fibrosis and cancer, but none so far have reached the 
market. This highlights the difficulty of developing a new drug, which is costly, 
time-consuming and has a low success rate (Xu et al., 2015). In order to 
overcome this issue, the drug discovery fraternity have turned to another 
strategy, known as drug repurposing. Drug repurposing or repositioning is a 
process of identifying new therapeutic uses for existing clinically-approved drugs 
(GNS et al., 2019). Since an existing drug has already been tested in humans, it 
is less likely to fail in clinical trials due to toxicity issues. Moreover, numerous 
preclinical and clinical data would be available for an existing drug. As a result, 
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the repurposing process will be relatively less time-consuming and also less 
costly as compared to the traditional de novo drug discovery process. Aside from 
the benefits of saving valuable resources in drug development, drug repurposing 
can help to deepen the understanding of the mechanism of action for old drugs 
and sometimes also lead to discovery of novel therapeutic targets of the 
diseases. One notable example of drug repurposing is sildenafil, a 
phosphodiesterase type 5A inhibitor that was originally developed for angina 
pectoris. Its initial clinical trial revealed little efficacy on the cardiovascular 
system, and a side effect of penile erection was reported at high doses. 
Eventually, the investigators repurposed sildenafil for the treatment of erectile 
dysfunction, and later successfully marketed it as Viagra (Kass et al., 2007). 
 
 
Taking into consideration that the success rate from development to approval for 
novel drugs (11%) is lower than repurposed drugs (30%) globally (Fetro and 
Scherman, 2020), increased efforts have been focused on the repurposing of 
clinically approved drugs in the recent years. There are computational and 
experimental approaches that could be used in order to identify the drug 
candidate for a new indication of interest. Recently, Ab Ghani et al. (2019) have 
designed a web server known as Drug Repositioning Exploration Resource 
(Drug ReposER) that can identify potential alternative targets of known drugs by 
comparison of the three dimensional amino acid arrangement of known drug 
binding site from the Protein Data Bank (PDB) repository with the query protein. 
The concept is that when the binding site of two different proteins share similarity 
in amino acid arrangement, a drug that is known to bind to the first protein would 
likely bind to the other protein as well. Molecular docking is another 
computational tool that can predict how two molecules (for example a ligand and 
a receptor) can form stable binding. This method utilise docking algorithms to 
predict the binding affinity of a ligand to the binding site of the protein target. 
Therefore, a large number of drugs can be screened against a protein of interest 
that is involved in a disease by using the molecular docking tool. This would allow 
the identification of drugs with the best affinity (in comparison to positive controls) 
towards the protein of interest based on the result of molecular docking 
prediction. Subsequently, experiments can be performed to verify the results of 
molecular docking. This can be carried out with cell-based assays to 
demonstrate whether the selected drugs can affect the cell phenotype relevant 
to the disease model. In this study, computational methods (in silico) were used 
to screen clinically approved drugs for potential inhibition of the TGF-β type I 
receptor. The identified drugs were further examined in subsequent cell-based 
assays that employed a TGF-β1-induced model of the bronchial epithelial cell 
line, BEAS-2B. In past studies, molecular docking and in vitro screening of new 
compounds were used as the first steps in the development of TGF-β inhibitors 
but many hit compounds eventually failed at the clinical stage. In current study, 
a new drug repurposing approach by combining the bioinformatics-based 
method (Drug ReposER) and molecular docking was used to screen for potential 
TGF-β inhibitors among the clinically approved drugs. This approach would 
expedite the development of new TGF-β inhibitors after successful identification 
of potential drug candidate.  
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1.1  General objective 
 
 
To identify existing drugs that inhibit TGF-β activity upon the bronchial epithelial 
cell line, BEAS-2B  
 
 
1.2  Specific objectives  
 
 

i. To identify potential drug candidates with high binding affinity to 
TGF-β type 1 receptor by using molecular docking  
 

ii. To determine the effects of selected drug candidates on the cell 
morphology of TGF-β1-induced BEAS-2B cells 
 

iii. To determine the effect of selected drug candidates on the EMT 
markers of TGF-β1-induced BEAS-2B cells 
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