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This research work studied the synthesis of barium hexaferrite (BHF) in detail, 
focusing on their microstructure, magnetic, and microwave properties. As the 
raw material for this project, the iron (III) oxide, Fe2O3, is utilized and processed 
from mill scale waste. The iron (III) oxide, Fe2O3, then mixed with barium 
carbonate (BaCO3) to synthesize the barium hexaferrite (BaFe12O19, BHF) by 
employing the high-energy ball milling (HEBM) technique for 3 hours, a single 
milling (SM) process. The BHF-SM samples were then sintered from 800 °C to 
1400 °C with an increment of 100 °C. The sintered BHF-SM samples was again 
employing by HEBM technique for 3 hours, a double milling (DM) process. The 
samples after double millng process namely as BHF-DM. The hybrid multiwalled 
carbon nanotubes (MWCNTs)/BHF has been introduced in this research. The 
structural, microstructure and magnetic properties of the prepared samples were 
examined using an X-ray diffractometer (XRD), vibrating sample magnetometer 
(VSM), and field emission scanning electron (FESEM), respectively. Vector 
network analyzer (VNA) has been used for measuring Reflection Loss (RL), 
complex permeability (µr) and complex permittivity (εr) in frequency ranges at X 
and Ku band (8-18 GHz). The RL for BHF-SM and BHF-DM nanocomposites 
are samples sintered at 1400 oC, shows the maximum RL with −13.71 dB is at 
the frequency of 9.96 GHz with a bandwidth of 0.24 GHz at a thickness of 3 mm 
and −35.57 dB at 12.33 GHz with a bandwidth of 1.2 GHz at a thickness of 2 
mm, respectively. The hybrid MWCNTs/BHF-SM sample with 10 wt% filler 
content could enhance the RL values up to −43.99 dB at a frequency of 12.96 
GHz with bandwidth of 2.56 GHz at a thickness of 2 mm. As for hybrid 
MWCNTs/BHF-DM sample, the RL is approximately −32.49 dB at 12.9 GHz with 
a bandwidth of 2.31 GHz at a thickness 2 mm. Generally, it was found that hybrid 
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is a most highly potential candidate as ideal MAMs due to high microwave 
attenuation performances, enhanced the RL of and wide bandwidth. 
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sebagai memenuhi keperluan untuk Ijazah Master Sains 

FABRIKASI BARIUM HEKSAFERIT NANOKOMPOSIT DAN HIBRID 
MULTIDINDING KARBON TIUB NANO/BARIUM HEKSAFERIT SEBAGAI 

BAHAN PENYERAP GELOMBANG MIKRO 

Oleh 

NURSHAHIERA BINTI ROSDI 

Februari 2022 

Pengerusi : Prof. Madya. Raba’ah Syahidah Azis, PhD 
Institut : Nanosains dan Nanoteknologi 

Kerja penyelidikan ini mengkaji sintesis barium heksaferit (BHF) secara 
terperinci, dengan memfokuskan pada struktur mikro, magnetik, dan sifat 
gelombang mikro.  Sebagai bahan mentah untuk projek ini, besi (III) oksida, 
Fe2O3, telah digunakan dan diproses daripada buangan sisik besi. Besi (III) 
oksida, Fe2O3, kemudian dicampur dengan barium karbonat (BaCO3) untuk 
mensintesis barium heksaferit (BaFe12O19, BHF) dengan menggunakan teknik 
pengisar bebola kuasa tinggi (HEBM) selama 3 jam, bagi proses penggilingan 
tunggal (SM). Sampel BHF-SM kemudian disinter dari 800 °C hingga 1400 °C 
dengan kenaikan 100 °C. BHF-SM yang disinter itu sekali lagi menggunakan 
teknik pengisar bebola kuasa tinggi (HEBM) selama 3 jam, bagi proses 
penggilingan ganda (DM). Sampel-sampel selepas proses penggilingan ganda 
dinamakan sebagai BHF-DM. Hibrid karbon tiub nano multidinding 
(MWCNTs)/BHF telah diperkenalkan dalam penyelidikan ini. Sifat struktur, mikro 
dan magnet bagi sampel yang disediakan telah dilaksanakan melalui 
pembelauan sinar-X (XRD), penggetar sampel magnetometer (VSM), dan 
pengimbas mikroskop elektron (FESEM). Penganalisis rangkaian vektor (VNA) 
telah digunakan untuk mengukur kehilangan pantulan (RL), kebolehtelapan 
kompleks (µr) dan ketelusan kompleks (εr) dalam julat frekuensi pada jalur X dan 
Ku (8-18 GHz). Kehilangan pantulan untuk sampel BHF-SM dan BHF-DM 
nanokomposit yang disinter pada 1400 oC, menunjukkan kehilangan pantulan 
maksimum dengan −13.71 dB pada frekuensi 9.96 GHz dengan lebar julat 0.24 
GHz pada ketebalan 3 mm dan −35.57 dB pada 12.33 GHz dengan lebar julat 
1.2 GHz pada ketebalan 2 mm, masing-masing. Sampel hibrid MWCNTs/BHF-
SM dengan kandungan berat pengisi 10 wt% boleh meningkatkan nilai 
kehilangan pantulan sehingga −43.99 dB pada frekuensi 12.96 GHz dengan 
lebar julat 2.56 GHz pada ketebalan 2 mm. Bagi sampel hibrid MWCNTs/BHF-
DM, kehilangan pantulan adalah lebih kurang −32.49 dB pada 12.9 GHz dengan 
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lebar julat 2.31 GHz pada ketebalan 2 mm. Secara amnya, didapati bahawa 
hibrid ialah bahan yang paling berpotensi sebagai  bahan penyerap gelombang 
yang ideal disebabkan oleh prestasi pengecilan  gelombang mikro yang tinggi, 
dapat meningkatkan nilai kehilangan pantulannya dengan lebar julat yang lebih 
besar.     
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CHAPTER 1 

INTRODUCTION 

1.1 Background of the study 
 
 
There has been a growing and widespread interest in microwave absorbing 
material technology. As the name implies, microwave absorbing materials 
(MAMs) are coatings whose electrical and/or magnetic properties have been 
altered to allow absorption of microwave energy at discrete or broadband 
frequencies, which work at frequencies between 300 MHz and 300 GHz. The 
arrangement of all forms of electromagnetic waves based on their wavelengths 
and frequencies covers a very low range of energy to very high energy called 
the electromagnetic wave spectrum, as shown in Figure 1.1. Therefore, 
microwave absorbing material has the two most prominent applications for 
electromagnetic wave interference (EMI), including military and commercial 
electronics. The application of absorbers in military and defense (Saville, 2005; 
Vinoy et al., 1996), this microwave absorber is used to coat or paint defense 
equipment and installations such as stealth aircraft, warships, and military 
uniforms, particularly for the guards. to reduce interference while, in commercial 
electronics can be found in wireless LAN devices, network servers, VSAT 
transceivers, radios, and other high-frequency devices. However, with 
continuous exposure to this electromagnetic radiation, pollution of 
electromagnetic interference can disrupt various systems and equipment for civil 
and military applications (Wang et al., 2015). In the electronics field, microwave 
absorbers are used to reduce the presence of EMI (Eswaraiah et al., 2011; Wu 
and Li, 2011). In general, electronic components that work at high frequencies 
often experience problems such as frequency signal leakage. Therefore, EMI 
will not be present if the electronic device is open or not in a secure medium. 
However, signals traveling in a closed medium will be reflected in the device. 
This will cause the energy to increase in phase at specific frequencies due to 
the appearance of EMI emitted in the form of noise, which then interferes with 
the performance of these electronic devices. Then, after microwave absorbers 
protect the closed media, the effect of EMI can be avoided. 

 
In a radar system, an electromagnetic wave in the microwave frequency range 
is transmitted continuously in all directions by the transmitter. If an object is 
affected by this wave, the signal will be reflected by the object and received back 
by the recipient. This reflection signal will provide information that there is a close 
object that the radar screen will display. Radar (radio detection and ranging) is 
a microwave system helpful in detecting and measuring distances and making 
maps of an object. The radar waves emitted can detect the presence of an 
object. The radar concept measures the distance from the sensor to the target. 
The length is obtained by measuring the time needed by the radar wave during 
its propagation from the sensor to the mark and back to the sensor again. The 
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measured distance based on the time required by the electromagnetic waves 
emanating from the target is then reflected by the radar sensor. The target can 
reflect electromagnetic waves so that the radar can detect the existence of these 
objects. When an electromagnetic (EM) wave is targeted to the material surface, 
part of the EM wave is reflected off the surface or into the surface and absorbed 
by the material or transmitted through the material. Therefore, for good 
microwave absorption, two essential conditions must-have, which are: 
 

i) the intrinsic impedance of the material is equal to the free space 
impedance, and  

ii) the electromagnetic wave can penetrate and be weakened in 
the material (Meng et al., 2009). 
 

EM wave energy can be absorbed entirely and dissipated into heat through 
magnetic losses and/or dielectric loss if the characteristic impedance of free 
space is matched with the input characteristic impedance of an absorber. For 
good absorbing performance, the materials are needed with high microwave 
permeability, high magnetic loss, a good form of frequency dependence of 
permeability, and a proper ratio between permeability and permittivity (Lagarkov 
and Rozanov, 2009). In addition, the fabricated absorbing material should have 
electric and/or magnetic dipoles to interact with the electromagnetic fields in the 
radiation. Thus, a microwave absorbing material can be classified as magnetic, 
dielectric, or hybrid (a combination of magnetic and dielectric) since pure 
dielectric or magnetic materials are insufficient for absorbing radiation energy. 
Like virtually everything else in the microwave engineering world, absorber 
design is an impedance matching problem, in this case matching the impedance 
of a metal surface (Z = 0) to the impedance of free space (Z = 377 ohms) (Dixon, 
2012). If the impedance at the material's surface is equal to 377 ohms, the wave 
will be completely absorbed by the material. 
 
 
Among the various types of absorbers, magnetic materials, generally known as 
ferrites, have shown the potential due to significant losses in the vicinity of 
ferromagnetic resonance (FMR) and dielectric relaxation peaks. Ferrites are 
found in different structures such as spinel ferrites, garnets, and hexagonal 
ferrites (Meena et al., 2010). Garnet ferrites have low magnetization and 
magnetic field anisotropy saturation values. Hence their implementations are 
limited to a maximum of 1–2 GHz (Harris et al., 2009). Spinel ferrites are also 
commonly used as microwave absorbers due to their high magnetic losses and 
resistivity. However, spinel ferrites are not effective in the frequency range of 
microwaves due to intrinsic restrictions imposed by the incidence of their normal 
FMR below 1 GHz (Ahmad et al., 2012). Xie et al. (2007) designed a thin 
wideband microwave absorber using NiCoZn spinel ferrites. For the radio 
frequency and low-frequency part of the microwave range (less than a few 
hundred MHz), spinel ferrites can meet these requirements. However, ferrites 
with substantially higher magnetic anisotropy are required within the gigahertz 
frequency range. Ferrites also have attractive and repulsive forces properties of 
magnetic materials. For this purpose, we need to switch to hexagonal ferrites, 
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having the magnetoplumbite structure. For higher frequencies (above few 
gigahertz), hexagonal ferrites and composites with ferromagnetic inclusions 
provide noticeable permeability values. In the frequency range from 10 to 30 
GHz, important for 5G applications, hexaferrite and composites with hexaferrite 
inclusions are promising materials (Sai et al., 2017). However, ferrites alone 
suffer from weak absorption, heavy mass density, lower dielectric losses, and 
narrow absorption band (Yue et al., 2012). To undertake these shortcomings, 
composites of different ferrites with carbon nanotubes MWCNTs, and polymers 
have been widely explored (Abbas et al., 2016; Wang et al., 2014; Wang et al., 
2013). MWCNTs, when used as a dielectric absorber in MWCNTs/polymer/metal 
ferrite nanocomposites, have fascinated extensive considerations owing to their 
one-dimensional microstructure, outstanding mechanical, thermal, and electrical 
properties, high Young’s modulus, large surface area, high aspect ratio, low 
density, high strength and flexibility (Phan et al., 2016; Zhu et al., 2015; Tan et 
al., 2015). These characteristics are good to use for the best potential microwave 
absorber material. 

Figure 1.1: Spectrum of electromagnetic waves and microwaves (Adi et 
al., 2019) 

1.2 A potential of raw material waste mill scale 

Mill scale is a waste product, often present on raw steel and is frequently 
mistaken for a blue-colored. Mill scale is a type of iron oxide formed on the steel's 
surface during the hot-rolling process (Nadhirah et al., 2015; Legodi and De 
Waal, 2007). The very high surface temperature combined with high roller 
pressures results in a smooth, bluish-grey surface. Mill scale is less reactive 
(more "noble") than the steel underneath, and consistent with the behavior of 
two dissimilar metals when in contact, the more reactive metal (in this case steel) 
will oxidize (rust) at the expense of the less reactive metal (mill scale). The waste 
mill scales in the form of scales, and it can "pop off" the surface, cracking the 
coating and allowing moisture to penetrate. In this research, hematite is 
produced from mill scale as the raw materials to produced barium hexagonal 
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ferrite. The raw mill scale went through the milling and purification process to 
make high purity hematite (Fe2O3) powder as starting material for preparing 
barium hexagonal ferrite. The principal reason for utilizing waste mill scales 
product is to reduce the production cost because it is cheap, reutilizes waste 
materials, is abundant and readily available in the market. 
 

1.3 Potential Multi-walled Carbon Nanotubes (MWCNTs) as 
microwave absorbing materials 
 

MWCNTs composites have many advantages due to their ability to adapt to the 
dielectric properties and to possess lightweight structures without reducing the 
mechanical properties. MWCNTs may be metallic or semiconducting, which rest 
on their geometry, chirality, and diameter. The electrical conductivity of 
MWCNTs is reported to be >106−7 Sm−1 (Afrin et al., 2016). Since the discovery 
of MWCNTs, their use as reinforcing filler in various materials has been ever-
increasing (Ghasemi et al., 2011). However, multi-walled carbon nanotubes 
(MWCNTs) conceive more defects than single-wall carbon nanotubes 
(SWCNTs) because of their complex structure, higher permittivity, and 
absorption (reflection loss, RL), primarily due to relaxation of dielectrics. In 
addition, MWCNTs surface is nonreactive, so to improve their dispersion, 
interfacial bonding, surface reactivity, and open their tip walls, covalent or non-
covalent functionalization is carried out, and metal ferrite nanoparticles can be 
coated to improve their conductivity and to absorb properties (Rehman et al., 
2013). Previous research has shown that various percent of MWCNTs 
introduction into soft and hard ferrite via the sol-gel method, in situ precipitation, 
hydrothermal, and in-situ solvothermal has significantly improved the microwave 
absorption characteristics. Furthermore, the introduction of MWCNTs into ferrite 
samples has increased the conductivity (Cao et al., 2007; Akhtar et al., 2011; 
Ghasemi et al., 2011). 
 
 
1.4 Problem Statement 
 
 
In the past several decades, studies on BHF by pure materials have been 
reported in ferrite literature. Instead, fabricate the BHF using a recycled waste 
mill scale was still investigated. However, there was less report from literature 
has been done on this work. Steel waste products are collected from the steel 
industry in Malaysia. It has a high iron content (Fe) and gives us the challenge 
to purify and recycle the powder to produce BHF. This project will highlight the 
low-cost ferrite fabrication from the steel waste product. The particle size of the 
materials is also one of the factors to enhance microwave absorption properties. 
The smaller nanoparticles of BHF would result in a huge absorption ability 
(Reflection Loss) in a wide frequency range. In general, the larger particle size 
of materials would degrade the electromagnetic wave characteristics since the 
larger particle size have a smaller surface area per unit volume with fewer 
surface atoms. So that, in this research, double milling process after sintering 
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was introduced via the high-energy ball milling method (HEBM). Hence, in this 
present work, the evolutions of BHF at various sintering temperatures were also 
investigated. With the vast utilization of these microwave absorbing materials, it 
is generally accepted to recognize that microwave absorbing material is a 
material that can weaken the energy of electromagnetic waves. However, these 
microwave absorbing materials can externally reduce or even eliminate 
reflections or transmissions from particular objects and can be used internally to 
minimize oscillations caused by resonance cavities. Moreover, the fundamental 
scientific inquiry of the structural, magnetic, microstructure, electromagnetic, and 
microwave property evolution has been neglected. In this research, MWCNTs 
will be introduced as one way to improve microwave absorption characteristics 
with wideband frequency capability. MWCNTs submit into hard ferrite (BHF) via 
Chemical vapor Deposition (CVD), whereas BHF is used as a catalyst. The 
MWCNTs/BHF hybrid, chemically attached, will increase the energy transfer 
from one medium to another medium. Thus, hypothetically, the EM wave 
absorption becomes more efficient. According to the problem statement, the 
hypothesis of this research project is the modification hematite extracted from 
mill scale waste. Besides, smaller size (nanosize) of BHF result in the 
enhancement of the microwave absorption (RL) with introducing double milling 
step after sintering via HEBM method. In addition, the introducing of MWCNTs 
that submit into BHF as a hybridization sample via Chemical vapor Deposition 
(CVD) will contribute to the microwave absorption characteristics. Hence, in this 
research work, structural, microstructure, magnetic and electromagnetic 
absorption properties for MAMs are studied aiming to improve their 
electromagnetic and microwave absorbing performance in terms of high 
absorption level, operating in a broadband frequency range, have simple 
coating–layer structure, thin and lightweight as possible. 
 
 
1.5 Objectives 

 

1.5.1 Main research project objective 

 
The interest of this research is to study electromagnetic absorption 
characteristics as microwave absorbing materials and to understand the 
underlying scientific mechanisms that enable them to exhibit high-level 
absorption (≤ – 30 dB) in the (8 – 18 GHz) frequency range.  
 

1.5.2 Work-phase Objectives 
 

Hence this research work embarks on the following work-phase objectives which 
are: 

i. To synthesize BHF single milling and double milling by High Energy Ball 
Milling (HEBM) and sintered at various sintering temperatures. 
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ii. To synthesize MWCNTs/BHF with different filler content (2, 4, 6, 8, and 
10 wt%). 

iii. To analyze the magnetic, dielectric, and reflection loss properties (S11 
and S21 parameter) in obtaining BHF materials and MWCNTs/BHF used 
as an absorber with an ultimate performance reflection loss (≤ – 30 dB). 
 

     
1.6  Limitations of the study 

 
There are a few limitations concerning this research: 
 

 For M-type of BHF and MWCNTs/BHF hybrid, the measurement was 
only limited for RL since it was only prepared for evaluation to find the 
best and optimized absorbing materials.  

 The measurement was carried out only in the X-band (8-12 GHz) and 
Ku band (12-18 GHz) frequency, respectively, due to the restriction in 
experimental equipment constrained. 
 

1.7 Outlines of the thesis 

 
Background of the study in this work, selection of M-type materials, a potential 
of raw material waste mill scale, a potential MWCNTs as MAMs, the aim of study, 
objectives, and limitation of the study in this work has been discussed in Chapter 
1. The literature review regarding microwave absorbing materials has been 
detailed in Chapter 2. A brief theory on the structure and properties of microwave 
absorbing materials is discussed in Chapter 3. Further on in Chapter 4, the 
methodology and characterization of this work have been explicitly detailed. All 
the samples reported in this work have been explained in Chapter 5. Lastly, in 
Chapter 6, the conclusion based on the discovered results and some 
suggestions has been proposed. At the end of this thesis, the bibliography, 
appendices, author biography, and publication list of publications are listed, 
respectively. 
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