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Institute : Nanoscience and Nanotechnology 
 
 
The goal of this research is to improve the stability of magnetite recovered from 
millscales waste (MSW) by modifying it with Cetyltrimethyleammonium Bromide 
(CTAB) and Chitosan (Chi) for use in Cd(II) removal from aqueous solution. 
Magnetite was subjected to High Energy Ball Milling (HEBM) for 5 distinct milling 
hours, namely 4, 8, 12, 16, and 20 hours, before being modified with the CTAB and 
Chi. From the characterization results there were found that the characteristics on 
magnetite milled for 8 h obviously more stable (±10.9 mV) and had highest ability in 
removing the cadmium ions. Therefore, M8 was chosen to be modified with CTAB 
and Chi. As the results, the stability of the modified MNS (M8-CTAB and M8-Chi) 
had enhanced from 10.9 to 39.5 and 48.5 mV respectively. This was supported 
with the high-resolution transmission electron microscopy (HRTEM) images that 
shows higher dispersion after the modification. The higher dispersion occurred was 
successfully enhanced the surface area from 2.58 to 19.19 and 22.49 m2 g 1 for M8-
CTAB and M8- Chi respectively. The magnetic saturation had reduced due to the 
modification which became 32.16 and 31.91 emu g 1 after the modification with 
CTAB and chitosan respectively. Meanwhile, the magnetic saturation before the 
HEBM is 20.58 emu g 1 and increased to 50.36 emu g 1. Fourier transform infrared 
(FTIR) spectrum shows the appearance of functional groups such -CH, -NH, -COO, 
and -OH contributed from CTAB and Chi which proved the success modification 
through the heterocoagulation (self-assembly) method. The adsorption properties 
obeyed the Langmuir isotherm model and the maximum uptake of the Cd(II) from 
the solution onto the M8, M8-CTAB, and M8-Chi is 10.31, 26.70 and 30.86 mg g 1 
respectively. Regeneration results for MNS showed small reduced on the 
performance as the cycles used in Cadmium removal for 5 time (1st cycle, 98%, 5th 
cycle 92%). The regeneration performance suggests the sustainability of the magnetic 
nanosorbent (MNS) to be used in industries. The best MNS (M8-Chi2) in this works 
manage to remove for about 98.6% (2.96 mg L-1) of the initial 3 mg L-1 Cd(II) which 
indicated that it able to remove the Cd(II) more than the permissible Cd(II) level in 
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drinking water (0.5 μg L-1). The M8-Chi2 MNS also characterized with XPS in order 
to confirm the adsorption of Cd(II) perfectly occurs onto it. Interestingly, it was found 
that the XPS spectrum showed the peak for the Cd(II) on the MNS after the 
adsorption.  From this works, it can be concluded that the prepared MNS (M8-Chi2) 
can be a promising advanced adsorbent in environmental pollution clean-up. 
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CHITOSAN UNTUK PENYAHAN  ION-ION KADMIUM DARIPADA 
LARUTAN AKUES  

 

Oleh 
 

NUR ASYIKIN BINTI AHMAD NAZRI 
 

Disember 2021 
 
 

Pengerusi  : Raba’ah Syahidah Azis, PhD 
Institute    : Nanosains dan Nanoteknologi 
 
 
Matlamat penyelidikan ini adalah untuk meningkatkan kestabilan magnetit yang 
diperoleh daripada sisa skala kilang (MSW) dengan mengubah suainya dengan 
Cetyltrimethileammonium Bromide (CTAB) dan Chitosan (Chi) untuk digunakan 
dalam penyingkiran Cd(II) daripada larutan akueus. Magnetit telah tertakluk kepada 
Pengilangan Bebola Bertenaga Tinggi (HEBM) untuk 5 tempoh kisaran yang 
berbeza, iaitu 4, 8, 12, 16, dan 20 jam, sebelum diubah suai dengan CTAB dan Chi. 
Daripada keputusan pencirian yang dibuat selepas modifikasi, didapati kestabilan 
MNS (M8-CTAB dan M8-Chi) telah meningkat dari 1.9 kepada 39.5 dan 48.5 
mV. Keupayaan zeta yang menigkat itu didapati sejajar dengan imej yang 
ditunjukkan oleh mikroskop electron beresolusi tinggi (HRTEM) di mana setiap 
zarah berada dalam keadaan diperisiti yang tinggi selepas diubahsuai. Disperisiti 
yang tinggi itu telah menyebakan luas permukaan zarah bertambah baik daripada 2.58 
kepada 19.19 dan 22.49 m2 g 1 untuk sampel M8-CTAB dan M8-Chi masing-masing. 
Namun begitu, didapati terdapat penuruan pada keamatan kemagnetan menjadi 32.16 
dan 31.91 emu g 1 selepas diubah suai dengan CTAB dan chitosan. Spektrum Fourier 
transformasi infrared (FTIR) menunjukkan kemunculan kumpulan fungsi seperti -
CH, -NH, -COO, dan -OH daripada CTAB dan Chi yang mana telah membuktikan 
kejayaan dalam pengubahsuaian melalui ‘self-assemble’. Sifat penyerapan oleh M8, 
M8-CTAB, dan dapat dijelaskan dengan Langmuir isotherm   dam maksimum 
pengeluaran yagn Berjaya adalah 10.31, 26.70 dan 30.86 mg g 1 masing-masing. 
Keputusan kitar semula bahan penyerap menunjukkan penurunan kecekapan selepas 
5 kali penggunaannya. (kitaran 1, 98%, kitaran 5 98%). Kecekapan dalam 
penggunaan semula menunjukkan kebolehan penyerap magnetic bersaiz nano (MNS) 
untuk menyerap.  The regeneration performance suggests the sustainability of the 
MNS to be used in industries. MNS yang terbaik melalui kajian ini adalah (M8-Chi2) 
yang mana telah dapat menyerap 98.6% (2.96 mg L-1) daripada 3 mg L-1 Cd(II) 
menunjukkan ianya boleh digunakan untuk menyerap  Cd(II)  sehingga takat air yang 
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selamat diminum. (0.5μg L-1). M8-Chi2 MNS juga telah melalui pencirian 
menggunakan XPS untuk mengenalpasti dan memastikan penyerapan Cd(II) ke atas 
MNS berlaku dengan sempurna. Menariknya, didapati puncak pada spektrum XPS 
jelas menunjukkan kehadiran Cd(II) selepas proeses penyerapan.  Melalui kajian ini, 
kesimpulan yang boleh dibuat adalah MNS (M8-Chi2) boleh menjanjikan 
penyerapan logam berat dengan baik untuk digunakan di dalam pembersihan air 
tercemar. 
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Cationic polymer @ 
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positive charge or incorporating cationic entities in 
their structure 

deprotonation Deprotonation (or dehydronation) is the removal 
(transfer) of a proton (or hydron, or hydrogen cation) 

heterocoagulation Hetero-coagulation is a process where dissimilar 
colloidal particles coagulate irreversibly in a 
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Inorganic materials are defined as chemical compounds that contain no 
carbon (C) 

Isoelectric point (IEP) sufficient charge to confer stability 
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Moderate stability assuming that electrostatic charge is 
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Organic to the large source of carbon-based compounds found 
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polymer a substance which has a molecular structure built up 
chiefly or completely from a large number of similar 
units bonded together 

Precipitation  is the process of transforming a dissolved substance 
into an insoluble solid from a super-saturated solution 
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protonation protonation (or hydronation) is the addition of a 
proton (or hydron, or hydrogen cation) 

Self assemble Molecules, polymers, colloids or nanoparticles, 
organized into ordered and/ or functional structures or 
patterns as a consequence of specific, local 
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stability usually indicated by the zeta potential values. 

Steric hindrance the slowing of chemical reactions due to steric bulk. 
Steric hindrance is often exploited to control 
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of a liquid in which it is dissolved 

Zeta potential  At that pH particles having the same positive and 
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ℼ-ℼ bond  pi bonds (π bonds) are covalent chemical bonds where 
two lobes of an orbital on one atom overlap two lobes 
of an orbital on another atom and this overlap occurs 
laterally.  
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CHAPTER 1  

INTRODUCTION 

1.1 Introduction  
 

The pollution of water and groundwater is one of the most serious environmental 
problems facing humanity. Heavy metals contamination in water is a serious 
environmental problem because these substances are not biodegradable and are very 
toxic to living organisms (Huang et al., 2009; Sall et al., 2020). The appearance of the 
toxic metals in the wastewater would change the pH depending on the type of the 
pollutants (Burakov et al., 2018; Masindi et al., 2018). 

 
Heavy metal ions are toxic and carcinogenic at even comparatively low concentrations 
(Jaishankar et al., 2014; Sall et al., 2020). They are not biodegradable and can 
accumulate in living organisms. Therefore, the removal of these metal ions from 
wastewaters is of considerable importance from an environmental viewpoint. Among 
the heavy metals, cadmium is one of the extremely toxic and has been classified as a 
human carcinogen and teratogen impacting lungs, liver and kidney (Pyrzynska, 2019). 
 

1.2 Background of study 
 
 
Magnetic separation method is one of the most studied method compared to other 
conventional methods such as ion osmosis (Cui et al., 2014; Bhatia et al., 2017), 
coagulation-flocculation (Sun et al., 2020), chemical reduction (Mohammed et al., 
2011), and precipitation (Adeleye et al., 2016) due to the ability of removing lower 
concentrations of heavy metals (Mudila et al., 2019). Therefore, more emphasis has 
been placed on producing better magnetic sorbents that will be more efficient in 
adsorbing toxic metals from wastewater with a facile technique (Ambashta et al., 
2010).  
 
 
Researchers believed that, when reducing the size to nanometer scales, the toxic metals 
are able to adsorb to the magnetic nano sorbents (MNS) through the magnetic 
separation method. The commercial activated carbon used in the industries are non-
regenerated and the production produces secondary pollution. Therefore, researchers 
intensively investigate a new type of MNS which can be used in a magnetic separation 
system that has the ability to remove ionic toxic particles.   However, the low stability 
of Fe3O4 NPs is attributed to react with surrounding particles that are possible to 
oxidise to another form and thus eliminating its magnetic properties (Petrova et al., 
2011). In addition, the aggregation of NPs would automatically decrease the surface 
area of the MNPs. This reduces the removal capacity and reactivity, thereby, limiting 
the treatment performance (Kydralieva et al., 2016). 
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From the economic aspect, researchers have managed to determine Fe3O4 from Mill 
scales waste (MSW) is one of the potential magnetic sorbents. In fact, a non-chemical 
process of high-energy ball milling used to maintain the low toxicity of the magnetic 
NPs has been reported by Ismail et al. (2019) to remove dye and organic contaminants. 
This study can be expanded to remove heavy metals. Therefore, MSW has the potential 
to be used in heavy metal treatment with some surface modifications. Nevertheless, 
novel MNS must go through equilibrium studies. The information from the 
quantitative investigations using adsorption and kinetics isotherm models is important 
to confirm the ability to conduct further studies for industrial application. In addition, 
the regeneration study used to prove the sustainability of the MNS is also important to 
reduce cost.  
 
 
In recent years, numerous publications on turning the MSW into valuable materials in 
many applications, especially in wastewater treatment, have been reported. Due to the 
higher percentages of iron in MSW, researchers have engineered a method to extract 
the valuable Fe3O4 from the MSW (Abdul et al., 2017; Doliente et al., 2017; Ismail et 
al., 2019; Nur et al., 2019; Shahid et al., 2018, 2019). 
 
 
Magnetite nanoparticles are one of the most potential MNS reported in heavy metals 
removal in wastewater treatment systems. This is due to the ability to react with other 
particles in both acidic and base solutions. Unfortunately, the highly reactive behavior 
causes the drawbacks which it easily tends to aggregate into micron-sized or larger 
particles because of direct inter-particle interactions such as van der Waals forces and 
magnetic interactions. Aggregation reduces the specific surface area and the interfacial 
free energy, thereby decreasing particle reactivity and losing the unique property of 
nanoparticles (Palanisamy et al. 2013). To prevent agglomeration of nanoparticles, 
various stabilizers have been found effective for stabilizing nanoparticles, including 
carboxylic acids (Prozorov et al. 1999), and polymers (Ditsch et al. 2005; Fu et al. 
2011). The application of magnetite in wastewater treatment is also believed to 
enhance when modified with suitable polymers and stabilizers (Lui et al., 2021).  
 
 
Although there is an outstanding interest in finding good adsorbent, the research is still 
ongoing with many types of magnetic nano sorbent (MNS). To declare the MNS as a 
good adsorbent that can be commercialized, it needs to have several criteria such as 
shorter contact time, low adsorbent dosage, wide range of optimum pH, lower 
involvement of chemicals usage and regeneration. As long as the MNS does not meet 
those criteria, the research will be still active with much more innovative types of 
MNS.  
 

1.3 Problem statement 

 
Magnetite nanoparticles tend to aggregate into micron-sized or larger particles because 
of direct inter-particle interactions such as van der Waals forces and magnetic 
interactions. Aggregation reduces the specific surface area and the interfacial free 
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energy, thereby decreasing particle reactivity and losing the unique property of 
nanoparticles (Palanisamy et al., 2013). To prevent agglomeration of nanoparticles, 
various stabilizers have been found effective for stabilizing nanoparticles, including 
carboxylic acids (Kataby et al., 1999), and polymers (Ditsch et al., 2005; Fu et al., 
2011). The application of magnetite in wastewater treatment also believed to enhance 
when modified with suitable polymers and stabilizers (Ahmad et al., 2015).  
 

Recent technologies had introduced various method for the modification Fe3O4. 
However, there are limited publications on modifications of the Fe3O4 through the 
physical linkages. Physical linkages involved the modification by self-assembly. In 
other word, the modification is not in situ process, which it can be done on as prepared 
iron oxides. 

 

Magnetite is an amphoteric solid which can develop charges in the protonation (Fe-
OH +H+ ↔ Fe-OH2  and deprotonation (Fe-OH ↔ Fe-O- + H+) reactions of OH sites 
on surface. These surface reactions can be interpreted as the specific adsorption of H+ 
and OH- ions at the hydrated solid/water interface. Therefore, the unstable Fe3O4 
possess the ability to easily heterocoagulate with suitable surfactant and polymer 
(Tombacz et al., 2006). The most suitable surfactants are cationic surfactants, while 
cationic polymers are the most suitable polymers.  
 

Covering particles with adsorption layer usually results in enhanced resistance against 
the particle aggregation. In aqueous medium, electrostatic, steric and combined 
stabilization layers can develop. The thicker coating provides better stability, 
especially in the case of magnetic fluids, since the spacing (typically 2-3 nm) between 
magnetic domains is important, if magnetic field is applied (Tombacz et al., 2006). 
 

Cetyltrimethylammonium bromide (CTAB) is the most studied cationic surfactant 
used in wastewater treatment (Fisli et al., 2018) due to the polarity of this surfactant in 
a solution. The used of CTAB as a stabilizer is due to the ability to self-assemble. 
Besides, it is also used to be cross linkages in many applications.  
 

Natural cationic polymer is chitosan that produced from chitin, that develops in the 
hard outer shells of crustaceans such as crabs, lobsters and shrimps. Several 
publications describe the efficacy of chitosan sorbents in the removal of several pol- 
lutants such as metals, dyes, and phenols (Jin et al., 2017; Nguyen et al., 2016; Yang 
et al., 2016). Laus et al., (2010) studied the adsorption and desorption of Cu(II), Cd(II) 
and Pb(II) ions using chitosan crosslinked with epichlorohy-drin-triphosphate. 
However, there was no reported removal of Cd(II) by using magnetite extracted from 
MSW modified with chitosan. 
 

Coating the magnetite with surfactants and the polymer will develop more active sites 
on the magnetite surface so that it achieve higher removal of Cd(II). CTAB will 
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provide hyroxil groups surround the magnetite which believe use to gain higher 
affinity to Cd(II) adsorption. Meanwhile, chitosan provides amine groups which 
believe one of the active sites that functioning in enhancing the affinity of the 
composite. The question is how to prepare this kind of composite material.  
 

According to the problem statement, the hypothesis of this research project is the 
modification of magnetite extracted from mill scale waste without using any cross 
linkages ligands can be successful by adjusting the pH of both materials. Besides, 
smaller size of magnetic adsorbent result in the enhancement of the adsorption 
capacities through low involvement of chemicals. The used of MSW was believed to 
reduce the production cost of the MNS. In addition, regeneration of the MNS also 
might contribute to lower the production and the processing cost. Thus, this research 
has aimed to assess the potential of Fe3O4 NPs extracted from MSW to modify with a 
CTAB and chitosan due the limited study.   

1.4 Hypothesis of the research 
 
 
According to the problem statement, the hypothesis of this research project is the 
modification of magnetite extracted from MSW without using any cross linkages or 
ligands. Besides, a smaller size of magnetic adsorbent would result in the enhancement 
of the adsorption capacities through low involvement of chemicals. The use of MSW 
was believed to reduce the production cost of the MNS. In addition, regeneration of 
the MNS also to ensure the sustainability of the MNS. 
 
 
Thus, this research has aimed to assess the potential of Fe3O4 NPs extracted from 
MSW to modify with a CTAB and Chitosan through physical linkages method. This 
study has investigated the removal of Cd(II) using prepared Fe3O4 NPs based on MSW 
at the laboratory scale. The research has aimed to investigate the adsorption process 
involved in Cd(II) removal from an aqueous solution. Adsorption behaviour of Cd(II)  
removal will be explained based on the experimental results and information available 
in the literature. 
 
 
In this study, MSW has been used as the core magnetic material, with modification by 
a surfactant (CTAB) (Abdul et al., 2017) and a natural polymer (chitosan) (Peralta et 
al., 2019), used to treat different concentrations of Cd(II) in aqueous solution at 
different possible temperatures. The modification was a self-assembly (anchored base 
on electrostatic attraction) process performed by adjusting the pH of the medium for 
both materials to an optimum pH. This study has also suggested the possibility of the 
Fe3O4 NPs to anchor as the active site attachment so that the Cd(II) removal would 
increase. In addition, with the modification, higher stability and dispersity can be 
achieved. Consequently, adsorption capacity can be increased as well. 
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1.5 Objectives of the study 
 
 
The aim of this research was to develop a new magnetic nanosorbent (MNS) that can 
be used in a wide range of pH, low adsorbent dosage used, low chemicals involvement, 
with higher ability to remove toxic metals in a short time and can be regenerated with 
a novel method on modifying as prepared Fe3O4 NPs extracted from MSW. 

  

To achieve this, several objectives must be met. The objectives were to: 

i. Extract magnetite from MSW, to fabricate magnetic nanoparticles (MNPs) and 
modify with CTAB and chitosan to be used as magnetic nano-adsorbent (MNS). 

ii. Characterise the structural, morphological, magnetic and surface charge (zeta 
potential) properties and evaluate the adsorption abilities of the MNPs, MNPs/ 
CTAB and MNPs/ chitosan from MSW. 

iii. To assess the Cd adsorption using MNPs, MNPs/CTAB, MNPs/chitosan MNS   
based on the adsorption isotherm, adsorption kinetics, adsorption capacity, 
adsorption modelling parameters, thermodynamic study and regeneration. 

  
1.6 Scope of study 
 
 
Our new approach in this research study is to find the best method to modify the 
magnetite that extracted from MSW with minimal chemicals involvement. To begin 
the research findings, we need to have some knowledge on finding the best way on 
preparation and characterization of the samples. Since the research findings will 
contribute on application, it is an advantage to find a low-cost route for powder 
preparation such as solid-state reaction along with huge amount of production. The 
other interest in the present study is to test absorption ability of the modified MNS has 
also been investigated. It is found that the adsorption performance of nanocomposite 
containing the Chi and CTAB were enhanced compared to bare Fe3O4 extracted from 
MSW. The main intention for this research project is to prove the ability of the 
extracted Fe3O4 self-assembly anchored to Chi and CTAB for Cd(II) absorption from 
aqueous solution. We intend to observe the clear effect on the present of the stabilizers 
(CTAB and Chi) addition in improvising the Cd(II) removal. We therefore commence 
on an ambitious project in which we worked with the selected materials in order to 
develop a new best material with the best composition that could be successfully have 
a good potential in waste water treatment application. 

1.7 Outline of the thesis 
 
 
Chapter 2 mainly focused on the literature review of this work.  Chapter 3 is used as 
the references for all the theories involved along these works. While, Chapter 4 
described the details explanation on the methodology of the preparation of magnetic 
nanoparticles from mill scale waste, modify it with a surfactant (CTAB) and a polymer 
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(chitosan) and the performance in adsorption of Cd(II) from aqueous solution. Chapter 
5 presents the result on the characterization and adsorption performance of magnetic 
nanoparticles from MSW, modifying it with a surfactant (CTAB) and a polymer 
(chitosan). Chapter 6 is to conclude this project and suggestion for future works that 
can be explored. 
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