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By 
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Chairman : Mohd Sapuan bin Salit, PhD, Peng 
Faculty  : Engineering 
 

Petroleum-based plastics are one of the most commonly used materials in the packaging 
industry, which has been a source of concern for the global environment. The increased 
production of harmful environmental plastic waste has fueled the development of 
natural-based, renewable, and biodegradable materials. Therefore, environmental 
sustainability and the absence of harmful carbon emissions during and after processing 
are desirable characteristics of potential materials. Furthermore, the widespread 
acceptance of natural fibres   and biopolymers as green materials is being driven by the 
rapid depletion of petroleum resources, as well as a growing awareness of global 
environmental issues associated with the use of conventional plastics. Also, rising 
petrochemical prices and environmental concerns are driving the development of natural 
polymeric materials for a wide range of applications in food-packaging materials that are 
more consumer-friendly. Among these materials, arrowroot (Maranta arundinacea L.) 
has emerged as a vital and effective source of starch and fibres. Arrowroot belongs to the 
Marantaceae family, which is typically found in tropical forests. When compared to other 
agro-based products, arrowroot starch and fibres has some distinct advantages, including 
lower cost than other natural sources and greater accessibility. Therefore, several 
laboratory experiments were conducted to produce and characterize arrowroot fibres, 
biopolymers, and biocomposite films. The samples were developed using a solution 
casting method. Initially, arrowroot bagasse (ABF) and husk fibres (AHF) were extracted 
and the physical, chemical, thermal, morphological properties, as well as crystallinity, 
were characterized. The chemical composition analysis revealed that ABF has higher 
cellulose (45.97 %) than AHF (37.35 %), cassava bagasse (10.04 %), and corn hull 
(15.30 %). In addition, ABF is significantly low in lignin (2.78 %) and density (1.11 
g/cm3) than AHF, corn hull, and cassava. Concerning the above characterization of 
fibres, it was found that the lignocellulosic biomasses from arrowroot are alternative 
promising sustainable material, which can be used in food packaging as a renewable 
filler.  
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The second stage was designed to investigate the development of arrowroot starch (AS) 
films using glycerol (G) as a plasticizer at the ratio of 15, 30, and 45% (w/w, starch basis) 
to achieve a new biopolymer for the application of environmentally friendly materials. 
The developed films were analysed in terms of physical, structural, mechanical, thermal, 
environmental, and barrier properties. The incorporation of glycerol into AS film-making 
solution reduced the brittleness and fragility of films. An increment in glycerol 
concentration caused an increment in film thickness, moisture content, and solubility in 
water, whereas density and water absorption were reduced. The tensile strength and 
modulus of G-plasticized AS films were reduced significantly from 9.34 to 1.95 MPa 
and 620.79 to 36.08 MPa, respectively, while elongation at break was enhanced from 
2.41 to 57.33 %. FTIR analysis revealed that intermolecular hydrogen bonding occurred 
between glycerol and AS in plasticized films compared to control films. The G-
plasticized films showed higher thermal stability than control films. Water vapour 
permeability (WVP) of plasticized films increased by an increase in glycerol 
concentrations. Furthermore, a novel biodegradable thermoplastic arrowroot starch 
(TPAS) film containing arrowroot fibre (AF) at different concentrations (0, 2, 4, 6, 8, 
and 10 wt.%) was developed and characterized in terms of thermal, antibacterial activity, 
water vapor permeability (WVP), biodegradability, physical, morphological (FESEM), 
tensile and tear strength, and light transmittance properties. The TPAS/AF biocomposite 
film revealed a higher degradation temperature (313.02 ℃) than other biocomposite 
films, indicating better thermal stability. Furthermore, increasing AF concentration led 
to a significant (p < 0.05) reduction in the linear burning rate and WVP of the 
biocomposite films from 248.9 to 115.2 mm/min and 8.18 ×10-10 × g. s-1.m-1. Pa-1 to 5.20 
×10-10 × g. s-1.m-1. Pa-1, respectively. The tensile and tear strengths of TPAS/AF 
composites were increased significantly from 2.42 to 15.22 MPa and 0.83 to 1.28 MPa, 
respectively, and the elongation was decreased from 46.62 to 6.21%. The findings 
revealed that after being reinforced with fibres, the mechanical properties enhanced, and 
the optimum filler content was 10%. Regardless of fibre loadings, the results of water 
absorption testing revealed that the composite films immersed in seawater and rainwater 
absorbed more water than distilled water. In addition, the incorporation of AF and control 
film showed an insignificant effect against three pathogenic bacteria including 
Staphylococcus aureus (ATCC 43300), Escherichia coli (ATCC 25922), and Bacillus 
subtilis (B29). The soil burial findings demonstrated that the weight loss of TPAS/AF 
biocomposite films was significantly higher than TPAS film. Overall, the reinforcement 
of arrowroot fibre with TPAS film improves the properties of biocomposites for 
environmentally friendly food packaging applications. The development of fully 
biodegradable packaging films is essential in the continuous effort to address current 
environmental issues and gradually replace commonly used conventional packaging 
materials.   



© C
OPYRIG

HT U
PM

iii 

Abstrak tesis yang dikemukan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk Ijazah Doktor Falsafah 

 

PEMBANGUNAN DAN PENCIRIAN BIOKOMPOSIT KANJI 
TERMOPLASTIK DIPERKUAT GENTIAN UBI BEMBAN (Maranta 

arundinacea L.) 
 

Oleh 
 

TARIQUE JAMAL 
 

Julai 2022 
 

Pengerusi : Mohd Sapuan bin Salit, PhD, PEng 
Fakulti  : Kejuruteraan 
 

Plastik berasaskan petroleum adalah salah satu bahan yang digunakan dalam industri 
pembungkusan, dan ia telah menjadi kebimbangan terhadap persekitaran global. 
Peningkatan pengeluaran sisa plastik yang amat berbahaya kepada alam sekitar telah 
memacu pembangunan bahan berasaskan semula jadi, yang boleh diperbaharui dan 
terbiodegradasi. Oleh itu, kemampanan alam sekitar dan ketiadaan pelepasan karbon 
berbahaya semasa dan selepas pemprosesan adalah ciri-ciri yang diingini bagi bahan 
berpotensi. Tambahan pula, penerimaan meluas terhadap gentian semula jadi dan 
biopolimer sebagai bahan hijau didorong oleh penyusutan pesat sumber petroleum, serta 
kesedaran yang semakin meningkat tentang isu alam sekitar global yang berkaitan 
dengan penggunaan plastik konvensional. Di antara bahan-bahan ini, ubi bemban atau 
lebih dikenali sebagai ubi bemban (Maranta arundinacea L.) telah muncul sebagai 
sumber kanji dan serat yang penting dan berkesan. Ubi bemban tergolong dalam keluarga 
Marantaceae, yang biasanya ditemui di hutan tropika. Sampel telah dibangunkan 
menggunakan kaedah tuangan larutan. Pada mulanya, gentian ampas ubi bemban (ABF) 
dan gentian sekam ubi bemban (AHF) diekstrak, seterusnya dicirikan dari segi sifat 
fizikal, kimia, haba, morfologi, serta kehabluran ABF dan AHF. Analisis komposisi 
kimia menunjukkan bahawa ABF mempunyai selulosa yang lebih tinggi (45.97%) 
daripada AHF (37.35%). Tambahan pula, kandungan lignin (2.78%) dan ketumpatan 
(1.11g/cm3) ABF adalah ketara rendah berbanding dengan AHF, kulit jagung dan ubi 
kayu. Mengenai pencirian gentian di atas, didapati bahawa biojisim lignoselulosa 
daripada akar ubi bemban merupakan bahan mampan alternatif yang menjanjikan, yang 
boleh digunakan dalam pembungkusan makanan sebagai pengisi boleh diperbaharui. 
 

Pada peringkat kedua pencirian filem kanji ubi bemban (AS) dijalankan menggunakan 
gliserol (G) sebagai pemplastik pada nisbah 15, 30, dan 45% (b/b, asas kanji). Filem 
yang dibangunkan telah dianalisis dari segi sifat fizikal, struktur, mekanikal, dan haba.. 
Penggabungan gliserol ke dalam pembuatan tuangan larutan filem AS mengurangkan 
kerapuhan, ketumpatan dan penyerapan air filem manakala ketebalan, kandungan 



© C
OPYRIG

HT U
PM

iv 

lembapan dan keterlarutan dalam air meningkat. Kekuatan tegangan dan modulus filem 
AS yang diplastik-G telah berkurangan dengan ketara daripada 9.34 kepada 1.95 MPa 
dan 620.79 kepada 36.08 MPa, masing-masing, manakala pemanjangan semasa putus 
menigkat daripada 2.41 kepada 57.33%. Analisis FTIR mendedahkan bahawa ikatan 
hidrogen antara molekul berlaku antara gliserol dan AS dalam filem plastik berbanding 
filem kawalan. Tambahan pula, filem kanji ubi bemban (TPAS) termoplastik 
terbiodegradasi novel yang mengandungi serat ubi bemban (AF) pada kepekatan berbeza 
(0, 2, 4, 6, 8, dan 10 wt.%) telah dibangunkan dan dicirikan dari segi haba, aktiviti 
antibakteria, kebolehtelapan wap air (WVP), kebolehbiodegradan, fizikal, morfologi 
(FESEM), kekuatan tegangan dan koyak, dan sifat penghantaran cahaya. Filem 
biokomposit TPAS/AF mendedahkan suhu degradasi yang lebih tinggi (313.02 ℃) 
berbanding filem biokomposit yang lain, menunjukkan kestabilan terma yang lebih baik. 
Tambahan pula, peningkatan kepekatan AF membawa kepada pengurangan yang ketara 
(p <0.05) dalam kadar pembakaran linear dan WVP bagi filem biokomposit daripada 
248.9 kepada 115.2 mm/min dan 8.18 × 10-10 × g. s-1.m-1. Pa-1 hingga 5.20 × 10-10 × g. s-

1.m-1. Pa-1, masing-masing. Kekuatan tegangan dan koyak komposit TPAS/AF telah 
meningkat dengan ketara daripada 2.42 kepada 15.22 MPa dan 0.83 kepada 1.28 MPa, 
dan pemanjangan telah menurun daripada 46.62 kepada 6.21%. Penemuan mendedahkan 
bahawa selepas diperkukuh dengan gentian, sifat mekanikal dipertingkatkan, dan 
kandungan pengisi optimum ialah 10%. Tanpa mengira beban gentian, keputusan ujian 
penyerapan air mendedahkan bahawa filem komposit yang direndam dalam air laut dan 
air hujan menyerap lebih banyak air daripada air suling. Di samping itu, penggabungan 
AF dan filem kawalan menunjukkan kesan yang tidak ketara terhadap tiga bakteria 
patogen termasuk Staphylococcus aureus (ATCC 43300), Escherichia coli (ATCC 
25922), dan Bacillus subtilis (B29). Penemuan daripada ujian biodegradabiliti 
menunjukkan bahawa kehilangan berat filem biokomposit TPAS/AF adalah lebih tinggi 
daripada filem TPAS. Secara keseluruhannya, pengukuhan gentian ubi bemban dengan 
filem TPAS meningkatkan sifat biokomposit untuk aplikasi pembungkusan makanan 
mesra alam.  
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CHAPTER 1

1 INTRODUCTION

1.1 Background

The abundance of petroleum-based waste disposal has significantly contributed to rising 
environmental pollution, causing problems for both natural life as well as human health. 
Plastic’s invention escorted in a revolution in material production in a variety of 
industries, including medicine, automobiles, electronics, and packaging (Sharuddin et 
al., 2016). It is distinguished by its reliability, heat resistance, and appropriateness for 
large scale production. The global production of synthetic plastics reached 140 million 
tons annually, an increase of 2% per year (Siracusa, 2019). Between 1950 and 2017, an 
estimated 9,200 million metric tons of synthetic plastics were produced, with 5,300 
metric tons entering landfills, dumps, or the environment (Gavigan et al., 2020). This 
demonstrates that most of the plastic rubbish that landed up in landfills in extremely high 
and takes up a significant amount of space. Because plastics are certainly valuable and 
useful in our daily lives, several material engineers and researchers are attempting to 
design plastic materials that are both safer and much better for the environment. 
Bioplastics, which are derived from plant crops instead of fossil fuels, are being 
developed by manufactures as a more environmentally friendly substitute for petroleum-
based plastics. Some scientists are trying to find a way to make recycling more efficient, 
with the goal of optimizing the process of transforming plastics back into the fossil fuels 
that they came from. All these researchers understand that plastics are not ideal, but an 
essential and vital component of our present and future applications (Rhim et al., 2013).
These issues have motivated researchers and scientists to design and develop 
environmentally friendly advanced materials produced from renewable resources to 
substitute non-biodegradable materials in a variety of applications, protecting the green 
environmental. Among these source materials, arrowroot biopolymers and 
biocomposites offer numerous benefits, including outstanding reliability, low cost, 
availability, biodegradability, as well as high content of starch. 

Arrowroot (Maranta arundinacea L.) is a large perennial herb native to the tropical forest 
that belongs to the Marantaceae family. The arrowroot plant is primarily found in the 
West Indies (Jamaica), Brazil, Indonesia, Malaysia, Philippines, India, and Sri Lanka 
(Nogueira et al., 2018). Arrowroot starch has excellent properties such as digestibility 
and gelling ability, and the highest amylose content (40.86%) (Gordillo et al., 2014),
competing with corn starch (28-33%), wheat starch (30-32%), potato (18-20%), and 
cassava starch (16-19%), all of which are required for film production. Previous research 
has shown that the amylose content of starch influences its film-forming properties; 
hydrogen bonding linear chains together forms strong and stiff films. As a result, the 
high amylose content of arrowroot starch produces stronger films than other starch 
sources. A significant amount of waste arrowroot fibres is obtained during the arrowroot 
starch extraction process. According to a literature, arrowroot rhizomes comprise 38.1% 
of bagasse fibre (Branco et al., 2019). Branco et al. (2019) found that the arrowroot 
bagasse fibres are coarser as well as longer in comparison to cassava bagasse fibres. 
Biopolymer films were made from arrowroot starch employing a solution casting process 
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with 15 to 45% (by weight) glycerol as a plasticizer. The results revealed that 
incorporating 30 % glycerol into the biopolymer was the most effective glycerol 
concentration, resulted in outstanding thermal and physical properties. Despite having 
adequate characteristics, the developed biopolymer has certain drawbacks, significantly 
such as poor tensile and water resistance. Hence, to overwhelm such drawbacks, 
arrowroot starch reinforced by arrowroot fibre is expected to produce better outcomes. 
Meanwhile, researchers investigated the impact of blackberry pulp incorporation on the 
physical, mechanical, and barrier properties of composite films made from arrowroot 
starch and blackberry pulp (Nogueira, Soares, et al., 2019). Likewise, Fakhouri et al. 
(2019) investigated the effect of cranberry powder incorporation on the microstructure 
and thermal properties of arrowroot starch/cranberry powder composites. Recently, De
Sá et al. (2015) examined the characterization of nano whiskers cellulose derived from 
arrowroot fibre.

Up to date, there has been insufficient research on the applications of arrowroot 
biopolymers, fibres, and biocomposite. There has been a significant amount of work 
published on arrowroot starch in terms of characterization and application. No research 
has been conducted on the physicochemical, thermal, and morphological properties of 
arrowroot fibres. As a result, the focus of this research is on isolating arrowroot fibres
and starch from arrowroot plant parts such as tubers and developing arrowroot starch
biopolymer composites with arrowroot starch as a matrix.

1.2 Problem statements

Factors such as increased environmental awareness, societal concerns, governmental 
policies, and the depletion of petrochemical resources have accelerated the rapid growth 
of new green materials such as eco-friendly packaging films. The proper disposal of 
petroleum-based plastics, once they have served their purpose, has become a major 
global environmental issue that must be addressed immediately. Landfilling and 
incineration are the two most widely used disposal methods. However, due to the 
significant trash disposal, landfill capacity is rapidly diminishing. Increased pollution 
from the use of plentiful plastics and pollutants from cremation contribute significantly 
to environmental health issues. As a result, government laws on using non-renewable 
and non-biodegradable products have become stricter over time, in order to preserve a 
clean environment for future generations. 

In recent years, most polymers used in packaging are still petroleum-based. The 
widespread use of petroleum-based materials increases CO2 emissions, which leads to 
global climate change. Hence, to reduce reliance on petroleum-based polymers, this 
research attempted to use a 100% renewable and biodegradable biopolymer derived from 
arrowroot rhizomes (Maranta arundinacea L.). The rhizome of the arrowroot plant is a 
good source of starch, bagasse fibre, and husk fibre. However, because such a bio-
sourced is presently underutilized, very little research on its development as a green 
packaging material have been reported. As a result, in the current work, arrowroot starch 
and arrowroot fibres were used to generate completely biodegradable films and 
biocomposite films as an environmentally friendly food packaging material. However, 
because of its hydroxyl or polar groups, arrowroot starch, like most other biopolymers, 
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is hydrophilic. The problems relating to brittleness, processability, high moisture 
sensitivity, quick retrogradation, poor mechanical and barrier properties, and poor 
mechanical and barrier characteristics are the major challenges for the development of 
starches as packaging films (Sanyang et al., 2016a). The limitations can be solved by 
reinforcing arrowroot starch with arrowroot fibres into high-performance thermoplastic 
starch for packaging applications. To the best of author’s knowledge, no research has 
been conducted on the characterization of arrowroot fibres and their application in 
reinforcing biopolymer composite films. 
 

1.3  Research objectives 
 

The overall objective of this research is to develop and characterize environmentally 
friendly arrowroot (Maranta arundinacea L.) fibre reinforced arrowroot starch 
biocomposite films. The research objectives can be specified into: 
 

1. To characterize the arrowroot fibres from arrowroot tubers (Bagasse, and Husk) 
to explore their potential to develop a new fully biodegradable and 
environmentally friendly composite film. 

2. To evaluate the effect of glycerol concentration on the physical, mechanical, 
thermal, and barrier properties of arrowroot starch-based films.  

3. To determine the physical, morphological, and mechanical properties of 
arrowroot fibre reinforced arrowroot starch biocomposites at different fibre 
loading. 

4. To determine the thermal, biodegradability, water barrier, and antimicrobial 
properties of arrowroot fibre reinforced arrowroot starch biocomposites at 
different fibre loading. 

 

1.4 Significance of the research 
 

1. This research aims to contribute to this growing area of study by investigating 
the information in developing high-performance biodegradable bio-packaging 
films derived from arrowroot starch. 

2. To address environmental problems, which arise from the nonbiodegradable 
disposal, such type of environmentally friendly packaging films (100% 
biodegradable polymer composites) which is made by a single source 
(arrowroot) for starch and fibre can be used (instead of the use of synthetic 
polymer and synthetic polymer composites). 

3. This research also reduced the wastage issue by providing the platform for 
making use of agricultural products wastage into fibres and biopolymers. 
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4. The successful development of such green materials from arrowroot would 
provide good opportunities to improve the standard of living of the farmers who 
cultivated arrowroot by developing economically in rural areas. 

5. This research may also include the effort to reveal the potential of arrowroot 
starch and fibre in developing green products; else, such plentiful resources may 
be underutilized. 

 

1.5 Scope of research 
 

This research focused on the extraction of biopolymers and natural fibres from arrowroot 
tubers, as well as the production of biocomposites. A series of experiments were 
conducted to characterize arrowroot starch and fibres, as well as biopolymers and 
biocomposite films. The films were developed using a solution casting method with the 
addition of glycerol. The biocomposite films were developed in three stages using 
arrowroot fibres and arrowroot starch. The first phase involved investigating the 
physicochemical, morphological, and thermal properties of arrowroot starch and fibres 
in order to determine the feasibility of using arrowroot starch and fibres to develop 
materials with good thermal and mechanical properties for packaging applications. The 
second phase involved investigating the effect of varying concentrations of glycerol 
plasticizer on the physical, thermal, morphological, biodegradability, and mechanical 
properties of starch-based films. In the final phase, the characterized arrowroot fibre was 
utilized as reinforcement for biopolymer films to improve the matrix properties. Thus, 
the effect of arrowroot fibre loading (0-10 wt.%) on the physical, thermal, mechanical, 
water barrier, and antimicrobial properties of biocomposite films was investigated.  
 

1.6 Structure of the thesis 
 

The thesis structure follows Universiti Putra Malaysia alternative thesis format based on 
publications. Each research chapter (4–7) signifies distinct research that has its own: 
‘Introduction’, ‘Materials and methods’, ‘Results and discussion’, and ‘Conclusion’. 
Further details on the thesis structure are as presented below.  
 

Chapter 1 
 
This chapter clearly describes the problem statement and research objectives. This 
chapter also demonstrated the significance and contribution of the research, as well as 
the scope and limitations of the research.  
 

Chapter 2 
 
This chapter provides a comprehensive review of the literature in the key areas related 
to the title of this thesis. In addition, the chapter discusses the research gaps identified 
through the literature review. 



© C
OPYRIG

HT U
PM

5 

Chapter 3 
 
This methodology chapter contains every activity related to this research, from material 
preparation to material processing, testing methods, and data collection and analysis. 
 

Chapter 4 
 
This chapter presents the first article entitled “Extraction and Characterization of a Novel 
Natural Lignocellulosic (Bagasse and Husk) Fibres from Arrowroot (Maranta 
arundinacea L.)”. In this article, the physical, morphological, structural, and thermal 
properties of arrowroot bagasse and husk fibres were investigated. 
 

Chapter 5 
 
This chapter presents the second article entitled “Effect of glycerol plasticizer loading 
on the physical, mechanical, thermal, and barrier properties of arrowroot (Maranta 
arundinacea L.) starch biopolymers”. In this article, the effect of glycerol plasticizer at 
different concentrations (15, 30, and 45%) on the properties of the arrowroot starch-
based film was investigated. 
 

Chapter 6  
 
This chapter presents the third article entitled “Physical, mechanical and morphological 
performances of arrowroot (Maranta arundinacea L.) fibre reinforced arrowroot starch 
biopolymer composites”. The aim of this article was to develop and characterize 
biocomposite films based on arrowroot starch matrix and arrowroot fibre as 
reinforcement filler at different loadings. 
 

Chapter 7 
 
This chapter presents the fourth article entitled “Thermal, flammability, and 
antimicrobial properties of arrowroot (Maranta arundinacea L.) fibre reinforced 
arrowroot starch biopolymer composites for food packaging applications”.  This article 
studied the effect of various loading of arrowroot fibre (2%, 4%, 6%, 8%, and 10%) on 
the thermal, antimicrobial, biodegradability, flammability, and water barrier properties 
of thermoplastic arrowroot starch-based biocomposite films. 
 

Chapter 8 
  
This chapter presents general conclusions collected from different research articles, as 
well as relevant suggestions and recommendations for further research. 
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