UNIVERSITI PUTRA MALAYSIA

AN INVESTIGATION OF COTTON/ EPOXY AND GLASS/ EPOXYCOMPOSITE CONES SUBJECTED TO AXIAL COMPRESSIVE LOAD

ASAD ABDULLAH KHALID

FK 1999 38
AN INVESTIGATION OF COTTON/ EPOXY AND GLASS/ EPOXY COMPOSITE CONES SUBJECTED TO AXIAL COMPRESSIVE LOAD

ASAD ABDULLAH KHALID

DOCTOR OF PHILOSOPHY
UNIVERSITI PUTRA MALAYSIA

1999
AN INVESTIGATION OF COTTON/ EPOXY AND GLASS/ EPOXY COMPOSITE CONES SUBJECTED TO AXIAL COMPRESSION LOAD

By

ASAD ABDULLAH KHALID

Thesis Submitted in Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Faculty of Engineering Universiti Putra Malaysia

April 1999
ACKNOWLEDGEMENTS

First of all I would like to thank my God (ALLAH) for every thing.

I would like to express my sincere gratitude and deep thanks to my supervisor Associate Professor Dr. Barkawi Bin Sahari for his kind assistance, support, advice, encouragement and suggestions throughout this work and during the preparation of this thesis.

I would like to express my appreciation to Dr. Mustafar Bin Sudin and Dr. Mageed Hammoda. Co-supervisors, for their help, suggestions and assistance during preparation of this thesis. My appreciation is also to Dr. Yousif A. Khalid for his assistance, constructive ideas and suggestions during my research projects.

I acknowledge the help from the head of mechanical and manufacturing engineering department Dr. Megat hamdan and the help from Dr. Shamsuddin Sulaiman.

Great thanks to the external examiner Prof. S. A. Meguid from the Department of mechanical Engineering / Toronto University, Canada for his effort, time spent, valid advice and thesis corrections.

Thank to Associate Prof. Baharuddin Hitam and Mr. Aznijar Ahmad for their help. Appreciation is also due to Puan Mahyon, Mr. Sharani, Mohamad Rashid, Tajul Arifin, Ahmed shaifuldeen, Zulkifli, Suliaman and Mr. John for their help during the experimental work stage of this project.

I would like also to thank all the staff members of the UPM library for their assistance in providing the scientific papers required for this work.

Last but not least, I would like to extend my sincere appreciation to my family, my mother, sisters and my brothers.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>II</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xx</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>xxii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xxiv</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>xxvi</td>
</tr>
</tbody>
</table>

CHAPTER

I INTRODUCTION 1

- Types of Composite Materials 2
- Mechanical Behavior of Composite Materials 4
- Manufacturing of Fiber Reinforced Composite Materials 6
- Energy Absorption in Composite Materials 7
- Objectives of this Study 9

II LITERATURE REVIEW 11

- Introduction 11
- Material behavior 13
 - Fiber 13
 - Matrix Materials 20
- Fabrication Methods 24
 - Hand Lay-up 25
 - Filament Winding 25
 - Resin Transfer Molding 26
- Energy Absorption 27
 - Calculation of Specific Energy Absorption 28
- Component Behavior 31
 - Tubular Specimens 31
 - Modes of Progressive Crushing 36
 - Geometry Effect 40
 - Effect of Material Type 50
 - Fiber Architecture 53
 - Effect of Testing Conditions 57
- Predicting Failure Load 62
- Discussion 66
- Conclusions 67

III THEORETICAL ANALYSIS 69

- Stress-Strain Relation 69
- Compliance Matrix for Orthotropic Materials 72
- Determination of Strength and Stiffness of Composite Laminates 75
Determination of Material Properties of Orthotropic Materials...... 79
 Determination of the Longitudinal Young's Modulus \(E_{11} \)...... 80
 Determination of Transverse Young's Modulus \(E_{22} \)............. 81
 Determination of Major Poisson's Ratio \(\nu_{12} \).................. 82
 Determination of In-Plane Shear Modulus \(G_{12} \)................ 83
 Determination of \(E_{33} \), \(G_{13} \), and \(\nu_{23} \).................... 84
 Determination of \(G_{23} \) and \(\nu_{23} \)........................... 85

Stress-Strain Relation for Plane Stress in an Orthotropic Material
\((\theta=0^\circ \text{ or } \theta=90^\circ)\).. 86
Stress-Strain Relation for a Lamina of Arbitrary Orientation
\((\theta \neq 0^\circ \text{ or } \theta \neq 90^\circ)\).. 87
Lamination Theories of a Composite material......................... 90
 Classical Lamination Theory (CLT)................................. 90
 Effective Stiffness Theory (EST)................................ 92
FEM Applications in a Composite materials.......................... 94
Discussion... 96

IV EXPERIMENTAL WORK ... 98
Filament Winding Equipment Set-up.................................... 99
Mandrels Fabrication... 101
Test Specimens Fabrication... 102
 Cones Fabrication... 102
 Moisture Absorption Specimens................................. 104
Discussion... 104

V MATERIAL PROPERTIES TESTS .. 106
Fiber and Matrix Properties... 106
 Epoxy Resin Properties test..................................... 106
 Cotton Fiber Properties Test................................. 109
 Glass Fiber Properties Test.................................... 110
Composite Laminate Tensile Testing.................................... 112
 Cotton Fiber/Epoxy.. 113
 Glass Fiber/Epoxy.. 115
Determination of the Composite Materials Properties.................. 117
Tensile Mechanism of failure.. 122
Conclusions... 124

VI EXPERIMENTAL RESULTS .. 126
Results of Cylindrical Composite.................................... 126
 Introduction... 126
 Tube Parameter, Material and Test Conditions...................... 126
 Discussion... 132
 Conclusions.. 133
Results of Single Composite Cones.................................... 133
 Introduction... 133
 Cotton Fiber/Epoxy Single Cones................................. 134
 Glass Fiber Epoxy Single Cones.................................. 141
 Comparison.. 147
<table>
<thead>
<tr>
<th>Environmental Effects</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cotton Fiber/Epoxy Cones</td>
<td>154</td>
</tr>
<tr>
<td>Glass Fiber/Epoxy Cones</td>
<td>156</td>
</tr>
<tr>
<td>Comparison</td>
<td>158</td>
</tr>
<tr>
<td>Discussion</td>
<td>161</td>
</tr>
<tr>
<td>Conclusions</td>
<td>163</td>
</tr>
</tbody>
</table>

Results of Combined Composite Cones

Introduction | 164 |
Cotton Fiber/Epoxy Multiple Cones | 165 |
Glass Fiber/Epoxy Multiple Cones | 169 |
Reversed Parallel Multiple Cones | 171 |
Discussion | 173 |
Conclusions | 175 |

Experimental Work Error Sources | 175 |

VII FINITE ELEMENT RESULTS

Introduction | 177 |
Cone Geometry | 177 |
Cotton Fiber/Epoxy Cones | 178 |
Glass Fiber/Epoxy Cones | 179 |
Material Properties | 179 |
Finite Element, Mesh, Loading and Boundary Conditions | 180 |
Results | 182 |
Cotton Fiber/Epoxy | 184 |
Glass Fiber/Epoxy | 184 |
Comparison of Results | 185 |
Finite Element and Experimental results | 185 |
Cotton fiber/Epoxy and Glass Fiber/Epoxy Results | 193 |
Discussion | 194 |
Conclusions | 195 |

VIII DISCUSSION

Introduction | 196 |
Filament Winding Machine Design | 197 |
Factors, Parameters and Limit | 197 |
Equipment Limitation | 197 |
Accuracy | 198 |
Effect of Fiber and Matrix Behavior | 198 |
Fiber Effect | 198 |
Matrix Effect | 199 |
Fiber/Matrix Volume Ratio | 199 |
Effect of Geometry on Crushing Behavior and Energy Absorption | 200 |
Cylinders and Cones | 200 |
Single and Multiple Cones | 201 |
Effect of Material on Crushing Behavior and Energy Absorption | 202 |
Cotton Fiber/Epoxy and Glass Fiber/Epoxy | 202 |
Effect of Moisture on Crushing Energy | 203 |
Finite Element Prediction | 203 |
Method Applied 203
Accuracy of Prediction 204
Limitation 205

IX CONCLUSIONS 206
Suggestions for Further Work 210

REFERENCES 211

APPENDIX

A Equipment Design calculations 218
B PAFEC Finite Element Commands and Programs 226
C Finite Element Displacement Results 241

VITA 269
Papers Published From the Thesis 269
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mechanical Properties of Selected Natural Fibers</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>Mechanical Properties of Selected Man Made Fibers</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>Typical Compositions of three Glasses used Man Made Fibers</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>Typical Engineering Properties of Thermosetting and Thermoplastic Polymer Matrix Materials</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>Calculation Results in Carbon Fiber/ PEEK and Glass Fiber Cloth/ Epoxy Tubes with Experimental Results</td>
<td>64</td>
</tr>
<tr>
<td>6</td>
<td>Relation between the Carriage Speed and Parameters of Cotton Fiber / Epoxy Composite Cones</td>
<td>103</td>
</tr>
<tr>
<td>7</td>
<td>Relation between the Carriage Speed and Parameters of Glass Fiber / Epoxy Composite Cones</td>
<td>103</td>
</tr>
<tr>
<td>8</td>
<td>Relation between the Carriage Speed and Parameters of Cotton and Glass Fiber/Epoxy Composite Cylinders</td>
<td>103</td>
</tr>
<tr>
<td>9</td>
<td>Comparison between experimental and literature results for the fiber and epoxy mechanical properties</td>
<td>111</td>
</tr>
<tr>
<td>10</td>
<td>Uniaxial Tensile Test Results for Composite Specimens</td>
<td>112</td>
</tr>
<tr>
<td>11</td>
<td>Uniaxial Compression Test Results for Cotton Fiber/ Epoxy and Glass Fiber/ Epoxy Composite Cylinders</td>
<td>131</td>
</tr>
<tr>
<td>12</td>
<td>Uniaxial Compression Test Results for Cotton Fiber/ Epoxy Composite Cones</td>
<td>138</td>
</tr>
<tr>
<td>13</td>
<td>Uniaxial Compression Test Results For Glass Fiber/ Epoxy Composite Cones</td>
<td>144</td>
</tr>
<tr>
<td>14</td>
<td>Uniaxial Compression Test Results for Composite Cones at Different Immersion Temperatures</td>
<td>159</td>
</tr>
<tr>
<td>15</td>
<td>Uniaxial Compression Test Results for Different Cone Arrangements</td>
<td>172</td>
</tr>
<tr>
<td>16</td>
<td>Comparison between slopes for Experimental and Finite Element Results of Figure 90 (Cotton fiber/ epoxy cones, initial diameters are</td>
<td></td>
</tr>
</tbody>
</table>
respectively 96, 92 and 93 mm. fiber orientation angle=90°)

17 Comparison between slopes for Experimental and Finite Element Results of Figure 91. (Cotton fiber/epoxy cones, initial diameters are respectively 96, 92 and 93 mm. fiber orientation angle=80°)...

18 Comparison between slopes for Experimental and Finite Element Results of Figure 92. (Cotton fiber/epoxy cones, initial diameters are respectively 118, 135 and 174 mm. fiber orientation angle=90°)... ...

19 Comparison between slopes for Experimental and Finite Element Results of Figure 93. (Cotton fiber/epoxy cones, initial diameters are respectively 118, 135 and 174 mm. fiber orientation angle=80°)... ...

20 Comparison between slopes for Experimental and Finite Element Results of Figure 94. (Glass fiber/epoxy cones, initial diameters are respectively 96, 92 and 93 mm. fiber orientation angle=90°)... ...

21 Comparison between slopes for Experimental and Finite Element Results of Figure 95. (Glass fiber/epoxy cones, initial diameters are respectively 96, 92 and 93 mm, fiber orientation angle=80°)... ...

22 Comparison between slopes for Experimental and Finite Element Results of Figure 96. (Glass fiber/epoxy cones, initial diameters are respectively 118, 135 and 174 mm, fiber orientation angle=90°)... ...

23 Comparison between slopes for Experimental and Finite Element Results of Figure 96. (Glass fiber/epoxy cones, initial diameters are respectively 118, 135 and 174 mm. fiber orientation angle=80°)... ...
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Schematic Illustration of Four Stages of Deformation of Fibers, Matrix, and Composite</td>
</tr>
<tr>
<td>2</td>
<td>Relationship between the Strength of Natural Fibers and their Contents and Microfibril angle</td>
</tr>
<tr>
<td>3</td>
<td>Chemical Structure of Cellulose</td>
</tr>
<tr>
<td>4</td>
<td>Typical Load-Displacement Curve for a Progressively Crushed Composite Tube</td>
</tr>
<tr>
<td>5</td>
<td>Typical Load-Displacement Curve for a Progressively Crushed Composite Cone (Cone angle=22°)</td>
</tr>
<tr>
<td>6</td>
<td>Schematic Representation of Progressive Folding</td>
</tr>
<tr>
<td>7</td>
<td>Typical Load-Displacement Curve for Progressive Folding I: Fold Initiation, II: Progressive Folding, III: Compaction</td>
</tr>
<tr>
<td>8</td>
<td>Typical Load-Displacement Curve of a Square-Ended Tube of a Brittle Composite Material in Axial Compression</td>
</tr>
<tr>
<td>9</td>
<td>Schematic Representation of Progressive Crushing a: Tube with Chamfer at One End, b: Partially Crushed Tube, c: Fully Crushed Tube with Debris Compacted Inside Preventing Further Crushing</td>
</tr>
<tr>
<td>10</td>
<td>Typical Load-Displacement Curve of Tube with Chamfered End Undergoing Progressive Crushing; I: Formation of Crush Zone, II: Progressive Crushing, III: Compaction of Debris</td>
</tr>
<tr>
<td>11</td>
<td>Schematic Representation of Formation of a Splaying Mode Crush Zone Based on Microscopic Examination of Polished Sections</td>
</tr>
<tr>
<td>12</td>
<td>Polished Section Through Crush Zone Showing Remains of Debris Wedge and Center-Wall Crack</td>
</tr>
<tr>
<td>13</td>
<td>Schematic Representation of Formation of a Fragmentation-Mode Crush Zone Based on Microscopic Examination of Polished Section</td>
</tr>
<tr>
<td>14</td>
<td>Polished Cross-section Through Crush Zone of Woven Glass Cloth/Epoxy Resin Tube</td>
</tr>
<tr>
<td>15</td>
<td>Variables Influencing the Specific Energy Absorption of the Composite Material</td>
</tr>
<tr>
<td>16</td>
<td>Variation of Specific Energy Absorption with (t/D_1)</td>
</tr>
<tr>
<td>17</td>
<td>Geometry and Notation of the Conical Shell</td>
</tr>
<tr>
<td>18</td>
<td>Collapse of Thin-Walled $\theta = 22^\circ$ Cone by Folding</td>
</tr>
<tr>
<td>19</td>
<td>Load-Displacement Curve of Cone Shown in Figure 2.16, $t=1.5$ mm</td>
</tr>
<tr>
<td>20</td>
<td>Effect of Fiber Orientation on Specific Crushing Stress For Glass Fiber/ Polyester Resin Tubes Crushed at 0.2 mm/s</td>
</tr>
<tr>
<td>21</td>
<td>Crushing test for composite tube</td>
</tr>
<tr>
<td>22</td>
<td>Fracture aspect and Load-displacement curve in square ended tube</td>
</tr>
<tr>
<td>23</td>
<td>Fracture aspect and Load-displacement curve in tapered tube</td>
</tr>
<tr>
<td>24</td>
<td>Initial Mesh in FEM Analysis for Splaying Mode</td>
</tr>
<tr>
<td>25</td>
<td>Assumption in FEM Analysis of Predicted Mean Crushing Load</td>
</tr>
<tr>
<td>26</td>
<td>Component of Stress and Strain in a Rectangular Cartesian Coordinate System</td>
</tr>
<tr>
<td>27</td>
<td>Distinction between ν_{12} and ν_{21}</td>
</tr>
<tr>
<td>28</td>
<td>Uniaxial Loading in 1-Direction</td>
</tr>
<tr>
<td>29</td>
<td>Uniaxial Loading in 2-Direction</td>
</tr>
<tr>
<td>30</td>
<td>Uniaxial Loading at 45° to the 1-Direction</td>
</tr>
<tr>
<td>31</td>
<td>Torsion Tube Test</td>
</tr>
<tr>
<td>32</td>
<td>Representative Volume Element Loaded in 1-Direction</td>
</tr>
<tr>
<td>33</td>
<td>Representative Volume Element Loaded in 2-Direction</td>
</tr>
<tr>
<td>34</td>
<td>Representative Volume Element Loaded in Shear</td>
</tr>
<tr>
<td>35</td>
<td>Shear Deformation of a Representative Volume Element</td>
</tr>
<tr>
<td>36</td>
<td>Equality in 2 and 3-Direction for Uniformly Distributed Unidirectional Fibers</td>
</tr>
</tbody>
</table>
83 Specific Energy Absorption Vs Crush Distance for Two Glass Fiber/Epoxy Combined Cones (Fiber orientation angle=90°, cone angle=5°, initial diameter = 96 mm)

84 Load-Displacement Relation for Two Composite Cones Arranged in a Reversed Parallel Case (Fiber orientation angle=90°, cone angle=5°, initial diameter =96 mm)

85 Specific Energy Absorption Vs Crush Distance for Two Composite Cones arranged in a Reversed Parallel Case (Fiber orientation angle=90°, cone angle=5°, initial diameter = 96 mm)

86 Geometry and Dimensions of Composite Cones

87 Mesh and Boundary Conditions of Composite Cones

88 Deformed Shape of a three-dimensional Composite Cone Sample

89 Original and Deformed Shape of Cotton and Glass Fiber/Epoxy Composite Cones (Load=24 KN)

90 Experimental and Finite Element Results for the Elastic Region of the Surface Nodes of Cotton Fiber/Epoxy Cones (Displacement in Y-direction, fiber orientation angle=90, initial diameters are respectively 96, 92 and 93 mm)

91 Experimental and Finite Element Results for the Elastic Region of the Surface Nodes of Cotton Fiber/Epoxy Cones (Displacement in Y-direction, fiber orientation angle=80, initial diameters are respectively 96, 92 and 93 mm)

92 Experimental and Finite Element Results for the Elastic Region of the Surface Nodes of Cotton Fiber/Epoxy Cones (Displacement in Y-direction, fiber orientation angle=90, initial diameters are respectively 118, 135 and 174 mm)

93 Experimental and Finite Element Results for the Elastic Region of the Surface Nodes of Cotton Fiber/Epoxy Cones (Displacement in Y-direction, fiber orientation angle=80, initial diameters are respectively 118, 135 and 174 mm)

94 Experimental and Finite Element Results for the Elastic Region of the Surface Nodes of Glass Fiber/Epoxy Cones (Displacement in Y-direction, fiber orientation angle=90, initial diameters are respectively 96, 92 and 93 mm)

95 Experimental and Finite Element Results for the Elastic Region of the Surface Nodes of Glass Fiber/Epoxy Cones (Displacement in Y-direction, fiber orientation angle=80, initial diameters are respectively 96, 92 and 93 mm)
96 Experimental and Finite Element Results for the Elastic Region of the Surface Nodes of Glass Fiber/ Epoxy Cones (Displacement in Y- direction, fiber orientation angle=90°, initial diameters are respectively 118, 135 and 174 mm) 191

97 Experimental and Finite Element Results for the Elastic Region of the Surface Nodes of Glass Fiber/ Epoxy Cones (Displacement in Y- direction, fiber orientation angle=80°, initial diameters are respectively 118, 135 and 174 mm) 191

98 Series of Pulleys to Control Winding Speed 218

99 Guide Pulley and Guide Pulley Stand Connections 219

100 Forces on Guide Pulley 221

101 Forces on Guide Pulley Shaft 222

102 Rectangular Weld 224

103 Circular Weld 224

104 Forces on the Guide Pulley Stand 224

105 Tension Device Forces 225

106 Load-Displacement Relation for Surface Nodes of Cotton Fiber/ Epoxy Cones (Displacement in Y- direction, fiber orientation angle=90°, initial diameters are respectively 96, 92 and 93 mm) 242

107 Load-Displacement Relation for Surface Nodes of Cotton Fiber/ Epoxy Cones (Displacement in Y- direction, fiber orientation angle=80°, initial diameters are respectively 96, 92 and 93 mm) 242

108 Load-Displacement Relation for Surface Nodes of Cotton Fiber/ Epoxy Cones (Displacement in Y- direction, fiber orientation angle=90°, initial diameters are respectively 118, 135, and 174 mm) 243

109 Load-Displacement Relation for Surface Nodes of Cotton Fiber/ Epoxy Cones (Displacement in Y- direction, fiber orientation angle=80°, initial diameters are respectively 118, 135, and 174 mm) 243

110 Load-Displacement Relation for Surface Nodes of Cotton Fiber/ Epoxy Cones (Displacement in X- direction, fiber orientation angle=90°, initial diameters are respectively 96, 92, and 93 mm) 244
Load-Displacement Relation for Surface Nodes of Cotton Fiber/ Epoxy
Cones (Displacement in X- direction, fiber orientation angle=80°, initial
diameters are respectively 96, 92, and 93 mm) 245

Load-Displacement Relation for Surface Nodes of Cotton Fiber/ Epoxy
Cones (Displacement in X-direction, fiber orientation angle=90°, initial
diameters are respectively 118, 135, and 174 mm) 245

Load-Displacement Relation for Surface Nodes of Cotton Fiber/ Epoxy
Cones (Displacement in X-direction, fiber orientation angle=80°, initial
diameters are respectively 118, 135, and 174 mm) 246

Side Nodes Displacement in Y-Direction for Cotton Fiber/ Epoxy Cones
(Cone Angle=5°, fiber orientation angle=90°, initial diameter=96 mm).... 247

Side Nodes Displacement in Y-Direction for Cotton Fiber/ Epoxy Cones
(Cone Angle=10°, fiber orientation angle=90°, initial diameter=92 mm).... 247

Side Nodes Displacement in Y-Direction for Cotton Fiber/ Epoxy Cones
(Cone Angle=20°, fiber orientation angle=90°, initial diameter=93 mm)... 247

Side Nodes Displacement in Y-Direction for Cotton Fiber/ Epoxy Cones
(Cone angle=5°, fiber orientation angle=80°, initial diameter=96 mm)..... 248

Side Nodes Displacement in Y-Direction for Cotton Fiber/ Epoxy Cones
(Cone angle=10°, fiber orientation angle=80°, initial diameter=92 mm)... 248

Side Nodes Displacement in Y-Direction for Cotton Fiber/ Epoxy Cones
(Cone angle=20°, fiber orientation angle=80°, initial diameter=93 mm)... 248

Side Nodes Displacement in Y-Direction for Cotton Fiber/ Epoxy Cones
(Cone angle=5°, fiber orientation angle=90°, initial diameter=118 mm)... 249

Side Nodes Displacement in Y-Direction for Cotton Fiber/ Epoxy Cones
(Cone angle=10°, fiber orientation angle=90°, initial diameter=135 mm)... 249

Side Nodes Displacement in Y-Direction for Cotton Fiber/ Epoxy Cones
(Cone angle=20°, fiber orientation angle=90°, initial diameter=174 mm)... 249

Side Nodes Displacement in Y-Direction for Cotton Fiber/ Epoxy Cones
(Cone angle=5°, fiber orientation angle=80°, initial diameter=118 mm).... 250

Side Nodes Displacement in Y-Direction for Cotton Fiber/ Epoxy Cones
(Cone angle=10°, fiber orientation angle=80°, initial diameter=135 mm)... 250

Side Nodes Displacement in Y-Direction for Cotton Fiber/ Epoxy Cones
(Cone angle=20°, fiber orientation angle=80°, initial diameter=135 mm)... 250
Side Nodes Displacement in X-Direction for Cotton Fiber/Epoxy Cones (Cone angle=5°, fiber orientation angle=90°, initial diameter=96 mm) 251

Side Nodes Displacement in X-Direction for Cotton Fiber/Epoxy Cones (Cone angle=10°, fiber orientation angle=90°, initial diameter=92 mm) 252

Side Nodes Displacement in X-Direction for Cotton Fiber/Epoxy Cones (Cone angle=20°, fiber orientation angle=90°, initial diameter=93 mm) 252

Side Nodes Displacement in X-Direction for Cotton Fiber/Epoxy Cones (Cone angle=5°, fiber orientation angle=80°, initial diameter=96 mm) 253

Side Nodes Displacement in X-Direction for Cotton Fiber/Epoxy Cones (Cone angle=10°, fiber orientation angle=80°, initial diameter=92 mm) 253

Side Nodes Displacement in X-Direction for Cotton Fiber/Epoxy Cones (Cone angle=20°, fiber orientation angle=80°, initial diameter=93 mm) 253

Side Nodes Displacement in X-Direction for Cotton Fiber/Epoxy Cones (Cone angle=5°, fiber orientation angle=90°, initial diameter=118 mm) 254

Side Nodes Displacement in X-Direction for Cotton Fiber/Epoxy Cones (Cone angle=10°, fiber orientation angle=90°, initial diameter=135 mm) 254

Side Nodes Displacement in X-Direction for Cotton Fiber/Epoxy Cones (Cone angle=20°, fiber orientation angle=90°, initial diameter=174 mm) 254

Side Nodes Displacement in X-Direction for Cotton Fiber/Epoxy Cones (Cone angle=5°, fiber orientation angle=80°, initial diameter=118 mm) 255

Side Nodes Displacement in X-Direction for Cotton Fiber/Epoxy Cones (Cone angle=10°, fiber orientation angle=80°, initial diameter=135 mm) 255

Side Nodes Displacement in X-Direction for Cotton Fiber/Epoxy Cones (Cone angle=20°, fiber orientation angle=80°, initial diameter=174 mm) 255

Load-Displacement relation for Surface Nodes of Glass Fiber/Epoxy Cones (Displacement in Y- direction, fiber orientation angle=90°, initial diameters are respectively 96, 92, and 93 mm) 256

Load-Displacement relation for Surface Nodes of Glass Fiber/Epoxy Cones (Displacement in Y- direction, fiber orientation angle=80°, initial diameters are respectively 96, 92, and 93 mm) 257

Load-Displacement relation for Surface Nodes of Glass Fiber/Epoxy Cones (Displacement in Y- direction, fiber orientation angle=90°, initial diameters are respectively 118, 135, and 174 mm) 257

xvii
Load-Displacement Relation for Surface Nodes of Glass Fiber/ Epoxy Cones (Displacement in Y-direction, fiber orientation angle=80°, initial diameters are respectively 118, 135, and 174 mm) .. 258

Load-Displacement Relation for Surface Nodes of Glass Fiber/ Epoxy Cones (Displacement in X-direction, fiber orientation angle=90°, initial diameters are respectively 96, 92, and 93 mm) .. 258

Load-Displacement Relation for Surface Nodes of Glass Fiber/ Epoxy Cones (Displacement in X-direction, fiber orientation angle=80°, initial diameters are respectively 96, 92, and 93 mm) .. 259

Load-Displacement Relation for Surface Nodes of Glass Fiber/ Epoxy Cones (Displacement in X-direction, fiber orientation angle=90°, initial diameters are respectively 118, 135, and 174 mm) .. 259

Load-Displacement Relation for Surface Nodes of Glass Fiber/ Epoxy Cones (Displacement in X-direction, fiber orientation angle=80°, initial diameters are respectively 118, 135, and 174 mm) .. 260

Side Nodes Displacement in Y-Direction for Glass Fiber/ Epoxy Cone (Cone angle=5°, fiber orientation angle=90°, initial diameter=96 mm) .. 261

Side Nodes Displacement in Y-Direction for Glass Fiber/ Epoxy Cone (Cone angle=10°, fiber orientation angle=90°, initial diameter=92 mm) .. 261

Side Nodes Displacement in Y-Direction for Glass Fiber/ Epoxy Cone (Cone angle=20°, fiber orientation angle=90°, initial diameter=93 mm) .. 261

Side Nodes Displacement in Y-Direction for Glass Fiber/ Epoxy Cone (Cone angle=5°, fiber orientation angle=80°, initial diameter=96 mm) .. 262

Side Nodes Displacement in Y-Direction for Glass Fiber/ Epoxy Cone (Cone angle=10°, fiber orientation angle=80°, initial diameter=92 mm) .. 262

Side Nodes Displacement in Y-Direction for Glass Fiber/ Epoxy Cone (Cone angle=20°, fiber orientation angle=80°, initial diameter=93 mm) .. 262

Side Nodes Displacement in Y-Direction for Glass Fiber/ Epoxy Cone (Cone angle=5°, fiber orientation angle=90°, initial diameter=118 mm) .. 263

Side Nodes Displacement in Y-Direction for Glass Fiber/ Epoxy Cone (Cone angle=10°, fiber orientation angle=90°, initial diameter=135 mm) .. 263

Side Nodes Displacement in Y-Direction for Glass Fiber/ Epoxy Cone (Cone angle=20°, fiber orientation angle=90°, initial diameter=174 mm) .. 263
155 Side Nodes Displacement in Y-Direction for Glass Fiber/ Epoxy Cone (Cone angle=5°, fiber orientation angle=80°, initial diameter=118 mm)...... 264

156 Side Nodes Displacement in Y-Direction for Glass Fiber/ Epoxy Cone (Cone angle=10°, fiber orientation angle=80°, initial diameter=135 mm).... 264

157 Side Nodes Displacement in Y-Direction for Glass Fiber/ Epoxy Cone (Cone angle=20°, fiber orientation angle=80°, initial diameter=135 mm) ... 264

158 Side Nodes Displacement in X-Direction for Glass Fiber/ Epoxy Cone (Cone angle=5°, fiber orientation angle=90°, initial diameter=96 mm)....... 265

159 Side Nodes Displacement in X-Direction for Glass Fiber/ Epoxy Cone (Cone angle=10°, fiber orientation angle=90°, initial diameter=92 mm) 265

160 Side Nodes Displacement in X-Direction for Glass Fiber/ Epoxy Cone (Cone angle=20°, fiber orientation angle=90°, initial diameter=93 mm) 265

161 Side Nodes Displacement in X-Direction for Glass Fiber/ Epoxy Cone (Cone angle=5°, fiber orientation angle=80°, initial diameter=96 mm)....... 266

162 Side Nodes Displacement in X-Direction for Glass Fiber/ Epoxy Cone (Cone angle=10°, fiber orientation angle=80°, initial diameter=92 mm) 266

163 Side Nodes Displacement in X-Direction for Glass Fiber/ Epoxy Cone (Cone angle=20°, fiber orientation angle=80°, initial diameter=93 mm) 266

164 Side Nodes Displacement in X-Direction for Glass Fiber/ Epoxy Cone (Cone angle=5°, fiber orientation angle=90°, initial diameter=118 mm)...... 267

165 Side Nodes Displacement in X-Direction for Glass Fiber/ Epoxy Cone (Cone angle=10°, fiber orientation angle=90°, initial diameter=135 mm) ... 267

166 Side Nodes Displacement in X-Direction for Glass Fiber/ Epoxy Cone (Cone angle=20°, fiber orientation angle=90°, initial diameter=174 mm) ... 267

167 Side Nodes Displacement in X-Direction for Glass Fiber/ Epoxy Cone (Cone angle=5°, fiber orientation angle=80°, initial diameter=118 mm)...... 268

168 Side Nodes Displacement in X-Direction for Glass Fiber/ Epoxy Cone (Cone angle=10°, fiber orientation angle=80°, initial diameter=174 mm) ... 268

169 Side Nodes Displacement in X-Direction For Glass Fiber/ Epoxy Cone (Cone angle=20°, fiber orientation angle=80°, initial diameter=174 mm) ... 268
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Filament Winding Machine Test Rig</td>
<td>98</td>
</tr>
<tr>
<td>2</td>
<td>Mandrels Fabrication</td>
<td>101</td>
</tr>
<tr>
<td>3</td>
<td>Epoxy Resin Moulds</td>
<td>107</td>
</tr>
<tr>
<td>4</td>
<td>Epoxy Resin Specimens</td>
<td>107</td>
</tr>
<tr>
<td>5</td>
<td>Cotton Fiber Tensile Test</td>
<td>109</td>
</tr>
<tr>
<td>6</td>
<td>Glass Fiber Tensile Test</td>
<td>111</td>
</tr>
<tr>
<td>7</td>
<td>Cotton Fiber/ Epoxy Specimens with 90° Fiber Orientation Angle</td>
<td>113</td>
</tr>
<tr>
<td>8</td>
<td>Cotton Fiber/ Epoxy Specimens with 0° Fiber Orientation Angle</td>
<td>114</td>
</tr>
<tr>
<td>9</td>
<td>Glass Fiber/ Epoxy Specimens with 90° Fiber Orientation Angle</td>
<td>116</td>
</tr>
<tr>
<td>10</td>
<td>Glass Fiber/ Epoxy Specimens with 0° Fiber Orientation Angle</td>
<td>116</td>
</tr>
<tr>
<td>11</td>
<td>Computerized Control Instron machine</td>
<td>127</td>
</tr>
<tr>
<td>12</td>
<td>Undeformed Shape for Composite Cylinders (D₁=97.4 mm, D₂=116.2 mm)</td>
<td>129</td>
</tr>
<tr>
<td>13</td>
<td>Deformed Shape for Composite Cylinders (D₁=97.4 mm, D₂=116.2 mm)</td>
<td>130</td>
</tr>
<tr>
<td>14</td>
<td>Composite Cones with Different Fiber Orientation Angles, Parameters, and Different Cone Angles</td>
<td>149</td>
</tr>
<tr>
<td>15</td>
<td>Crushed Composite Cones</td>
<td>149</td>
</tr>
<tr>
<td>16</td>
<td>Undeformed Shape of Composite Cones (Cone angle=5°)</td>
<td>160</td>
</tr>
<tr>
<td>17</td>
<td>Deformed Shape of Composite Cones at Different Immersion Temperatures</td>
<td>160</td>
</tr>
<tr>
<td>18</td>
<td>Undeformed Shape of the Two Combined Composite Cones Arranged in Series</td>
<td>167</td>
</tr>
<tr>
<td>19</td>
<td>Undeformed Shape of the Two Combined Composite Cones Arranged in Parallel</td>
<td>167</td>
</tr>
<tr>
<td>20</td>
<td>Deformed Shape of the Two Combined Composite Cones</td>
<td>174</td>
</tr>
</tbody>
</table>

xx
NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Cross-section area</td>
</tr>
<tr>
<td>D_1, D_2</td>
<td>Internal and External Diameters of the Section Undergoing Crush</td>
</tr>
<tr>
<td>D_1</td>
<td>Initial Diameter of the cone</td>
</tr>
<tr>
<td>E</td>
<td>Young's Modulus</td>
</tr>
<tr>
<td>E_f</td>
<td>Young's Modulus of fiber</td>
</tr>
<tr>
<td>E_m</td>
<td>Young's Modulus of Matrix</td>
</tr>
<tr>
<td>E_s</td>
<td>Specific Energy Absorption</td>
</tr>
<tr>
<td>E_{11} or E_{11}</td>
<td>Longitudinal Young's Modulus (direction-1)</td>
</tr>
<tr>
<td>E_{22} or E_{22}</td>
<td>Transverse Young's Modulus (direction-2)</td>
</tr>
<tr>
<td>E_{13} or E_{13}</td>
<td>Transverse Young's Modulus in the Direction of Laminates Thickness (direction-3)</td>
</tr>
<tr>
<td>E_{xy}</td>
<td>Transverse Young's Modulus at 45° to the Direction-1</td>
</tr>
<tr>
<td>FEM</td>
<td>Finite Element Method</td>
</tr>
<tr>
<td>G_{12}</td>
<td>In-plane Shear Modulus (in the 1-2 Planes)</td>
</tr>
<tr>
<td>G_{13}</td>
<td>Transverse Shear Modulus (in the 1-3 Planes)</td>
</tr>
<tr>
<td>G_{23}</td>
<td>Transverse Shear Modulus (in the 2-3 Planes)</td>
</tr>
<tr>
<td>h_C</td>
<td>Crush Distance</td>
</tr>
<tr>
<td>K</td>
<td>Collapse Ability of the tube</td>
</tr>
<tr>
<td>L</td>
<td>Length</td>
</tr>
<tr>
<td>M, m</td>
<td>Mass</td>
</tr>
<tr>
<td>M_a</td>
<td>Apparent weight gain</td>
</tr>
<tr>
<td>M_g</td>
<td>Net weight gain</td>
</tr>
</tbody>
</table>
M: Weight loss ... kg
N: Rotational Speed .. r.p.m
P: Applied load ... kN
\(\bar{P} \): Mean Crush Load .. kN
PEEK: Polyether ether ketone ...
Q_{ij}: Stiffness Matrix (i, j = 1, 2, ..., 6)
\(r \): Radius ... mm
S_i: Initial Crush Distance ...
S_{ij}: Compliance matrix, (i, j = 1, 2, ..., 6)
S, S, S: Displacements at Arbitrary, Folded Zone, and at Fully Folded Tubes Respectively .. mm
\(t \): Wall Thickness ... mm
V: Carriage Speed ... m/s
V_f: Fiber Volume Fraction ...
V_m: Matrix Volume Fraction ..
W_o: Weight of the dried specimen before immersion gm
W_w: Weight of the wet specimen after immersion gm
W_d: Weight of the dried specimen after immersion gm
\(\varepsilon \): Strain ...
\(\theta \): Fiber orientation angle Relative to a Global Laminate Axis Degree
\(\alpha \): Cone Semivertex Angle .. Degree
\(\sigma \): Crush Stress .. N/m²
\(\sigma \): Mean Crush Stress .. N/m²
\(\sigma_1, \sigma_2, \sigma_3 \) Normal Stress Components in the Direction of 1, 2 and 3 \(\text{N/m}^2 \)

\(\sigma_1, \sigma_5, \sigma_6 \) Shear Stress Components in the Plane of 2-3, 1-3 and 1-2 \(\text{N/m}^2 \)

\(\varepsilon_1, \varepsilon_2, \varepsilon_3 \) Normal Strain Components in the Direction of 1, 2 and 3 \(\text{N/m}^2 \)

\(\varepsilon_4, \varepsilon_5, \varepsilon_6 \) Shear Strain Components in the Plane of 2-3, 1-3 and 1-2 \(\text{N/m}^2 \)

\(\rho \) Density of the Composite material \(\text{(kg/m}^3 \) \(\sum \cdot \sum_{\text{c}} \) Specific Crush Stress \(\text{N m/kg} \)

\(\nu \) Poisson's Ratio

\(\nu_y \) Poisson's Ratio for Transverse Strain in the \(j \) Direction When Stressed in the \(i \) Direction

\(\nu_{12} \) Major Poisson's Ratio

\(\nu_{13} \) Transverse Poisson's Ratio

\(\nu_{23} \) Transverse Poisson's Ratio in the 2-3 Plane

\(\nu_f \) Poisson's Ratio of Fiber

\(\nu_m \) Poisson's Ratio of Matrix
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirements for the degree of Doctor of Philosophy

AN INVESTIGATION OF COTTON/ EPOXY AND GLASS/ EPOXY COMPOSITE CONES SUBJECTED TO AXIAL COMPRESSIVE LOAD

By

ASAD ABDULLAH KHALID

April 1999

Chairman: Associate Professor Ir. Dr. Barkawi Bin Sahari, B.Sc. (Hons), Ph.D. MIEM, P. Eng.

An experimental and finite element investigation of cotton fiber/ epoxy and glass fiber/ epoxy composite cones and cylinders were carried out under axial compressive loading. A filament winding equipment have been designed and fabricated to produce the different cones and cylinders required for this project. Throughout this investigation, cones of 5\(^\circ\), 10\(^\circ\) and 20\(^\circ\) angles, for two fiber orientation angles of 90\(^\circ\) and 80\(^\circ\) were studied. The effect of quasi-static axial compressive load and specific energy absorption for single cylinder and cone were studied. Besides that, the effect of arrangement type for two cones on the standing load and energy absorption were also examined.

The effect of moisture absorption on the load capability and on the energy absorption of the composite cones have been carried out under axial loading. This was carried out for cones of 5\(^\circ\) angle and 90\(^\circ\) fiber orientation angle. Cones tested were preconditioned by total immersion in to a distilled hot water at 35 °C, 50°C, 65°C and 80°C for different periods ranging from 24 hour to saturation time.
Mechanical properties of the composite material were evaluated experimentally by the testing of tensile specimens for composites, fiber and matrix. Another set of specimens were also tested for the moisture content effect.

Results from this study show that cylinders under axial compression tests indicate better stable crushing behavior than cones. For all cases, glass/epoxy cones or cylinders show higher absorption energy than cotton/epoxy type by 5% to 12.5% for the different cases.

It was found that a significant improvement in the crushing load and energy absorption occurs when using single cones of fiber orientation angle of 80° instead of 90° and the difference was very significant when using cones angles of 20° instead of 5°. Cones arranged in ordinary parallel stands higher load of 27.7% and higher specific energy absorption of 28.3% than similar cones arranged in series for glass/epoxy type. These percentages were 29.7% and 29.4% respectively for cotton/epoxy cones.

Comparison for load-displacement relations were done between cones with and without moisture preconditioning. It was found that the crushing energy absorption decreases with increase in moisture content.

Finite element study has also been carried out for similar cones. Surface and side nodes displacements were obtained for cotton and glass/epoxy cones under axial compression loading. The slope of the elastic region for the different cones studied was compared with the experimental results and found in the range between 1.73% to 14.44%.
Abstrak tesis dikemukakan kepada Senat Universiti Putra Malaysia
Sebagai Memenuhi keperluan untuk Ijazah Doktor Falsafah

PENYIASATAN KEATAS KON RENCAM BENANG KAPAS/ EPOXI
DAN KACA/ EPOXI YANG DIBAWAH BEBAN MAMPATAN PAKSI

Oleh

ASAD ABDULLAH KHALID

April 1999

Pengerusi: Professor Madya Ir. Dr. Barkawi Bin Sahuri,
B.Sc. (Hons), Ph.D. MIEM, P. Eng.

Fakulti : Kejuruteraan

Satu eksperimen dan pengkajian unsur terhingga komposit kon dan silinder bagi
gentian kapas/ epoksi dan gentian kaca/ epoksi adalah dijalankan dengan bebanan tekanan
sepaksi. Peralatan belitan filamen direkabentuk dan dipasang untuk menghasilkan kon dan
silinder yang berbeza yang diperlukan untuk projek ini. Melalui pengkajian ini, kon
bersudut 5°, 10° dan 20°, untuk dua orientasi gantian bersudut 90° dan 80° telah dikaji.
Kesan beban tekanan kuasi-statik sepaksi dan penyerapan tenaga spesifik untuk silinder
tunggal dan kon telah dikaji. Selain itu, kesan dari jenis penyesuaian untuk dua kon semasa
beban berdiri dan penyerapan tenaga turut diperiksa.

Kesan penyerapan kelembapan ke atas keupayaan bebanan dan penyerapan tenaga
bagi kon komposit telah dijalankan di bawah beban sepaksi. lanya dijalankan bagi kon
bersudut 5° dan orientasi gentian bersudut 90°. Kon-kon yang diuji telah dirawat dengan
merendam keseluruhannya ke dalam air panas pada suhu 35°, 50°, 65° dan 80° untuk jarak
masa yang berbeza dari 24 jam.
Sifat-sifat mekanikal untuk bahan komposit telah dinilai secara eksperimen dengan ujian tegangan spesimen untuk komposit, gentian dan matriks. Satu set eksperimen yang lain turut diuji untuk kesan kandungan kelembapan.

Keputusan daripada kajian ini menunjukkan bahawa ujian silinder yang ditindaki mampatan sepaksi menunjukkan tingkah-laku perlanggaran stabil yang lebih baik daripada kon. Untuk kesemua kes, kon kaca/epoksi atau silinder menunjukkan penyerapan tenaga yang lebih tinggi berbanding untuk kes yang berbeza.

Diperolehi bahawa peningkatan yang nyata di dalam beban perlanggaran dan penyerapan tenaga muncul ketika menggunakan gentian kon tunggal berorientasikan sudut 80° dibandingkan dengan 90° dan perbezaan memang jelas nyata ketika menggunakan kon bersudut 20° berbanding 5°. Kon-kon yang disusun secara selari menahan beban yang lebih tinggi sebanyak 27.7% dan penyerapan tenaga spesifik yang lebih tinggi sebanyak 28.3% daripada kon-kon yang serupa dan disusun secara bersiri bagi jenis kaca epoksi. Peratusan bagi kon benang kapas/epoksi adalah 29.7% dan 29.4% masing-masing.

Perbandingan untuk perhubungan beban-peralihan telah dilakukan di antara kon-kon dengan dan tanpa lembapan. Telah diperolehi bahawa penyerapan tenaga perlanggaran berkurang dengan penambahan kandungan lembapan.

Kajian unsur terhingga juga dilakukan untuk kon-kon yang sama. Permukaan dan peralihan titik tepi telah diperolehi untuk benang kapas dan kon kaca/epoksi di bawah beban mampatan sepaksi. Kecuraman kawasan elastik bagi kon berbeza yang dikaji telah dibandingkan dengan keputusan eksperimen dan diperolehi dalam nilai antara 1.73% ke 14.44%.

xxvii