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The economic performance of most processes and certainly their safety and
operability depend to a large extend on how well they are controlled. That is why finding
control means for the complicated Binary Distillation Column process has been attracting
the efforts of many researchers and scientists interested in modeling, simulating and

designing controls for the process.

The CSTC binary distillation column in the form of six DE's has been studied.
Simulations have been carried out to validate the model. Further testing on the Open
Loop and Closed-Loop was done. The model was formulated in the matrix form and
converted to the error coordinate form in order to apply the On-line Riccati control

method, which has been successfully implemented and found to be very satisfactory.

Xiv



Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Master Sains.

KANDUNGAN KAWALAN DI DALAM CSTC "BINARY DISTILLATION"
LAJUR
Oleh
ASAAD ABDALLAH YOUSUF MALIK
Januari 1999
Pengerusi: Dr. Samsul Bahari Mohd Noor

Fakulti: Kejuruteraan

Perlakuan ekonomi kebanyakan proces dan tentu sekali keselamatan dan
kebolehkendalian bergantung secara amnya terhadap bagaimana proces tersebut dikawal.
Yang demikian, mencari kaedah-kaedah pengawalan untuk proces Turus Penyulingan
Binari yang rumit telah menarik usaha dari penyelidik-penyelidik dan saintis yang
berminat dalam permodelan, penyelakuan dan merekabentuk kawalan-kawalan untuk

proces-proces berkenaan.

Turus Penyulingan Binari CSTC dalam bentuk enam persamaan kebezaan telah
dikaji. Penyelakuan-penyelakuan telah dijalankan untuk mengesahkan model tersebut.
Pengujian lanjutan pada gelung-buka dan gelung tertutup telah dilakukan. Model-model
telah dirumuskan dalam bentuk matriks dan ditukarkan ke bentuk kordinat ralat dalam
merangka untuk menggunakan kaedah Kawalan Riccati Dalam Talian yang telah

dilaksanakan dengan berjayanya dan didapati amat memuaskan.
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CHAPTERI

INTRODUCTION

Computer has been used as an essential tool in many control applications,
especially in simulation, after modeling, of processes that have complicated and different

set of parameters.

Distillation is a method of separating miscible components of a solution that have
different boiling points. The fundamental principle underlying distillation is that vapour
created by boiling a mixture is richer in the more volatile component. Distillation systems
can be run in either batch or continuous mode. A batch is charged to the reboiler and the
more volatile component is boiled away. Combining many of these batch distillations
into a column causes the enrichment process to occur continuously in stages, thus
producing a better separation possible than obtained just by a single batch distillation
stage. We call the ratio of the condensate retumed to the column over that removed from

the column the reflux ratio.

The maximum separation is obtained when all the liquid from the condenser is
retumed to the column. When no product is drawn off this is called total reflux. Taking

off some of the reflux as a product reduces the degree of separation obtained.

Distillation process is important in many industries and applications especially in

product separation. The process was very complicated even when it is reduced to its



minimal representation because of its nonlinearity, spatial distribution and unusual
dynamics that can cause enormous apparent differences in the behaviour of the process
under different operating conditions and under only slight design change that is why it

attracts the efforts of many researchers seeking for control means for the process.

A distillation never occurred at equilibrium; i.e. equilibrium between the vapour
and the liquid phase is never obtained, although it is approached. Even working within
limits of minimal order of complexity there remains a considerable choice of options as
regards the type of system to be modeled, the modeling method and exactly where to

make the idealizations of the process in order that analytical progress can be made.

Edwards (1979) derived a lumped-parameter model, for the packed type
distillation column, from the differential equations describing the variation of liquid and

vapour compositions within distillation column separating binary mixtures.

The distillation process remains the most important separation method in
chemical and petroleum industry. It ranges from a single column, separating ideal binary

mixtures, to complex, multi-staged columns separating multi-component mixtures.

Various studies on the design, steady-state behaviour as well as dynamic
characteristics of distillation columns have been carried out. At the same time, studies on

modeling, simulation and control have also been progressing.



All studies on distillation columns aim at improving the process so that it can be
run effectively and efficiently i.e. to yield better quality product with a lower energy
consumption. In achieving this there are always conflict between chemical engineers and
control engineers in such a way that, the former have been trying to include every details
of the process in order to get a better representation of the process, whilst the later tend to
simplify and generalize the model and use various control strategy to overcome any

discrepancies between the model developed and the real process.

Previous researchers considered columns of both the packed and tray varieties and
studied their similarities and differences. There are five main components in the
distillation column, namely, the reboiler, stripper, rectifier, condenser and accumulator.
Each component plays an important role in the process. Figure 2 shows packed
distillation column, figure 3 shows tray type whilst figure 1 shows the basic distillation

column.

This research concentrates on the packed type distillation column, formulating the
equations that describe the system behaviour, based on splitting the column into six
hypothetical sections. These six sections are the rectifying vapour section, the rectifying
liquid section, the stripping vapour section, the stripping liquid section, the reboiler and

the accumulator.

The main objectives of this research are:



(1) To rearrange the CSTC model proposed by Edwards and Mohd Noor (1995(a)) in a
six-equation form in such a way that it can be simulated using MATLAB (a powerful
simulation package).

(2) Run simulation tests on the composition model, which are very important as model
validation before control design attempt can be done.

(3) Finally application of an appropriate control method onto the model.

General outlines of this thesis are:

(1) The packed type binary distillation column, objective and general outlines of this
thesis are focussed in Chapter 1.

(2) The distillation process, basic distillation column, modeling and computer simulation
are focussed in Chapter 2.

(3) Modeling and formulation the DE's (Differential Equations) of the process is focussed
in Chapter 3.

(4) Simulation of the obtained equations that represent the system, as a step of system
realization, for validation of the process is focussed in Chapter 4.

(5) Application of the linear proportional control technique to the process, simulating and
obtaining results is focussed in Chapter 5.

(6) Application of the Riccati control technique to the process and comparing it with the
mentioned linear proportional control technique is focussed in Chapter 6.

(7) Conclusions and suggestions for future work are presented in Chapter 7.
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CHAPTER 11

LITERATURE REVIEW

Distillation

Distillation is a highly interacting multivariable process; successful application of
controls requires a detailed analysis of loop interaction using models. It has received
more attention from control engineers, both academic and industrial. It is very common
in chemical plants and petroleum refineries. It is used for the final stages of purification
where products are most valuable and quality specifications most rigid. But it is also most

difficult to control owing to long dead times and time lags.

Distillation is also difficult to understand, leading many theoreticians and
practitioners to come to different conclusion as to how it should be controlled. But this
controversy is partly due to its many faces. The severity of interaction depends on many
factors, and a control system that works well on one separation may be unsatisfactory on
another. Response to disturbance is also quite variable from one column to another, so
that there is no general solution to distillation-column control. Yet there are general

principals, which if followed, will lead to successful control systems.



Basic Distillation Column

Different substances have different molecular sizes and hence different volatility.
This then leads to different boiling points. Evaporation occurs from a given liquid under a
given pressure of surroundings at a rate that increases with temperature. This is due to the

increase with temperature of the so-called saturation vapour pressure (SVP) of the liquid.

The behaviour of the mixture is quite complicated and merits a somewhat
deeper examination for present purpose: In the case of a binary mixture, for instance,
having components 1 and 2, the more volatile being say component 1 then at a given
temperature, the SVP, P1 of pure component 1 will exceed P2 of component 2. However
the actual vapour pressures exerted by the components 1 and 2 by a liquid mixture of
mole-fraction X (of the light component) will be only XP1 and (1-X) P2 respectively
according to Raoult’s law of vapour pressure because of the dilution of each. Now, as
regards the vapour above the liquid under pressure P, at the same temperature, then,
according to Dalton’s low, the partial pressures of each component vapour 1 and 2 will be
YP and (1-Y) P, respectively if Y is the mole-fraction of component 1 in the vapour,
assuming ideal vapours and the absence of other gases. Hence, for equilibrium between
the liquid and vapour mixtures, it follows that, for each component, there must be a
balance of SVP’s of the liquids and the partial pressures of the vapours(Mohd Noor,
1996).

ie.

YP = XP1 @.1)



