UNIVERSITI PUTRA MALAYSIA

BIOLOGY OF SELECTED OPIINE PARASITOIDS (BRACONIDAE) AND THEIR ABUNDANCE RELATIVE TO THE HOST BACTROCERA DORSALIS (HENDEL). ON CARAMBOLA

ISABELO DEL PILAR PALACIO

FP 1991 12
BIOLOGY OF SELECTED OPIINE PARASITIDS (BRACONIDAE)
AND THEIR ABUNDANCE RELATIVE TO THE HOST,
BACTROCERA DORSALIS (HENDEL),
ON CARAMBOLA

By
ISABELO DEL PILAR PALACIO

Thesis Submitted in Fulfilment of the Requirements for the
Degree of Doctor of Philosophy in the Faculty of
Agriculture, Universiti Pertanian Malaysia

September, 1991
ACKNOWLEDGEMENTS

The author expresses his utmost gratitude and indebtedness to his supervisors, Associate Professor Dr. Abdul Ghani Ibrahim and Dr. Rohani Ibrahim, for their guidance and prompt attention to problems encountered in this project.

I am grateful to Dr. Sam-arng Srinilta for the financial support from SEARCA, without which my programme at U.P.M. would have been impossible. Mr. Aziz bin Bahsir is acknowledged for facilitating all requests for financial assistance from SEARCA, and supporting documents for extension of my visa.

The author is indebted to the University of the Philippines Los Baños and Drs. C.R. Baltazar, E.D. Magallona, B.M. Rejesus, R.L. Villareal and R.P. de Guzman for allowing him to go on study leave with pay.

Dr. Yusof Ibrahim, Dr. Ridzwan A. Halim and Mr. Mohammad Said Saad unselfishly extended their expertise in statistics by suggesting the design of the field study. I thank Karim of the Computer Centre, U.P.M., for his assistance in running the SAS Statistics programme during the analysis of the data. Thanks are also due to the staff of the Departments of Plant Protection and Soil Science, Faculty of Agriculture, U.P.M., specially Ahmad Tamsil, Azman, Hapsah, Hishammudin, Jiva,
Manan, Nora, Rajan, Rahman, and Salleh, for providing some of the materials and use of facilities. Alias Awang is credited for the Bahasa Malaysia translation of the abstract.

I also admire the wonderful friendship shown by my countrymen in Serdang, specially Paul Manalo and family, Aisa, and John. I am very grateful to my in-laws, specially Nanay Ven, Tatay Doming and Aida for taking good care of my children during my absence. Thanks are also due to my mother, sister, brothers and Mr. and Mrs. Arcenas for their desire and prayers that I succeed in my studies.

Finally, for the endurance, love and sacrifices of my wife, Vicky, and children, Emmanuel, Mabelle, Melissa and Samuel, this work is dedicated to them.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xix</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xx</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>xxiii</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>I INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II REVIEW OF LITERATURE</td>
<td>6</td>
</tr>
<tr>
<td>Natural Enemies of B. dorsalis</td>
<td>6</td>
</tr>
<tr>
<td>Some Aspects of the Biology of Opiines</td>
<td>12</td>
</tr>
<tr>
<td>Life History and Morphology</td>
<td>12</td>
</tr>
<tr>
<td>Interrelations of Parasitoids</td>
<td>13</td>
</tr>
<tr>
<td>Oviposition Behaviour</td>
<td>14</td>
</tr>
<tr>
<td>Host-Parasitoid Relationships</td>
<td>15</td>
</tr>
<tr>
<td>Effect of Host Age</td>
<td>15</td>
</tr>
<tr>
<td>Defense of the Host Against Parasitoids</td>
<td>16</td>
</tr>
<tr>
<td>Effect of Low Temperatures on Survival</td>
<td>17</td>
</tr>
<tr>
<td>Other Factors Affecting the Field Abundance of B. dorsalis</td>
<td>17</td>
</tr>
<tr>
<td>Assessment of Field Populations</td>
<td>19</td>
</tr>
<tr>
<td>III MATERIALS AND METHODS</td>
<td>22</td>
</tr>
<tr>
<td>Biological Study of Parasitoids</td>
<td>22</td>
</tr>
</tbody>
</table>

iv
Reproduction and Longevity of Adults 139

Fecundity and Effective Parasitisation Rate 139

Population Growth Rate 144

Adult Survival 144

Sex Ratio of Offspring 145

Interrelationships of Parasitoids 154

Level of Parasitisation 154

Survival 154

Effects of Low Temperature on Pupal Survival 165

Field Abundance of Bactrocera dorsalis and Its Opiine Parasitoids in Star Fruit 170

Effects of Fruit Height and Size on the Abundance of B. dorsalis 170

Population Index of the Fruit Fly 179

Species Composition and Relative Abundance of the Opiine Parasitoids 183

Effects of Fruit Height and Size on Parasitoids 186

Seasonal Index of Parasitoids 191

Sex Ratio of the Fruit Fly and Its Parasitoids 202

Effects of Fruit Storage on Development of Fruit Fly and Its Opiine Parasitoids 206

Pupation 206

Adult Emergence and Parasitisation 206

V GENERAL DISCUSSION 211

LITERATURE CITED 224
APPENDICES ... 238
BIOGRAPHICAL SKETCH 248
LIST OF TABLES

Table	Page
1 | Recorded Enemies of Bactrocera dorsalis (Hendel) and Their Alternate Hosts | 7
2 | Level of Parasitisation in B. dorsalis Exposed at Different Ages to the Three Opine Parasitoids Dissected Immediately After Exposure | 49
3 | Hatchability and Mortality of B. dorsalis Eggs Exposed at Different Ages to Parasitisation by B. arisanus and B. persulcatus | 54
4 | Level of Parasitisation in B. dorsalis Exposed at Different Ages to B. arisanus and B. persulcatus Dissected Four Days After Exposure | 58
5 | Level of Parasitisation and Survival of B. longicaudatus in B. dorsalis Parasitised at Different Ages | 62
6 | Weight (mg each) of Unparasitised Puparia of B. dorsalis and Puparia Parasitised by the Three Opine Species at Different Ages | 66
7 | Adult Emergence and Developmental Period of the Three Opine Parasitoids in B. dorsalis Parasitised at Different Ages | 69
8 | Sex Ratio of the Three Opine Parasitoid Adults Reared on B. dorsalis at Different Ages | 72
9 | Measurements (mm) of the Different Stages of Biosteres arisanus (Sonan) | 76
10 | Developmental Parameters of Biosteres arisanus (Sonan) at 26.5 ± 1.5°C and 72.5 ± 7.5% RH | 79
11 | Measurements (mm) of Larval Mandibles of the Three Opine Parasitoids of Bactrocera dorsalis (Hendel) | 83
<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>Level of Parasitisation by Opiine Species on B. dorsalis at Different Fruit Sizes of Star Fruit in the U.P.M. Orchard at Puchong, Selangor, 1986-1988</td>
<td>188</td>
</tr>
<tr>
<td>25</td>
<td>Abundance Among Adult Parasitoids Within the Different Sampling Months in a Star Fruit Orchard at Puchong, Selangor (1986-1988)</td>
<td>192</td>
</tr>
<tr>
<td>26</td>
<td>Sex Ratio of B. dorsalis and Its Opiine Parasitoids at Different Canopy Levels and Fruit Sizes of Star Fruit from U.P.M. Orchard at Puchong, Selangor</td>
<td>203</td>
</tr>
<tr>
<td>27</td>
<td>Sex Ratio of B. dorsalis and Its Opiine Parasitoids at Different Sampling Months in U.P.M. Star Fruit Orchard at Puchong, Selangor</td>
<td>204</td>
</tr>
<tr>
<td>28</td>
<td>Pupation Rate of B. dorsalis in Different Fruit Sizes and Durations of Storage of Field-Collected Star Fruits from the U.P.M. Orchard at Puchong, Selangor</td>
<td>207</td>
</tr>
<tr>
<td>29</td>
<td>Percentage Adult Emergence (Fruit Fly and Parasitoids) at Different Fruit Sizes and Duration of Storage of Field-Collected Star Fruits from the U.P.M. Orchard at Puchong, Selangor</td>
<td>209</td>
</tr>
<tr>
<td>30</td>
<td>Percentage Parasitisation on B. dorsalis by Opiines at Different Fruit Sizes and Durations of Storage of Field-Collected Star Fruits from the U.P.M. Orchard at Puchong, Selangor</td>
<td>210</td>
</tr>
<tr>
<td>31</td>
<td>Comparison of the Number of B. dorsalis Puparia Between Sampling Months in Star Fruit Orchard of the U.P.M. at Puchong, Selangor, 1986-1988</td>
<td>239</td>
</tr>
<tr>
<td>32</td>
<td>Level of Parasitisation by Opiine Species on B. dorsalis at Different Sampling Months in the U.P.M. Star Fruit Orchard at Puchong, Selangor, 1986-1988</td>
<td>241</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>Incidence of Ovipositing Biosteres arisanus (Sonan) on Bactrocera dorsalis (Hendel) at Different Ages. Means within or their sums between exposure times followed by common letter(s) are not significantly different at the 1% level, DMRT based on square-root transformation</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>Incidence of Ovipositing Biosteres longicaudatus Ashmead on Bactrocera dorsalis (Hendel) at Different Ages. Means within or their sums between exposure times followed by common letter(s) are not significantly different at the 1% level, DMRT based on square-root transformation</td>
<td>46</td>
</tr>
<tr>
<td>3</td>
<td>Incidence of Ovipositing Biosteres persulcatus Silvestri on Bactrocera dorsalis (Hendel) at Different Ages. Means within or their sums between exposure times followed by common letter(s) are not significantly different at the 1% level, DMRT based on square-root transformation</td>
<td>47</td>
</tr>
<tr>
<td>4</td>
<td>Egg of Biosteres arisanus (Sonan). cpe, cephalic end; cde, caudal end</td>
<td>75</td>
</tr>
<tr>
<td>5</td>
<td>Incubation Period and Hatchability of Biosteres arisanus (Sonan) Eggs (Based on 100 eggs per observation)</td>
<td>80</td>
</tr>
<tr>
<td>6</td>
<td>First-Instar Larva of Biosteres arisanus (Sonan). A, lateral view; B, ventral view of head; an, antenna; hy, hypostoma; md, mandible; ps, pleurostoma</td>
<td>81</td>
</tr>
<tr>
<td>7</td>
<td>Mandibles of First Through Fourth Larval Instars of Biosteres arisanus (Sonan) (A - D, respectively)</td>
<td>82</td>
</tr>
<tr>
<td>8</td>
<td>Lateral View of the Second-Instar Larva of Biosteres arisanus (Sonan). an, antenna; hint, hind gut; md, mandible</td>
<td>85</td>
</tr>
</tbody>
</table>
Lateral View of the Third-Instar Larva of *Biosteres arisanus* (Sonan). an, antenna; hbg, histoblast of genitalia; hint, hind gut; hy, hypostoma; md, mandible 87

Fourth-Instar Larva of *Biosteres arisanus* (Sonan). A, lateral view of larva; B, frontal view of head; an, antenna; anf, antennal foramen; disp, dorsal intersegmental tubercles; hbg, histoblast of genitalia; hint, hind gut; hy, hypostoma; lbp, labial palp; lbpr, prelabium; lbpt, postlabium; lbrs, labral sclerite; lbs, labial sclerite; md, mandible; ms, metopic suture; mxc, cardo of maxilla; mxp, maxillary palp; ps, pleurostoma; plap, anterior pleurostomal process; so, salivary opening; sp, silk press; spa, abdominal spiracles; spp, prothoracic spiracle; sts, stipital sclerite 88

Dorsal View of Male *Biosteres arisanus* (Sonan) Pupa 90

Male Genitalia of *Biosteres arisanus* (Sonan). A, ventral view of the entire organ; B, aedeagus; Aedap, aedeagal apodeme; Aedmcl, aedeagal muscle; BR, basal ring; Dej, ejaculatory duct; DT, digitus; Enph, endophallus; GC, gonocoxite; Gpr, gonopore; Phtr, phallothreme; Vlb, basal plate of volsella 96

Egg of *Biosteres longicaudatus* Ashmeead. cpe, cephalic end; mi, micropyle; cde, caudal end 97

Incubation Period and Hatchability of *Biosteres longicaudatus* Ashmeead Eggs (Based on 100 eggs per observation) 102

Dorsal View of the First-Instar Larva of *Biosteres longicaudatus* Ashmeead. an, antenna; hc, head capsule; md, mandible; vpp, ventral prothoracic process 103

Mandibles of First Through Fourth Larval Instars of *Biosteres longicaudatus* Ashmeead (A – D, respectively) 104
Lateral View of the Second-Instar Larva of *Biosteres longicaudatus* Ashmead. An, antenna; hint, hind gut; md, mandible 106

Lateral View of the Third-Instar Larva of *Biosteres longicaudatus* Ashmead. An, antenna; hbg, histoblast of genitalia; hint, hind gut; hy, hypostoma; md, mandible; ps, pleurostoma; sts, stipital sclerite 107

Fourth-Instar Larva of *Biosteres longicaudatus* Ashmead. A, lateral view; B, frontal view of head; an, antenna; anf, antennal foramen; ep, epistoma; hbg, histoblast of genitalia; hint, hind gut; hy, hypostoma; hys, sclerotic spur of hypostoma; lbp, labial palp; lbpr, prelabium; lbpt, postlabium; lbrs, labral sclerite; lbs, labial sclerite; md, mandible; ms, metopic suture; mxc, cardo of maxilla; mxp, maxillary palp; ps, pleurostoma; so, salivary opening; sp, silk press; spa, abdominal spiracles; spp, prothoracic spiracle; sts, stipital sclerite 108

Dorsal View of Male *Biosteres longicaudatus* Ashmead Pupa 111

Male Genitalia of *Biosteres longicaudatus* Ashmead. A, ventral view of the entire organ; B, Aedeagus; Aedap, aedeagal apodeme; Aedmcl, aedeagal muscle; BR, basal ring; Dej, ejaculatory duct; DT, digitus; Enph, endophallus; GC, gonocoxite; Gpr, gonopore; Phtr, phalitreme; Vlb, basal plate of volsella 116

Egg of *Biosteres persulcatus* Silvestri. Cpe, cephalic end; cde, caudal end 117

Incubation Period and Hatchability of *Biosteres persulcatus* Silvestri Eggs (Based on 100 eggs per observation) 121

First-Instar Larva of *Biosteres persulcatus* Silvestri. A, lateral view; B, ventral aspect of head; an, antennae; hy, hypostoma; md, mandible; ps, pleurostoma 123
Mandibles of First Through Fourth Larval Instars of *Biosteres persulcatus* Silvestri (A - D, respectively) .. 124

Lateral View of the Second-Instar Larva of *Biosteres persulcatus* Silvestri. an, antenna; hint, hind gut; md, mandible 125

Lateral View of the Third-Instar Larva of *Biosteres persulcatus* Silvestri. an, antenna; hbg, histoblast of genitalia; hint, hind gut; md, mandible 127

Fourth-Instar Larva of *Biosteres persulcatus* Silvestri. A, lateral view; B, frontal view of head; an, antenna; anf, antennal foramen; disp, dorsal intersegmental tubercles; hbg, histoblast of genitalia; hint, hind gut; hy, hypostoma; lbp, labial palp; lbpr, prelabium; lbpt, postlabium; lbrs, labral sclerite; lbs, labial sclerite; md, mandible; ms, metopic suture; mxc, cardo of maxilla; mxp, maxillary palp; ps, pleurostoma; so, salivary opening; sp, silk press; spa, abdominal spiracles; spp, prothoracic spiracle; sts, stipital sclerite .. 128

Dorsal View of Male *Biosteres persulcatus* Silvestri Pupa .. 130

Male Genitalia of *Biosteres persulcatus* Silvestri. A, ventral view of the entire organ; B, aedeagus; Aedap, aedeagal apodeme; Aedmcl, aedeagal muscle; BR, basal ring; Dej, ejaculatory duct; DT, digitus; Enph, endophallus; GC, gonocoxite; Gpr, gonopore; Phtr, phallothreme; Vlb, basal plate of volsella .. 136

Daily Mean of Matured Eggs (A); and Fecundity and Progeny Production (B) of *Biosteres arisanus* (Sonan) (Based on 10 females for A, and 20 pairs for B) 140

Daily Mean of Matured Eggs (A); and Fecundity and Progeny Production (B) of *Biosteres longicaudatus* Ashmead (Based on 10 females for A, and 20 pairs for B) 141
Daily Mean of Matured Eggs (A); and Fecundity and Progeny Production (B) of Biosteres _persulcatus_ Silvestri (Based on 10 females for A, and 20 pairs for B) 142

Adult Survival of _Biosteres arisanus_ (Sonan) in Relation to Availability of the Host (Based on 40 adults each) 146

Adult Survival of _Biosteres longicaudatus_ Ashmead in Relation to Availability of the Host (Based on 40 adults each) 147

Adult Survival of _Biosteres persulcatus_ Silvestri in Relation to Availability of the Host (Based on 40 adults each) 148

Incidence of Ovipositing _Biosteres longicaudatus_ Ashmead on Parasitised and Unparasitised Hosts. Means (females per 4 x 5 cm host substrate) within each exposure time were separated by LSD at the 1% level of significance; W/P1 and W/P3, represent hosts previously parasitised by _B. arisanus_ and _B. persulcatus_, respectively) 155

Level of Parasitisation of Hosts by Different Combinations of Parasitoids. A, _Biosteres arisanus_ (Sonan) (P1) and _B. longicaudatus_ Ashmead (P2); B, _B. persulcatus_ Silvestri (P3) and _B. longicaudatus_ (P2); C, _B. arisanus_ (P1), _B. persulcatus_ (P3) and _B. longicaudatus_ (P2); and D, _B. arisanus_ (P1) and _B. persulcatus_ (P3) 156

Incidence of Ovipositing _Biosteres persulcatus_ Silvestri on Parasitised and Unparasitised Hosts. Means (females per 4 x 5 cm host substrate) within each exposure time were separated by T-test at the 1% level of significance; W/P1, represents hosts previously parasitised by _B. arisanus_) 157

Comparison of the Level of Parasitisation by _Biosteres longicaudatus_ Ashmead and _B. persulcatus_ Silvestri for Different Host Conditions. Means of multiple parasitised hosts and overall
parasitisation were separated at the 1% level by DMRT; W/P1, W/P3, and W/P1P3 represent hosts previously parasitised by either or both B. arisanus, and B. persulcatus, respectively 158

Comparison of Egg Hatchability in Multiple Parasitised Host and the Control. Means were separated at the 1% level by T-test for the first two and LSD for the last species; W/P1, W/P3, and W/P1P3 represent hosts previously parasitised by either or both B. arisanus and B. persulcatus, respectively 159

Status of Parasitoid Development Five Days After Oviposition and Comparison of the Number of Larvae that Survived in Multiple Parasitised Hosts. Means were separated at the 1% level by T-test for the first three and LSD for the last species combinations; P1, Biosteres arisanus (Sonan), P2, B. longicaudatus Ashmead, P3, B. persulcatus Silvestri 161

Adult Emergence of Parasitoids for Different Species Combinations. Means were separated at the 1% level by T-test for the first three and LSD for the last species combinations; P1, Biosteres arisanus (Sonan), P2, B. longicaudatus Ashmead, P3, B. persulcatus Silvestri 163

Adult Emergence of Biosteres arisanus (Sonan) from Six-Day-Old Puparia of Bactrocera dorsalis (Hendel) Subjected to Different Low Storage Temperatures. Means between weeks within each temperature were separated at the 1% level by LSD based on arc an sine transformation ... 166

Adult Emergence of Biosteres longicaudatus Ashmead from Six-Day-Old Puparia of Bactrocera dorsalis (Hendel) Subjected to Different Low Storage Temperatures. Means between weeks within each temperature were separated at the 1% level by LSD based on arc an sine transformation ... 167

Adult Emergence of Biosteres persulcatus Silvestri from Six-Day-Old Puparia of
Bactrocera dorsalis (Hendel) Subjected to Different Low Storage Temperatures. Means between weeks within each temperature were separated at the 1% level by LSD based on arc sine transformation... 168

Seasonal Abundance of Bactrocera dorsalis (Hendel) Puparia in Relation to the Host Fruit (based on monthly averages for two years of sampling, 1986-1988; *, Bryant, 1966) .. 180

Monthly Population of Bactrocera dorsalis (Hendel) Puparia: Observed and Estimated by \[Y_1 = 2.69770703 + 0.008(\text{X}_{1i}) + 29.3904(\text{X}_{4i}), R^2 = 0.48**. \] \text{X}_{1i}, grams of host fruit per tree; and \text{X}_{4i}, %RH (included at 0.15 SLE by stepwise procedure); **, highly significant by F-test .. 181

Seasonal Abundance of the Opine Parasitoid Adults (A) in Relation to Its Host Puparia (B), Bactrocera dorsalis (Hendel) (based on monthly averages per 500 g fruits for two years of sampling, 1986-1988; *, Bryant, 1966) 194

Monthly Emergence of Biosteres persulcatus Silvestri Adults: Observed and Estimated by \[Y_1 = 1.8833 + 0.1064(\text{X}_{1i}) - 0.0048(\text{X}_{2i}), R^2 = 0.7427**. \] \text{X}_{1i}, number of puparia; and \text{X}_{2i}, amount of host fruit (included at 0.15 SLE by stepwise procedure); **, highly significant by F-test 195

Monthly Emergence of Biosteres arisanus (Sonan) Adults: Observed and Estimated by \[Y_2 = 454.9316 + 0.1755(\text{X}_{1i}) - 0.0112(\text{X}_{2i}) - 3.8500(\text{X}_{4i}) - 4.2745(\text{X}_{5i}) + 3.8104(\text{X}_{6i}), R^2 = 0.6626**. \] \text{X}_{1i}, number of puparia; \text{X}_{2i}, amount of host fruit; \text{X}_{4i}, air temperature; \text{X}_{5i}, %RH; and \text{X}_{6i}, vegetation temperature (included at 0.15 SLE by stepwise procedure); **, highly significant by F-test 196

Monthly Emergence of Biosteres longicornis Ashmead Adults: Observed and Estimated by \[Y_3 = 222.7116 - \]
2.9326(X4i) - 1.2746(X5i), R² = 0.2504*.
X4i, air temperature; and X5i, %RH (included at 0.15 SLE by stepwise procedure); *, significant at 5% level by F-test ... 197

Monthly Emergence of Opius fletcheri Silvestri Adults: Observed and Estimated by
Y4i = 0.0671 + 0.0168(X1i) - 0.0014(X2i), R² = 0.3993**. X1i, number of puparia; and X2i, amount of host fruit (included at 0.15 SLE by stepwise procedure); **, highly significant by F-test ... 198

Monthly Emergence of Parasitoid Adults (sum of four species): Observed and
Estimated by Y5i = 749.6336 + 0.2754(X1i) - 0.0221(X2i) - 6.4274(X4i) - 6.8013(X5i) + 5.4369(X6i), R² = 0.8037**. X1i, number of puparia; X2i, amount of host fruit; X4i, air temperature; X5i, %RH; and X6i, vegetation temperature (included at 0.15 SLE by stepwise procedure); **, highly significant by F-test ... 199
List of Plates

<table>
<thead>
<tr>
<th>Plate</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>34</td>
</tr>
<tr>
<td>2</td>
<td>34</td>
</tr>
<tr>
<td>3</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>37</td>
</tr>
<tr>
<td>6</td>
<td>94</td>
</tr>
<tr>
<td>7</td>
<td>95</td>
</tr>
<tr>
<td>8</td>
<td>115</td>
</tr>
<tr>
<td>9</td>
<td>134</td>
</tr>
<tr>
<td>10</td>
<td>135</td>
</tr>
</tbody>
</table>

Rearing Cages for Emerging *Bactrocera dorsalis* (Hendel) and Parasitoids in Field Collected Star Fruits (0.07X) 34

Puparia of *Bactrocera dorsalis* (Hendel) Floating on Water (0.30X) 34

Sieveing Puparia of *Bactrocera dorsalis* (Hendel) (0.15X) 35

Extracted Puparia of *Bactrocera dorsalis* (Hendel) (0.35X) 35

Vials for Emerging *Bactrocera dorsalis* (Hendel) and Opiine Parasitoid Adults (0.42X) 37

Dorsal Aspect of Female *Biosteres arisanus* (Sonan) Adult (95X) 94

Lateral Aspect of Male *Biosteres arisanus* (Sonan) Adult (120X) 95

Lateral Aspect of Adult *Biosteres longicaudatus* Ashmead (left, female; and right, male; 65X) 115

Dorsal Aspect of Female *Biosteres persulcatus* Silvestri Adult (90X) 134

Lateral Aspect of Male *Biosteres persulcatus* Silvestri Adult (110X) 135
Abstract of thesis submitted to the Senate of Universiti Pertanian Malaysia in fulfilment of the requirements for the degree of Doctor of Philosophy.

BIOLOGY OF SELECTED OPIINE PARASITOIDs (BRACONIDAE) AND THEIR ABUNDANCE RELATIVE TO THE HOST, BACTROCERA DORSALiS (HENDEL), ON CARAMBOLA

By

ISABELo DEL PILAR PALACiO

SEPTEMBER, 1991

Supervisor : Associate Professor Dr. Abdul Ghani Ibrahim
Co-supervisor : Dr. Rohani Ibrahim
Faculty : Agriculture

The opiines (Hymenoptera: Bracidae) are important parasitoids of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). In an attempt to exploit their potential in the integrated control of this pest, field and laboratory studies were conducted to generate information about the biology and abundance of the major species.

Based on contribution to overall parasitisation, the opiine parasitoids associated with B. dorsalis in star fruit can be arranged in the following order of importance: Biosteres persulcatus Silvestri, 46.53% > B. arisanus (Sonan), 32.82% >
B. longicaudatus Ashmead, 15.69% > **Opilus fletcheri** Silvestri, 4.95%. Field populations of fruit fly and parasitoids had two peak periods yearly, and both were significantly correlated with abundance of their respective host, except **B. longicaudatus**. However, their activities were significantly unaffected by size and height of host fruit in the tree.

Biological studies on three parasitoids, **B. persulcatus**, **B. arisanus** and **B. longicaudatus**, showed that mating and oviposition commenced on the first day of adult emergence. Highest daily mean fecundity and number of adults produced per female occurred on the fourth day of adult life, and coincided with the peak of egg maturation. **Biosteres arisanus** preferred newly laid host eggs (1-12 hr), **B. persulcatus** incubated eggs (24 hr), and **B. longicaudatus** older larvae (96-120 hr) for oviposition. The egg stages of **B. arisanus**, **B. persulcatus** and **B. longicaudatus** averaged 27.9, 27.0 and 53.5 hr, respectively, and the entire developmental period of each species was one day longer for females than males (in parentheses): 17.3 (16.3), 17.6 (16.4), and 17.1 (16.3), respectively. Illustrations and detailed morphological descriptions were made for the different developmental stages of these three species, including their external male genitalia.

The three parasitoids were similar in terms of life-time fecundity (gross and net): **B. arisanus**, 63.19 and 36.65 eggs
per female; B. longicaudatus, 60.16 and 35.48; and B. persulcatus, 56.96 and 35.38; and intrinsic rates of increase (0.30, 0.31, and 0.31, respectively).

Since egg hatchability was unaffected by the presence of other species in multiple parasitised hosts, survival of species was determined by physical combat among the first-instars in the same host. Biosteres longicaudatus prevailed over the two other species, and B. persulcatus over B. arisanus. All the three parasitoids were observed to superparasitise their host. Poor effective parasitisation in B. longicaudatus can be attributed to the high incidence of superparasitisation and encapsulation of its eggs by the host larvae. Encapsulation was not observed on eggs of B. arisanus and B. persulcatus and superparasitisation of host by these species was not as prevalent as in B. longicaudatus.

Six-day-old puparia containing any of the three parasitoids could be stored at 12°C for two weeks and still have about 50% adult emergence.
Abstrak tesis yang dikemukakan kepada Senat Universiti Pertanian Malaysia sebagai memenuhi syarat-syarat untuk ijazah Doktor Falsafah.

BIOLOGI BEBERAPA PARASITOID OPIINE TERPILIH (BRACONIDAE) DAN KAITAN BILANGANNYA DENGAN PERUMAH, BACTROCERA DORSALIS (HENDEL), PADA BELIMBING

Oleh

ISABELO DEL PILAR PALACIO

SEPTMBER, 1991

Penyelia : Profesor Madya Dr. Abdul Ghani Ibrahim
Penyelia Bersama : Dr. Rohani Ibrahim
Fakulti : Pertanian

Parasitoid Opiinae adalah serangga parasit terpenting lalat buah orient, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Dalam usaha untuk mempergunaan potensi parasitoid ini dalam pengawalan bersepadu ke atas perosak ini, kajian di makmal dan di ladang telah dijalankan untuk mengumpul maklumat biologi spesies utama parasitoid ini.

Berdasarkan kepada keseluruhan sumbangan pemparasitannya, parasitoid opiine yang ada kaitan dengan B. dorsalis pada belimbing besi boleh disusun mengikut kepentingannya seperti berikut: Biosteres persulcatus Silvestri, 46.53% > B. arisanus
Populasi lalat buah dan parasitoid di lapangan mempunyai dua puncak dalam masa setahun, dan kedua-duanya berkait rapat secara bererti dengan banyaknya bilangan perumah berkenaan kecuali B. longicaudatus. Bagaimanapun, aktiviti mereka tidak dipengaruhi secara bererti oleh saiz dan kedudukan ketinggian buah pada pokok.

Kajian biologi ke atas tiga parasitoid iaitu, B. persulcatus, B. arisanus dan B. longicaudatus, mendapati kesemua parasitoid ini mengawan dan beroviposit pada hari yang sama dengan kemunculan dewasa. Purata flekunditi harian tertinggi dan progeni dewasa per betina terjadi pada hari yang keempat di dalam hayat hidup dewasa, dan secara kebetulan bersamaan dengan kemuncak kematangan telur di dalam ovarii. Untuk oviposisi Biosteres arisanus lebih menyukai telur yang baru dihasilkan (1-12 jam), B. persulcatus puia pada telur yang telah dieramkan (24 jam), dan B. longicaudatus pada larva yang matang (96-120 jam). Purata eraman telur adalah 27.9, 27.0, dan 53.5 jam, dan jangka masa perkembangan keseluruhan, didapati betina adalah satu hari lebih lama daripada jantan (dalam kurungan): 17.27 (16.31), 17.58 (16.36), dan 17.14 (16.26) hari. Ilustrasi dan huraiian morfologi terperinci telah dibuat bagi setiap peringkat perkembangan ketiga-tiga spesies parasitoid yang dikaji, termasuk morfologi luar genitalia jantan.