

UNIVERSITI PUTRA MALAYSIA

THE IMPORTANCE OF MEALYBUGS AND COLONY COMPATIBILITY IN AUGMENTATION OF Dolichoderus thoracicus (SMITH) (HYMENOPTERA: FORMICIDAE) POPULATIONS IN COCOA

HO CHENG TUCK

FP 1991 10

THE IMPORTANCE OF MEALYBUGS AND COLONY COMPATIBILITY IN AUGMENTATION OF Dolichoderus thoracicus (SMITH) (HYMENOPTERA: FORMICIDAE) POPULATIONS IN COCOA

By

HO CHENG TUCK

Thesis Submitted in Fulfilment of the Requirements for the Degree of Master of Agricultural Science in the Faculty of Agriculture, Universiti Pertanian Malaysia

July 1991

То

Keng See

with gratefulness for your support

indeed,

"Two are better than one for they have a good return for their work."

Ecclesiastes 4: 9

ACKNOWLEDGEMENTS

"I never thought, when I used to read books, what work it was to write them"

Betsy Trotwood

To the above I add "what work it was to write a thesis", particularly one that culminates a part-time Master's programme such as this. The undertaking and completion of this programme would not have been possible without the support of my employers, Golden Hope Plantations Berhad in general and the Director of Research and Development, Mr. Teoh Cheng Hai in particular. To them I am most grateful for permission, financial support, facilities and most important, time to see me through the programme in a relatively compressed period.

Members of my Supervisory Committee, Dr. Khoo Khay Chong, Dr. Yusof Ibrahim and Dr. Jambari Haji Ali have been helpful and supportive both in the securing of equipment, references and materials as well as advice on research directions and the final writing-up of the thesis. Dr. Khoo, in his capacity as Chairman of the Committee, has been instrumental in kindling in me interest in the work of this thesis. This interest was much encouraged by his personal keenness and commitment to the research. If not

iii

anything else, this student has learned much from his exacting but practical approach to his Science.

To my colleagues and friends I also owe a vote of thanks. En. Khairudin Hashim and Dr. Lee Chong Hee have been helpful in advice on format requirements of the thesis and statistical analysis. Mr. Chung Gait Fee and Dr. Peter Ooi helped in supplying me with some of the more esoteric reprints. Prof. M.J. Way, during the several occasions that we met, provided valuable insights into research on ants and their use as biocontrol agents.

Lastly, I am indebted to Messrs. Mohd. Amin Yahaya, Rajesegar and Abdul Latif Ramlan for their able assistance. En. Amin's lifelong knowledge of the fields of Bagan Datoh Estate has been an invaluable source of ideas on site selection and design of experiments specific to situations on the property. Messrs. Rajesegar and Abdul Latif were efficient and reliable in the often "mad rush" to get things done.

iv

TABLE OF CONTENTS

																		Page
ACKNOWLEDGEMENTS	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	iii
LIST OF TABLES .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	x
LIST OF FIGURES	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	xiv
LIST OF PLATES .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	xviii
ABSTRACT	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	xx
ABSTRAK		•	•	•				•	•		•	•		•		•	•	xxiii

CHAPTER

I	INTRODUCTION	1
	Cocoa and <u>Helopeltis</u> in Malaysia	2
	Predators and Parasites of <u>Helopeltis</u>	3
	The Black Cocoa Ant	4
II	LITERATURE REVIEW	8
	Ant-Homoptera Mutualism	8
	Definition	8
	Benefits	8
	The Selection and Development of Ants	
	as Pest Control Agents	12
	Identification of Ant	
	Species	13
	Verification of Usefulness	
	of Ants	14

Page

	Development of Ant Manipulation Techniques	15
	The Case of the Black Cocoa Ant for Control of Mirid Damage in Malaysia •••	17
	The Black Cocoa Ant and its Mutualistic Mealybug	18
	Biology and Food of <u>D</u> . <u>thoracicus</u>	18
	Biology and Food of <u>C</u> . <u>hispidus</u>	21
	Manipulation of the Black Cocoa Ant and its Mutualistic Mealybug - A Review of Methods Employed	23
	Dispersal of Mealybugs	26
	Dispersal by Other Organisms	26
	Dispersal by Locomotion	28
	Dispersal by Wind	30
	Intra-specific Antagonism or Incompatibility Amongst Ants	31
	Factors Influencing Aggression - Territory	32
	Hunger	32
	Presence of Brood	33
	Colony Odour	33
III	THE IMPORTANCE OF C. hispidus FOR	
	MAINTENANCE OF BLACK ANT POPULATIONS	36
	Introduction	36
	Materials and Methods	37

•

Page

Results	42
Discussion	45
MEANS OF SPREAD OF <u>C. hispidus</u> POPULATIONS	49
Introduction	49
Spread of <u>C</u> . <u>hispidus</u> by <u>D</u> . <u>thoracicus</u>	50
Materials and Methods	50
Results and Discussion	56
The Spread of <u>C</u> . <u>hispidus</u> by Crawlers	61
Pattern of Nymph and Adult Mealybug Movement	63
Field Experiment with Ant Excluders	71
Spread of C. <u>hispidus</u> by Wind \ldots	76
Terminal Velocity and Wind Removal of Crawlers from Pod and Peduncle Surfaces	77
Condition For and Pattern of Wind	
Removal of Mealybugs from Pods	85
Condition For and Rate of Crawler Release in the Field	92
Trapping of Wind-Dispersed Crawlers in the Field	96
Importance of <u>D</u> . <u>thoracicus</u> for Establishment of Wind- Dispersed Crawlers	103

IV

	Contribution of Ants Crawlers	
	and Wind in the Spread of <u>C</u> . <u>hispidus</u>	107
	Materials and Methods	107
	Results and Discussion	109
	Conclusions	112
v	ASPECTS OF C. hispidus AUGMENTATION	115
	Introduction	115
	Possibility of Rejection of	
	Introduced <u>C</u> . <u>hispidus</u> by Host Ants	116
	Materials and Methods	116
	Results and Discussion	117
	Frequency and Patterns of <u>C. hispidus</u> Augmentation for Optimum Spread	121
	Materials and Methods	121
	Results and Discussion	126
	Conclusions	135
VI	THE IMPORTANCE OF COLONY COMPATIBILITY IN D. thoracicus	107
	AUGMENTATION EFFORTS	137
	Introduction	137
	Assessment of Compatibility between Strong Indigenous Populations and Immigrant Populations from Various	
	Distances	138
	Materials and Methods	138
	Results and Discussion	142

Assessment of Compatibility between Introduced Populations and Immigrant Populations from Various Distances . . . 153 Materials and Methods 153 Results and Discussion 154 160 GENERAL DISCUSSION AND CONCLUSION VII 162 170 APPENDICES 184 VITA 206

LIST OF TABLES

Table		Page
1	Nest Occupancy and Mealybug Activity of Honeydew and Unrestricted Feeding Ant-Mealybug Communities with Weeks	43
2	Nest Occupancy Of and Mealybug Activity About Isolated Ant Nests with Weeks	44
3	Mean Weight (g) per 200 Worker Ants with Weeks in Artificial Nests that were Sustained on Honeydew Only and Unrestricted Food Source	46
4	Weight of Worker Ants with Weeks in Isolated Artificial Nests	46
5	Composition of <u>D</u> . <u>thoracicus</u> in Artificial Nests that were Sustained for Two Months on Honeydew Only and Unrestricted Food Source	47
6	Composition of <u>D</u> . <u>thoracicus</u> in Isolated Artificial Nests after Two Months of Starvation	47
7	Mean Number Adult Mealybugs per Donor Pod in Experiment that Incorporated Combina- tions of Mealybug and Ant Exclusion	60
8	Frequency and Duration of Mealybug Transport by <u>D. thoracicus</u>	62
9	Terminal Velocity (cm s ⁻¹) of First Instar Crawlers of <u>C</u> . <u>hispidus</u>	82
10	Mean Number Mealybug Nymphs and Adults Caught on Sticky Traps After Removal at Wind Speed of 8.5 m s ⁻¹ from Cut and Non- replaced and Daily Replaced Pods	88

Table

11	Mean Number Adult Mealybugs per Recipient Pod after Seeding with Mealybugs from the Same Field and from Another Estate	119
12	Details of Individual Plots Used for Evaluation of Mealybug Augmentation Regimes	124
13	Common and Abundant Mealybug Establishment on Week Twenty-six Outside of Trees of Initial Introduction	134
14	Vigour of Strong Indigenous Host Nests Compared With Guest Nests from Various Distances	143
15	Occupancy of Strong Indigenous Host Nests Compared With Guest Nests from Various Distances	144
16	Mean Number Ants Dropping Onto Sticky Traps Below Host and Guest Nests in Environment with Strong Indigenous Populations	145
17	Vigour of Introduced Host Nests Compared With Guest Nests from Various Distances	155
18	Occupancy of Introduced Host Nests Compared With Guest Nests from Various Distances	156
19	Mean Number Ants Dropping Onto Sticky Traps Below Host and Guest Nests in Environment with Introduced Populations	157
20	Mean Number Adult Mealybugs on Recipient Pods that were Subjected to Combinations of Mealybug and Ant Exclusion	185
21	Analysis of Variance for Data of Table 20	186

Table

22	Pattern of Nymph and Adult Me a lybug Movement Under Laboratory and Field Conditions	187
23	Mean Number Adult Mealybugs on Recipient Pods that were Subjected to Combinations of Ant and Mealybug Exclusion	188
24	Analysis of Variance for Data of Table 23	189
25	Mealybug Nymphs and Adults Deposited on Sticky Traps in Field Pods With and Without Attendant Ants	190
26	Mean Number Adult Mealybugs on Recipient Pods that were Subjected to Combinations of Ant Attendance and Barrier Exclusion	191
27	Analysis of Variance for Data of Table 26	192
28	The Mean Number of Adult Mealybugs on Recipient Pods as Influenced by Ants, Crawlers and Wind	193
29	Analysis of Variance for Data of Table 28	194
30	Mean % Mealybug Establishment (Few plus Moderate Scores) with Mealybug Augmentation Regimes	195
31	Analysis of Variance for Data of Table 30	196
32	Mean % Mealybug Establishment (Common plus Abundant Scores) with Mealybug Augmentation Regimes	197
33	Analysis of Variance for Data of Table 32	198
34	Mean % Black Ant Establishment (Few plus Moderate Scores) with Mealybug Augmentation Regimes	199

Page

Table

Page

35	Analysis of Variance for Data of Table 34	200
36	Mean % Black Ant Establishment (Common plus Abundant Scores) with Mealybug Augmentation Regimes	201
37	Analysis of Variance for Data of Table 36	202
38	Analysis of Variance for Data of Table 16	203
39	Analysis of Variance for Data of Table 19	203
40	Composition of <u>D</u> . <u>thoracicus</u> in Host and Guest Nests Thirty Days from Placement of the Latter in Environment with Strong Indigenous Populations	204
41	Composition of <u>D</u> . <u>thoracicus</u> in Host and Guest Nests Thirty Days from Placement of the Latter in Environment with Introduced Populations	205

LIST OF FIGURES

Figure		Page
1	Map of Peninsular Malaysia Showing Locations of Experimental and Sampling Sites	38
2	Experimental Design for Establishment of Importance of Mealybugs in the Maintenance of the Black Cocoa Ant (A) Ants fed on Honeydew Only (B) Uprestricted Feeding	40
	(B) diffestituted reeding	40
3	Details of Mealybug Excluder	51
4	Combinations of Mealybug and Ant Exclusion used for Determining Contribution of Ants in the	5.0
	Spread of Mealybugs	53
5	Mealybugs on Recipient Pods that were Subjected to Combinations of Mealybug and Ant Exclusion	58
6	Experimental Design for Monitoring Pattern of Nymph and Adult Mealybug Movement	64
7	Pattern of Nymph and Adult Mealybug Movement Under Laboratory and Field Conditions in (A) Day Two and (B) Day Four	68
8	Pattern of Nymph and Adult Mealybug Movement Under Laboratory and Field Conditions in (A) Day Six and (B) Day Eight	69
9	Combinations of Ant and Mealybug Exclusion used for Determining Contribution of Crawlers in the Spread of Mealybugs	73
		. •

Figure

10 Mealybugs on Recipient Pods that were Subjected to Combinations of Ant and 75 Mealybug Exclusion First Instar Crawler Removal from 11 (A) Cherelle Surface at Various Wind Speeds (B) Peduncle Surface at Various 84 12 Total Nymphs and % thereof Alive After Removal at Wind Speed of 8.5 m s⁻¹ from Cut and Non-replaced Pods with Days (Totals Pooled from all Replicates) . . 89 13 Total Adults and % thereof Alive After Removal at Wind Speed of 8.5 m s⁻¹ from Cut and Non-replaced Pods with Days (Totals Pooled from all Replicates) . . 90 Mealybug Nymphs and Adults Deposited 14 on Sticky Traps in Field Pods With and Without Attendant Ants 95 15 Schematic Diagram of Crawler Catches at Various Distances from Central Mealybug 101 16 (A) Wind Speed and (B) Rainfall over 102 Twenty-two Days of Trapping 17 Combinations of Ant Attendance and Barrier Exclusion used for Determining Contribution of Wind in the Spread 104 of Mealybugs 18 Mealybugs on Recipient Pods that were Subjected to Combinations of Ant Attendance and Barrier Exclusion 106 19 Experimental Designs for Comparison of Contribution of Ants, Crawlers and

Page

108

Wind in the Spread of C. hispidus . . .

Figure

20	The Contribution of Ants, Crawlers and Wind in the Spread of <u>C. hispidus</u>	110
21	Experimental Design for Verification of Acceptability of Imported Mealybugs	118
22	Stylised Plot Layout for Evaluation of Mealybug Augmentation Regimes	122
23	Mealybug Establishment (Few plus Moderate Scores) with Mealybug Augmentation Regimes	127
24	Mealybug Establishment (Common plus Abundant Scores) with Mealybug Augmentation Regimes	129
25	Black Ant Establishment (Few plus Moderate Scores) with Mealybug Augmentation Regimes	130
26	Black Ant Establishment (Common plus Abundant Scores) with Mealybug Augmentation Regimes	131
27	Composition of <u>D</u> . <u>thoracicus</u> in Host and Guest Nests Thirty Days from Placement of the Latter in Environment with Strong Indigenous Populations (A) Egg (B) Larva	146
28	Composition of <u>D</u> . <u>thoracicus</u> in Host and Guest Nests Thirty Days from Placement of the Latter in Environment with Strong Indigenous Populations (A) Pupa (B) Adult	147
29	Composition of <u>D</u> . <u>thoracicus</u> in Host and Guest Nests Thirty Days from Placement of the Latter in Environment with Introduced Populations	
	(A) Egg (B) Larva	158

Figure

30	Composition of <u>D</u> . <u>thoracicus</u> in Host and Guest Nests Thirty Days from Placement of the Latter in Environment	
	with Introduced Populations	
	(A) Pupa (B) Adult	159

LIST OF PLATES

Plate		Page
1	Ants Traversing Mealybug Excluder with Crawlers (left) not being able to do so	57
2	Close-up of Nymphs and Adult Mealybugs Moving on Branch Surface	66
3	Details of a 30 Mesh Ant Excluder. In Order to Facilitate Photography, Donor and Recipient Pods are Closer than Normal	72
4	Apparatus for Measurement of First Instar Crawler Removal from Cherelle and Peduncle Surfaces at Various Wind Speeds	79
5	Measurement of Nymphs and Adults Removed at Wind Speed of 8.5 m s ⁻¹ from Cut and Non-replaced and Daily Replaced Pods .	86
6	Sticky Trap at Bottom of Mylar Cover Used to Record Mealybug Nymphs and Adults Release from Field Pods	93
7	Details of 14 Mesh Nylon Bag and Leaf Cover Used to Seed Mealybugs on Pods	97
8	Central Mealybug Seeded Tree with Sticky Traps 153 cm Apart Along the Four Compass Directions and 228, 119 and 10 cm Above Ground Level	99
9	Host (left) and Guest (right) Nests on a Single Tree Replicate with Nine 20 x 20 cm Sticky Traps set Diagonally on a 100 x 100 cm Plywood Board below	140
10	Fierce Fighting that Occur when Incompatible Ant Nests (host left and quest right) are Put Together	150

Plate

e

11	Close-up of Fighting between Ants with Legs of the Vanquished being Pulled Off	150
12	Incompatible Guest Nests are Often Raided by Host Ants Resulting in Brood being Cast Out of the Nests	152

Page

Abstract of thesis submitted to the Senate of Universiti Pertanian Malaysia in fulfilment of the requirements for the degree of Master of Agricultural Science.

THE IMPORTANCE OF MEALYBUGS AND COLONY COMPATIBILITY IN AUGMENTATION OF Dolichoderus thoracicus (SMITH) (HYMENOPTERA: FORMICIDAE) POPULATIONS IN COCOA

Ву

HO CHENG TUCK

July 1991

Supervisor : Associate Professor Dr. Khoo Khay Chong

Faculty : Agriculture

In the artificial introduction of the black cocoa ant <u>Dolichoderus thoracicus</u> (Smith) for controlling mirid damage in cocoa in Malaysia, initial establishment of introduced ants were often good but the effect was frequently not sustained. This underscored the need for augmentation of populations of both the ant and its mutualistic mealybug <u>Cataenococcus hispidus</u> (Morrison).

хх

Honeydew of <u>C</u>. <u>hispidus</u> was demonstrated to be the main and preferred source of food of <u>D</u>. <u>thoracicus</u>. This emphasises the need for mealybug establishment prior to ant introduction for success in establishment of the latter.

Transport of <u>C</u>. <u>hispidus</u> by <u>D</u>. <u>thoracicus</u> was established. Transport was the cumulative effect of random occasions of nymphs being carried in the mandibles of worker ants in the general direction of the ant's trails.

Direct spread of <u>C</u>. <u>hispidus</u> was effected by crawlers. Crawlers were most stimulated to do this when mother colonies were stressed, particularly through the dessication of host substrate.

The first instar crawler has the potential to be readily transported by wind, terminal velocity being 42.2 cm s⁻¹. However, they are not readily directly removed by wind, mean wind speed of 18 to 20 m s⁻¹ being needed for complete removal of crawlers from cherelle and peduncle surfaces.

Importance of ants, crawlers and wind in the spread of \underline{C} . <u>hispidus</u> were: ants \equiv crawlers > wind. When combined, the effect of these factors was additive. This resulted in a radial pattern of spread with the edge advancing in amoeboid fashion.

xxi

Foreign <u>C</u>. <u>hispidus</u> was established to be readily accepted by host ants. Mealybugs could thus be collected from any locality for augmentation purpose.

A mealybug augmentation strategy of three introductions of mealybugs at fortnightly intervals into concentric arrangement of trees was found to consistently result in highest establishment of both ants and mealybugs. Based on this, an augmentation strategy that emphasise frequent re-introductions in an increasing radial pattern from a central ant colony is proposed.

Unlike mealybugs, there was clear incompatibility between different <u>D</u>. <u>thoracicus</u> populations. In strong indigenous populations of ants, safe direct augmentation of the ant was limited to within a 100 m radius area. In introduced ant populations, kin populations separated in time and space became antagonistic. Direct augmentation in such situations would be problematic.

xxii

Abstrak tesis yang dikemukakan kepada Senat Universiti Pertanian Malaysia sebagai memenuhi syarat untuk Ijazah Master Sains Pertanian.

KEPENTINGAN KOYA DAN KESERASIAN KOLONI DALAM PENGIMBUHAN POPULASI <u>Dolichoderus</u> thoracicus (SMITH) (HYMENOPTERA: FORMICIDAE) PADA KOKO

Oleh

HO CHENG TUCK

Julai 1991

Penyelia : Profesor Madya Dr. Khoo Khay Chong

Fakulti : Pertanian

Dalam usaha kemasukan secara artifisial semut hitam koko <u>Dolichoderus thoracicus</u> (Smith) untuk pengawalan kerosakan oleh kepinding nyamuk dalam kawasan koko di Malaysia, pertapakan awal semut yang dimasukkan didapati baik, tetapi seringkali tidak berkekalan. Oleh itu, pengimbuhan populasi kedua-dua semut dan mutualisnya, iaitu koya <u>Cataenococcus hispidus</u> (Morrison) perlu dititikberatkan.

Madu rembesan <u>C</u>. <u>hispidus</u> telah didapati menjadi sumber makanan yang utama dan dipilihi oleh semut. Oleh yang demikian pertapakan koya perlu diutamakan sebelum pelepasan semut dilakukan demi kejayaan pertapakan semut tersebut.

Pengangkutan <u>C</u>. <u>hispidus</u> oleh <u>D</u>. <u>thoracicus</u> telah dapat dipastikan. Namun, pengangkutannya cuma berlaku hasil daripada kesan kumulatif pembawaan rambang nimfa-nimfa dengan mandibel semut-semut pekerja di sepanjang tapak jalan mereka.

Penyebaran secara langsung <u>C</u>. <u>hispidus</u> berlaku terutamanya melalui peringkat nimfa. Nimfa-nimfa ini paling kuat terangsang untuk berbuat demikian apabila koloni-koloni induk mengalami kesukaran, terutamanya apabila terjadi pengontangan substrat perumah.

Nimfa instar pertama mempunyai keupayaan yang tinggi untuk disebar oleh angin, dengan halaju terminal 42.2 cm s⁻¹. Bagaimanapun, mereka tidak mudah ditanggalkan oleh angin daripada substrat perumah, di mana kelajuan 18 hingga 20 m s⁻¹ diperlukan untuk penanggalan yang sempurna daripada permukaan cherelle dan tangkai lenggai.

Kepentingan semut, nimfa dan angin dalam penyebaran <u>C</u>. hispidus ialah: semut <u>=</u> nimfa > angin. Apabila digabungkan, kesan

xxiv