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RANDOM STABILITY AND HYPERSTABILITY
OF MULTI-QUADRATIC MAPPINGS

CHOONKIL PARK, ABASALT BODAGHI" AND IDHAM ARIF ALIAS

(Communicated by M. Krni¢)

Abstract. In this paper, we introduce a new quadratic functional equation. In light of this equa-
tion, we define the multi-quadratic mappings and reduce the system of n equations defining the
multi-quadratic mappings to a single equation. We also obtain some stability and hyperstability
results concerning multi-quadratic mappings in the setting of random normed spaces.

1. Introduction

The concept of stability for functional equations arises when we replace the func-
tional equation by an inequality which acts as a perturbation of the equation. In 1940,
Ulam [28] asked the question concerning the stability of group homomorphisms. The
famous Ulam stability problem was partially solved by Hyers [13] for the linear func-
tional equation of Banach spaces. Hyers’ theorem was generalized by Aoki [1] for
additive mappings and by Th. M. Rassias [22] for linear mappings with considering an
unbounded Cauchy difference. A generalization of the Rassias theorem was obtained
by Gévruta [12] by replacing the unbounded Cauchy difference by a general control
function in the spirit of Rassias approach. Next, many mathematicians were attracted
and motivated to investigate the stability problems of functional equations in various
spaces; for more information and details, we refer to some papers and books such as
[21, [3], [14], [15], [17], [19], [20], [21] and [23]. In particular, the stability problem
for quadratic functional equation

O(x+y) +Q(x—y) =20(x) +20(y) (1.1)
has been studied in normed spaces. The generalized Hyers-Ulam stability theorem for
(1.1) and miscellaneous versions of quadratic functional equations and their applica-
tions were proved by many authors which are available for instance in [6], [7], [16],
[25] and [29] the references therein. More results on the stability of functional equa-
tions in random normed spaces can be found in [5] and [18].

n-times
For the set X, we denote X x X x---xX by X". Let V be a commutative
group, W be a linear space, and n > 2 be an integer. Recall from [11] that a mapping
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f: V" — W is called multi-quadratic if it is quadratic (satisfying quadratic functional
equation (1.1)) in each component. It is shown in [30] that the system of functional
equations defining a multi-quadratic mappings can be unified as a single equation. In-
deed, Zhao et al. proved that a mapping f : V" — W is multi-quadratic if and only if
the relation

Y, flatsx)=2" Y fXX2s e ¥nj,) (1.2)

se{—1,1}n J1sjasemin€{1,2}
holds, where x; = (x1j,X2j,...,%,;) € V" with j € {1,2}. Various versions of multi-
quadratic mappings were introduced and studied in [4], [8], [9] and [24].
In this paper, we firstly show that the functional equation

Q(mx+)+Q(mx—y) = Q(x +y)+ Q(x—y) +2 (W’ = 1) Q(x)  (1.3)
is quadratic (m is a fixed integer with m # 0,41) and motivated by (1.3), we define
the multi-quadratic mappings and present a characterization of such mappings. Then,
we study some stability results concerning multi-quadratic mappings in the setting of
random normed spaces. Furthermore, we show that every multi-quadratic mapping
under some conditions can be hyperstable.

2. Preliminaries on random normed spaces

In this section, we state the usual terminology, notations and conventions of the
theory of random normed spaces, as in [26] and [27]. The set of all probability distri-
bution functions is denoted by

At :={F :RU{—e0,00} — [0,1]| F is left-continuous and

nondecreasing on R; where F(0) =0 and F(+) =1}.

Letus define D" :={F € AT|I7F(4e) =1}, where [~ F (x) denotes the left limit
of the function f at the point x. The set AT is partially ordered by the usual pointwise
ordering of functions, that is, F < G if and only if F(z) < G(r) for all r € R. The
maximal element for A" in this order is the distribution function &, given by

() = 0, ifr <0
Bl = 1, ifr>0.

DEFINITION 2.1. ([26]) A mapping 7 : [0,1] X [0,1] — [0,1] is said to be a
continuous triangular norm (briefly, a continuous #-norm) if 7 satisfies the following
conditions:

(i) 7 is commutative and associative;
(i) 7 is continuous;
(iii) 7(a,1)=a forall a € [0,1];
(iv) t(a,b) < t(c,d) whenever a < ¢ and b < d forall a,b,c,d € [0,1].

Typical examples of continuous 7-norms are tp(a,b) = ab, ty(a,b) = min{a,b} and
1.(a,b) = max{a+b—1,0}.
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DEFINITION 2.2. ([27]) A random normed space (RN -space, in short) is a triple
(Z°,u,7), where 2 is a vector space, T is a continuous #-norm, and U is a mapping
from 2" into Dt such that the following conditions hold:

(RN1) p(r) = g(t) forall £ > 0 if and only if x=0;
(RN2) Uex(t) = py(t/|a|) forall xe Z°, o A0 and all 7 > 0;
(RN3) pUyeyy(t+5) = T(e(2), ty(s)) forall x,y € £ andall 7,5 > 0.

Let (27,]-]|) be a normed space. Define the mapping u : 2~ — D™ via u,(t) =

I forall x€ 2 andall # > 0. Then (2", U, Ty) is a random normed space.

1+]]

DEFINITION 2.3. Let (£, u,T) be an RN -space.

(1) A sequence {x,} in 2 is said to be convergent to a point x € 2" if, for every
t >0 and € > 0, there exists a positive integer N such that (1) > 1—¢
whenever n > N ;

(2) A sequence {x,} in 2 is called a Cauchy sequence if, for every r > 0 and
€ > 0, there exists a positive integer N such that f,—y, () > 1 — & whenever
n>=m>=N;

(3) An RN-space (2", u,7) is said to be complete if and only if every Cauchy se-
quence in 2 is convergent to a point in 2.
THEOREM 2.4. ([26]) If (Z,u,T) is an RN -space and {x,} is a sequence such
that x, — x, then 1imy, o Uy, (1) = [ (2).

Fora 7-norm 7 and a given sequence {a,} in [0,1], we define 7}_,a; recursively
1 _ _ n—1
by 7,_jaj=a; and 7}_ja; = ©(7}_ aj,ay) forall n > 2.

3. Characterization of multi-quadratic mappings

In this chapter, we introduce the multi-quadratic mappings and then characterize
them. Here, we indicate an elementary result as follows.

PROPOSITION 3.1. Let V and W be vector spaces over the rational numbers.
Then, a mapping Q : V. — W satisfies functional equation (1.1) if and only if equation
(1.3) is valid for Q, where m is a fixed integer with m # 0,+1.

Proof. (Necessity) Assume that Q satisfies (1.1). It is easy to check that Q(0) =0
and so Q(2x) = 4Q(x) for all x € V. It is also routine to show that Q(mx) = m>Q(x)
for all x € V. Replacing x by mx in (1.1), we have

Q(mx+y) + Q(mx —y) =20(mx) +20(y)

= 2m*Q(x) +20(y)
=20(x) +20(y) +2(m*— 1)0(x)
=0(x+y)+Q(x—y)+2(m* — 1) O(x).
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Therefore, Q satisfies (1.3).
(Sufficiency) Putting y =0 in (1.3), we find
Q(mx) = m*Q(x) 3.1)
for all x € V.. On the other hand, Q(—mx) = (—m)?>Q(x) = m*Q(x) = Q(mx), and so
O(—x) = Q(x). This means that Q is even. Interchanging y by my in (1.3) and using
the eveness of O, we get
Q(mx+my) + Q(mx —my) = Q(x +my) + Q(x — my) +2 (m2 — 1) 0(x)

=0(x+my)+Q(my—x)+2(m*—1)0(x)  (3.2)
for all x,y € V. Substituting (x,y) by (y,x) in (3.2) and applying (3.1), we obtain
mP(Q(x+y) + Q(x )] = Qmx+) + Q(mx—y) +2 (m* 1) Q(y)

= Q(x+y) +Q(x—y) +2 (m* 1) 0(x) +2 (m* — 1) Q(»)
for all x,y € V. It now follows from the above relation that Q satisfies the functional
equation (1.1). O

Throughout this paper, N stands for the set of all positive integers, Ny := NU{0},
R4 :=[0,00). Forany I € No, n €N, g = (q1,...,q2) € {—1,1}" and x = (x1,...,x,)
€ V" we write Ix:= (Ixy,...,Ix,) and gx:= (q1x1,...,qnxn), Where Lx stands, as usual,
for the I/th power of an element x of the commutative group V.

In the sequel, let V and W be vector spaces over the rational numbers, n € N
and x} = (xj1,Xp,...,Xin) € V", where i € {1,2}. We shall denote x! by x; when
no confusion can arise. Let x1,xp € V" and k € Ny with 0 <k < n. Put .# =
{Mw = (N1,...,Ny)| Nj € {x1j£x25,x1;} }, where j € {1,...,n}. Consider

M = { Ny € M| Card{N; : Nj =x,;} =k}.

DEFINITION 3.2. A mapping f: V" — W is said to be n-quadratic or briefly
multi-quadratic if f satisfies (1.3) in each variable.

For such mappings, we use the following notations:

> (), (3.3)

R = //;

f '%kvz Z f ny< (ZEV).

Npe ]
We are going to show that if a mapping f V" — W satisfies the equation

Y flmxi+gx) = Z (2m* — ) fay), (3.4)
ge{—1,1}" k=0

where f () is defined in (3.3) and m is a fixed integer with m # 0,1, then it is
multi-quadratic and vice versa.

Let m be as in (1.3). We say a mapping f : V" — W satisfies the r-power
condition in the jth component if

f(Zl,. sy Zj—1,MZj5 Zj1s .- ,Zn) = mrf(Zl,. s 9Zj—1y3jy Zjt1y e e - ,Zn)7

for all (zj,...,z,) € V". The 2-power condition is sometimes called the quadratic
condition.

We remember that the binomial coefficient for all n,r € Ny with n > r is defined

and denoted by (V) := r!(:ir)! :
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THEOREM 3.3. For a mapping f :V" — W, the following assertions are equiv-
alent:

(i) f is multi-quadratic;

(ii) f satisfies equation (3.4) and the quadratic condition in each variable.

Proof. (1)=(ii) It is easily verified that f satisfies the quadratic condition in all
variables. We now prove that f satisfies equation (3.4) by inductionon n. For n=1, it
is trivial that f satisfies equation (1.3). If (3.4) is valid for some positive integer n > 1,
then,

2 f(mx}fﬂ +‘1xg+l) = D flmd+ g xi i +x201)
ge{-1,1}*! ge{-1,1}"
+ Z S (mx] +qx5, X1 p1 — X2041)
ge{—1,1}"
+2(m—1) Y f(mx]+qxsxia)

ge{-1,1}"
n

:2 2 (2’”2—2)kf(//f1?,x1,n+1+qx2,n+1)

k=0ge{-1,1}

+2m—1)Y (2m2 = 2) (M 31 011)
k=0
n+1

=Y (2m>—2) f (.
k=0
This means that (3.4) holds for n+ 1.
(ii)=-(i) Fix j € {1,...,n}. Putting x5 =0 for all k€ {1,...,n}\{;} in the left
side of (3.4) and using the assumption, we get

=1y mz("_l)[f (xlh...,xlh,',hmxlj—I—xzj,xlh,#h...,xln)
+f(x117...,x17j,17mx1j —x2j,x17j+17...,x1,,)]
— 2"_1[f (mxlh...,mxlh,',hmxlj—I—xzj,mxlh,#h...,mxln)
+f(mx117 Cee XY 1 X j— X0 XY 15 - - - ,mxln)]. (3.5)
Set
f*(xlj7x2j) = f(xllw~~7xl,jfl»xlj+x2j7x1,j+17~~~7x1n)
—l—f(xlh...,xl?j,hxlj —x2j,x17j+17...,x1,,) .
By the above replacements in (3.4), it follows from (3.5) that
2L 2= (X115 ey X1jm 1, X+ X2, X1 15 -5 X1n)
—|—f(x117...,x17j,1,mx1j —x2j,x17j+17...,x1,,)]
= "21 Kn; l) 2 am? — 2)]“} I (x1j,x25)
k=0

n—1
+ [(Z: i) 2" *am® — z)k} Fxin, . xi) + @2m? = 2)"f (x11,. .., X10)
=1
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= (2m2 -2 + 2)n_1f* (X1.,'7)C2j)
n—2 _
+ (2m* —2) [(2m2 e (” . 1) 2Rl (2m® — 2)"1 X, x1n)
k

=0
= (Zmz)nilf*(xlj,)@j) + (2m2 — 2)(21’!’!2 — 2—|—2)"71f(x11, ... ,xln)
= 2" D[ (g, 20) + (2m2 = 2) f (311, -+, X)) (3.6)

Now, relation (3.6) implies that
f(xu,...,xu_l,mxlj+x2j,x17j+1,...,x1n)
+f(x117...,xlh,',hmxlj—xgj,xlh,#h...,xl,,)
= [*(x1j,%2)) + (2m = 2)f (X115, X1n)

This means that f is quadratic in the jth variable. Since j is arbitrary, we obtain the
desired result. [J

4. Random stability of multi-quadratic mappings

In this chapter, we prove the Hyers-Ulam stability of multi-quadratic mappings in
the setting of random normed spaces.

From now on, for a mapping f : V" — W, we consider the difference operator
Df:V'x V" — W by

Df(xi,x) = Y, flmx+qx) — i (zmz_z)kf(///]?)’
ge{—-1,1}" k=0

where f (.2]) is defined in (3.3) and m is a fixed integer with m # 0,=1. With this
notation, we have the next stability result for functional equation (3.4).

THEOREM 4.1. Let V be a linear space, (2 ,A,ty) be an RN -space and
(W, 1, Ty) be a complete RN -space. Suppose that v : V" x V" — % is a mapping

such that for some 0 < o < m*",
Ay(mr0) (1) = Agy(x0) (1) (xeV" 1>0) 4.1
and
I}ig:o Aoy mry) (M) =1 (x1,x €V", 1> 0). (4.2)

If f: V" — W is a mapping satisfying

“@f(xl,xz)(t) = Aly(xl,xz)(t)7 4.3)
Sfor all xy,x, € V" and all t > 0, then there exists a unique solution 2 : V" — W of
(3.4) such that

s (- 200 (1) = Ayeo) (2" (m™ — a)t) (4.4)
for all x € V" and all t > 0. Moreover, if 2 has the quadratic condition in each
variable, then it is a multi-quadratic mapping.
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Proof. Putting x, =0 in (4.3), we have

15 . (t) = Aycp) (1),
(2".7‘(”06)* (22:0 ( X ) 2"*"(2m272)"> f(x))

forall x:=x; € V" and ¢t > 0. An easy computation shows that

3 (") 2R em? —2)k = 2m?).
k=0 k
It follows from (4.5) and (4.6) that
B ) my ) (1) 2 Ay (1),
for all x € V"* and ¢ > 0. Hence, relation (4.5) implies that
n_2n
R pmg 1) (1) > Ay(ro) (2'm™"1)
for all x € V. Substituting x by m”x in (4.8) and applying (4.1), we get

n,_2n 1
u ( s(mr 1) f(m,,x)> (t) = Ay(mrx0) (2 m2np+ )t>

m(P+1)2” m2np

2 Aa{’ w(x7()) <2nm2n(17+1)t>

2n\ P
m
>A 2wt — ) 1),

999

(4.5)

(4.6)

4.7)

(4.8)

(4.9)

for all x € V" and all non-negative integers p. Using inequalities (4.8) and (4.9), we

obtain

1 22l
H( ) <2nm2n Z;) (W) ’)

1
H 1) <2"m2” ! )

> Aly(x,O) (t)a
for all x € V" and all non-negative integers p. In other words,

t

1 p-1( a )’
M2n ZJ:() <m2n>

”(M_f(x)> (1) = Ay(x)

m2np

Interchanging x into m'x in (4.10), we have

t

1 I+p (o \’
2n2n 2]’:[ m2n

)

m2n(p+l) m2nl

K <f<mp+'x) .f(m’X)) (1) = Ay(x0)

(4.10)

.11
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J
for all x € V" and all integers p > 1 > 0. Due to the convergence of Z;;l ( g ) ,

m2n

we see that Ay o) (W) goes to 1 as [ and n tend to infinity, and so
! s ()
g 2n “j=I\ ,2n

{f (") } is a Cauchy sequence in (W, u, Ty ). The completeness of (W, L, Ty) as a

m2np

RN -space implies that the mentioned sequence converges to some point 2(x) € W. It
follows from (4.10) that for each € > 0

W(2(x)-f(x) (1 +€) = T (.U( 2 L) (8),H(f'<mpx> ) (t ))

= 2np m2np
t
1 1 o\
T 240 <m—z>
forall x € V". Letting p to infinity in the above inequality, we deduce that

Z | K (g Linrn) (&), Ay(o.)

m2np

H(2(x)—f(x)) (t+¢e) > A‘I/(LO) (2" (m2n — OC)I) . (4.12)
Taking € — 0 in (4.12), we get (4.4). Moreover, inequality (4.3) implies that
2n
‘umzlnp D f(mPxy,mPxy) (t) 2 A‘I/(mpthpxz) (m pt)’ (4.13)

for all x;,x; € V and all + > 0. Once more, Letting p to infinity in (4.13), by (4.2),
we observe that the mapping 2 satisfies (3.4) . If Q: V" — W is another mapping
satisfies (3.4) and (4.4), then

“(M_M)(I) > min{u(m;&_w) (%) »H(%ﬁ@_w> <%>}

m2np m2np m="P m2np m="P m2np

> Apy(mexoy) (27 m?P (m*" — o))

m2n p L
= Ay(x0)) (( p ) 2 (m™ = OC)’) :

for all x € V"*. Therefore

m2np m2np

m2n P o
> lim Ay 2 Y m —a) ) = 1.
o A (x0) (( o ) (m a))

The relation above shows that 2(x) = Q(x) forall x € V". This completes the proof. [J

-2 (1) = Nim (24 2o (t)

The following corollary is a direct consequences of Theorem 4.1 concerning the
stability of (3.4).

COROLLARY 4.2. Let V be a linear space, (2,A,7y) be an RN -space and
(W, i, Ty) be a complete RN -space. Let also s be a real number such that s € [0,2n)
and zo € Z. If f: V" — W is a mapping such that

>
”’Df(xl,xz)(t) = A(le:lzy (t), (4.14)

il 2o
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Sfor all xy,x, € V" and all t > 0, then there exists a unique solution 2 : V" — W of
(3.4) satisfying
n(, 2n s
Hpw) -2 () = Asy oz (2" (™ =m)t)

]
forall x e V" and all t > 0. In particular, if 2 has the quadratic condition in each

variable, then it is a multi-quadratic mapping.

Proof. Putting y(x1,x;) := (21-221 PN IEY j”S) 70 and applying Theorem 4.1 when
a =m®, we get the desired result. [J

We have the next stability theorem which is analogous to Theorem 4.1 with some-
what different method in the proof.

THEOREM 4.3. Let V be a linear space, (2°,A,ty) be an RN -space and
(W, 1, tp) be a complete RN -space. Suppose that y : V" x V' — % is a mapping
such that for some o > m*",

Ay m1x0) (t) = Ay (1) (xeV" 1>0) (4.15)
and
lim Amzn,,w(m,,th,,xz)(t) =1 (1,00 € V", 1 >0). (4.16)

n—oo

If f: V" — W is a mapping satisfying

“Qf(nm)(t) > A‘I/(Xl’xz)(t)’ (4.17)
for all xy,x, € V" and all t > 0, then there exists a unique solution 2 : V" — W of
(3.4) such that

o — 2" (m?
K200 (1) Z Ay(x0) <+Z> ; (4.18)

forall xe V" and t > 0.

Proof. Putting x, =0 in (4.3), we arrive at relation (4.7) and so

H(pi—mnp(£)) ) 2 Ay (2 0y (277), (4.19)
forall x:=x; € V" and ¢ > 0. It follows from (4.15) and (4.19) that
“(f(x)_mbzf(%))(t) 2 AW(LO) (Z"Ott) . (420)

Replacing x by —5 in (4.20), we get

o \P
ou(manf(mip)_mZn([Hrl)f(mprrl )) (t) 2 Aly()go) <2n (ﬁ) t) )
forall x € V" and ¢ > 0 and all non-negative integers p. Since

=y () = 5w () = ().
J=

we have

1 2=l 7 p2n J
”(f(x)_mZpr(mLp)) Z_n Z ( o ) 1 ZAW(X,O)(I)7 (421)

J=0
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forall x € V"* and ¢ > 0. In other words,

t

‘I’L(f(x)—mz”l’f(r%p)) (t) P Al[/(x,O) L <p 1 [ il (4.22)
21 )y j=0 \ "«

forall x € V"* and ¢ > 0. Substituting x by ﬁ in (4.22), we have

u (1) = A ! 4.23)
(mZzzlf(ﬁ),mZn(erl)f(m;H)) Z Ny (x,0) LZIJFP <m_2">j ) .
o=l \ o
Vi
for all x € V" and all integers p > > 0. Since the series 2‘;":, (%) is conver-
gent, we see that Ay, o) (W) goes to 1 as [ and n tend to infinity, and so
/ z_ﬂzjzt mT

{m*rf (%)} is a Cauchy sequence in (W,u,y). The completeness of (W, i, Ty)
as a RN -space necessitates that the last sequence converges to some point 2(x) € W.
The remaining assertion goes through in a similar method to the corresponding part of
Theorem 4.1. This finishes the proof. [J

COROLLARY 4.4. Let V be a linear space, (% ,A,Ty) be an RN -space and
(W, 1, Tp) be a complete RN -space. Suppose that s is a real number such that s €
[2n,00) and zo € Z . If f: V" — W is a mapping such that

> .
Mo st 2 Mg s ag1e)a ) 424

20
Sfor all xy,x, € V" and all t > 0, then there exists a unique solution 2 : V" — W of
(3.4) satisfying
on (ms _ m2n)
s -200 (1) 2 Dgn_ 1172 (7,% t

forall xe V" and all t > 0.

Proof. Putting y(x1,x;) := (21-221 PN IEY j”S) 70 and applying Theorem 4.1 when
a =m®, we get the desired result. [J

For two sets X and Y, the set of all mappings from X to Y is denoted by Y*.
Let A be a nonempty set, (X,d) be a metric space, y € R4", and .%,.%, be operators
mapping a nonempty set D C X into X" . We say that operator equation

ﬁl(p(al,...,an):ﬁg(p(al,...,an) (4.25)

is y-hyperstable provided every ¢y € D satisfying inequality

d(Fipo(ar,...,an), Fr@p(ai,...,an)) < Ylay,...,an), ap,...,ap €A,
fulfils (4.25); this definition is introduced in [10]. In other words, a functional equation
F is hyperstable if any mapping f satisfying the equation .# approximately is a true

solution of .% . Under some mild conditions, the equation (3.4) can be hyperstable as
follows.
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COROLLARY 4.5. Let V be a linear space, (2 ,A,7y) be an RN -space and
(W,u,ty) be a complete RN -space. Let s;; be non-negative real numbers such that
21-2:1 Yioisij#F2nandzg € Z.Af f: V" — W is a mapping such that

.u@f(xl,xz)(t) = AH,?le'ij:l i 1% 20 (t)

Sfor all x1,x, € V" and all t > 0, then f satisfies (3.4). Furthermore, if 2 has the
quadratic condition in each variable, then it is a multi-quadratic mapping.

Proof. Putting (x;,x;) := [T7-; TT}—, ||xij[|¥z0 in Theorem 4.1 and Theorem
4.3, we obtain the result. [

Acknowledgements. The authors sincerely thank the anonymous reviewer for care-
ful reading and suggesting some related references to improve the quality of the first
draft of paper.

REFERENCES

[11 T. AOKI, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan. 2 (1950),
64-66.
[2] A.BAHYRYCZ,J. OLKO, On stability and hyperstability of an equation characterizing multi-Cauchy-
Jensen mappings, Results Math., (2018) 73:55, doi.org/10.1007/s00025-018-0815-8.
[3] A.BAHYRYCZ, K. CIEPLINSKI, J. OLKO, On an equation characterizing multi Cauchy-Jensen map-
pings and its Hyers-Ulam stability, Acta Math. Sci. Ser. B Engl. Ed., 35 (2015), 1349-1358.
[4] A. BODAGHI, Functional inequalities for generalized multi-quadratic mappings, J. Inequ. Appl.,
2021, 145 (2021), https://doi.org/10.1186/s13660-021-02682-z.
[5] A.BODAGHLI, Stability of a mixed type additive and quartic function equation, Filomat, 28 (8) (2014),
1629-1640.
[6] A. BODAGHI AND 1. A. ALIAS, Approximate ternary quadratic derivations on ternary Banach alge-
bras and C* -ternary rings, Adv. Difference Equ. 2012, Art. No. 11 (2012).
[7]1 A.BODAGHI, I. A. ALIAS AND M. ESHAGHI GORDII, On the stability of quadratic double central-
izers and quadratic multipliers: A fixed point approach, J. Inequal. Appl. 2011, Art ID 957541, 9 pp,
doi:10.1155/2011/957541.
A. BODAGHI, H. MOSHTAGH AND H. DUTTA, Characterization and stability analysis of advanced
multi-quadratic functional equations, Adv. Differ. Equ., 2021, 380 (2021),
https://doi.org/10.1186/513662-021-03541-3.
[91 A.BODAGHI, C. PARK AND S. YUN, Almost multi-quadratic mappings in non-Archimedean spaces,
AIMS Mathematics, 5 (5) (2020), 5230-5239, doi:10.3934/math.2020336.
[10] J. BRZDEK AND K. CIEPLINSKI, Hyperstability and superstability, Abstr. Appl. Anal., 2013, Article
ID 401756, 13 pp.
[11] K. CIEPLINSKI, On the generalized Hyers-Ulam stability of multi-quadratic mappings, Comput.
Math. Appl., 62 (2011), 3418-3426.
[12] P. GAVRUTA, A generalization of the Hyers-Ulam-Rassias stability of approximately additive map-
pings, J. Math. Anal. Appl., 184 (1994), 431-436.
[13] D. H. HYERS, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA., 27
(1941), 222-224.
[14] D.H.HYERS, G. ISAC AND TH. M. RASSIAS, Stability of Functional Equations in Several Variables,
Birkhauser, 1998.
[15] S.-M. JUNG, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Vol. 48,
Springer Optimization and Its Applications, Springer, New York, NY, USA, 2011.
[16] M. K. KANG, Random stability of quadratic functional equations, J. Adv. Physics, 16 (2019), 498—
507.
[17] P. KANNAPPAN, Functional Equations and Inequalities with Applications, Springer, 2009.

[8

[t}


doi.org/10.1007/s00025-018-0815-8
https://doi.org/10.1186/s13660-021-02682-z
doi:10.1155/2011/957541
https://doi.org/10.1186/s13662-021-03541-3
doi:10.3934/math.2020336

1004 C. PARK, A. BODAGHI AND I. A. ALIAS

[18]

[19]
[20]

[21]
[22]

[23]

[24]

[25]
[26]
[27]

[28]
[29]

[30]

M. J. KiM, S. W. SCHIN, D. K1, J. CHANG AND J. H. K1M, Fixed points and random stability of a
generalized Apollonius type quadratic functional equation, Fixed Point Theory Appl., 2011, Art. ID
671514, 11 pp, doi:10.1155/2011/671514.

Y.-H. LEE, S.-M. JUNG AND M. TH. RASSIAS, Uniqueness theorems on functional inequalities
concerning cubic-quadratic-additive equation, J. Math. Inequal., 12 (1) (2018), 43-61.

Y.-H. LEE, S.-M. JUNG AND M. TH. RASSIAS, On an n-dimensional mixed type additive and
quadratic functional equation, Applied Mathematics and Computation, 228 (2014), 13-16.

TH. M. RASSIAS, Functional Equations and Inequalities, Kluwer Academic Publishers, 2000.

TH. M. RASSIAS, On the stability of the linear mapping in Banach space, Proc. Amer. Math. Soc., 72
(2) (1978), 297-300.

P. K. SAHOO AND P. KANNAPPAN, Introduction to Functional Equations, CRC Press, Boca Raton
(2011).

S. SALIMI AND A. BODAGHL, A fixed point application for the stability and hyperstability of multi-
Jensen-quadratic mappings, J. Fixed Point Theory Appl., 22:9 (2020),
https://doi.org/10.1007/s11784-019-0738-3.

S. W. SCHIN, D. K1, J. CHANG, M. J. KIiM AND C. PARK, Stability of quadratic functional equations
in random normed spaces, Korean J. Math. Soc., 18, no. 2 (2010), 395-407.

B. SCHWEIZER AND A. SKLAR, Probabilistic metric spaces, Elsevier, North Holand, New York,
1983.

A. N. SERSTNEV, On the motion of a random normed space, Dokl. Akad. Nauk SSSR, 149 (1963)
280283.

S. M. ULAM, Problems in Modern Mathematics, Chapter VI, Science Ed., Wiley, New York, 1940.
X. YANG, On the stability of quadratic functional equations in F-spaces, J. Func. Spaces, vol. 2016,
Article ID 5636101, 7 pages, http://dx.doi.org/10.1155/2016/5636101.

X.ZHAO, X. YANG AND C.-T. PANG, Solution and stability of the multiquadratic functional equa-
tion, Abstr. Appl. Anal., (2013) Art. ID 415053, 8 pp.

(Received May 2, 2021) Choonkil Park

Research Institute for Natural Sciences
Hanyang University

Seoul 04763, Korea

e-mail: baak@hanyang.ac.kr

Abasalt Bodaghi

Department of Mathematics

Garmsar Branch, Islamic Azad University
Garmsar, Iran

e-mail: abasalt.bodaghi@gmail.com

Idham Arif Alias

Department of Mathematics

Faculty of Science, Universiti Putra Malaysia

43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
e-mail: idham_aa@upm.edu.my

Journal of Mathematical Inequalities

v.ele-math.com

jmi@ele-math.com


doi:10.1155/2011/671514
https://doi.org/10.1007/s11784-019-0738-3
http://dx.doi.org/10.1155/2016/5636101

