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(Communicated by M. Krnić)

Abstract. In this paper, we introduce a new quadratic functional equation. In light of this equa-
tion, we define the multi-quadratic mappings and reduce the system of n equations defining the
multi-quadratic mappings to a single equation. We also obtain some stability and hyperstability
results concerning multi-quadratic mappings in the setting of random normed spaces.

1. Introduction

The concept of stability for functional equations arises when we replace the func-
tional equation by an inequality which acts as a perturbation of the equation. In 1940,
Ulam [28] asked the question concerning the stability of group homomorphisms. The
famous Ulam stability problem was partially solved by Hyers [13] for the linear func-
tional equation of Banach spaces. Hyers’ theorem was generalized by Aoki [1] for
additive mappings and by Th. M. Rassias [22] for linear mappings with considering an
unbounded Cauchy difference. A generalization of the Rassias theorem was obtained
by Găvruţa [12] by replacing the unbounded Cauchy difference by a general control
function in the spirit of Rassias approach. Next, many mathematicians were attracted
and motivated to investigate the stability problems of functional equations in various
spaces; for more information and details, we refer to some papers and books such as
[2], [3], [14], [15], [17], [19], [20], [21] and [23]. In particular, the stability problem
for quadratic functional equation

Q(x+ y)+Q(x− y) = 2Q(x)+2Q(y) (1.1)

has been studied in normed spaces. The generalized Hyers-Ulam stability theorem for
(1.1) and miscellaneous versions of quadratic functional equations and their applica-
tions were proved by many authors which are available for instance in [6], [7], [16],
[25] and [29] the references therein. More results on the stability of functional equa-
tions in random normed spaces can be found in [5] and [18].

For the set X , we denote

n-times︷ ︸︸ ︷
X ×X ×·· ·×X by Xn . Let V be a commutative

group, W be a linear space, and n � 2 be an integer. Recall from [11] that a mapping
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f : Vn −→W is called multi-quadratic if it is quadratic (satisfying quadratic functional
equation (1.1)) in each component. It is shown in [30] that the system of functional
equations defining a multi-quadratic mappings can be unified as a single equation. In-
deed, Zhao et al. proved that a mapping f : Vn −→W is multi-quadratic if and only if
the relation

∑
s∈{−1,1}n

f (x1 + sx2) = 2n ∑
j1, j2,..., jn∈{1,2}

f (x1 j1 ,x2 j2 , . . . ,xn jn) (1.2)

holds, where x j = (x1 j,x2 j, . . . ,xn j) ∈ Vn with j ∈ {1,2} . Various versions of multi-
quadratic mappings were introduced and studied in [4], [8], [9] and [24].

In this paper, we firstly show that the functional equation

Q(mx+ y)+Q(mx− y) = Q(x+ y)+Q(x− y)+2
(
m2−1

)
Q(x) (1.3)

is quadratic (m is a fixed integer with m �= 0,±1) and motivated by (1.3), we define
the multi-quadratic mappings and present a characterization of such mappings. Then,
we study some stability results concerning multi-quadratic mappings in the setting of
random normed spaces. Furthermore, we show that every multi-quadratic mapping
under some conditions can be hyperstable.

2. Preliminaries on random normed spaces

In this section, we state the usual terminology, notations and conventions of the
theory of random normed spaces, as in [26] and [27]. The set of all probability distri-
bution functions is denoted by

Δ+ := {F : R∪{−∞,∞} −→ [0,1]| F is left-continuous and
nondecreasing on R ; where F(0) = 0 and F(+∞) = 1}.

Let us define D+ := {F ∈Δ+| l−F(+∞) = 1} , where l−F(x) denotes the left limit
of the function f at the point x . The set Δ+ is partially ordered by the usual pointwise
ordering of functions, that is, F � G if and only if F(t) � G(t) for all t ∈ R . The
maximal element for Δ+ in this order is the distribution function ε0 given by

ε0(t) =

{
0, if t � 0

1, if t > 0.

DEFINITION 2.1. ([26]) A mapping τ : [0,1]× [0,1] −→ [0,1] is said to be a
continuous triangular norm (briefly, a continuous t -norm) if τ satisfies the following
conditions:

(i) τ is commutative and associative;

(ii) τ is continuous;

(iii) τ(a,1) = a for all a ∈ [0,1] ;

(iv) τ(a,b) � τ(c,d) whenever a � c and b � d for all a,b,c,d ∈ [0,1] .

Typical examples of continuous t -norms are τP(a,b) = ab , τM(a,b) = min{a,b} and
τL(a,b) = max{a+b−1,0} .
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DEFINITION 2.2. ([27]) A random normed space (RN -space, in short) is a triple
(X ,μ ,τ) , where X is a vector space, τ is a continuous t -norm, and μ is a mapping
from X into D+ such that the following conditions hold:

(RN1) μx(t) = ε0(t) for all t > 0 if and only if x = 0;

(RN2) μαx(t) = μx(t/|α|) for all x ∈ X , α �= 0 and all t � 0;

(RN3) μx+y(t + s) � τ(μx(t),μy(s)) for all x,y ∈ X and all t,s � 0.

Let (X ,‖·‖) be a normed space. Define the mapping μ : X −→D+ via μx(t) =
t

t+‖x‖ for all x ∈ X and all t � 0. Then (X ,μ ,τM) is a random normed space.

DEFINITION 2.3. Let (X ,μ ,τ) be an RN -space.

(1) A sequence {xn} in X is said to be convergent to a point x ∈ X if, for every
t > 0 and ε > 0, there exists a positive integer N such that μxn−x(t) > 1− ε
whenever n � N ;

(2) A sequence {xn} in X is called a Cauchy sequence if, for every t > 0 and
ε > 0, there exists a positive integer N such that μxn−xm(t) > 1− ε whenever
n � m � N ;

(3) An RN -space (X ,μ ,τ) is said to be complete if and only if every Cauchy se-
quence in X is convergent to a point in X .

THEOREM 2.4. ([26]) If (X ,μ ,τ) is an RN -space and {xn} is a sequence such
that xn → x , then limn→∞ μxn(t) = μx(t) .

For a t -norm τ and a given sequence {an} in [0,1] , we define τn
j=1a j recursively

by τ1
j=1a j = a1 and τn

j=1a j = τ(τn−1
j=1 a j,an) for all n � 2.

3. Characterization of multi-quadratic mappings

In this chapter, we introduce the multi-quadratic mappings and then characterize
them. Here, we indicate an elementary result as follows.

PROPOSITION 3.1. Let V and W be vector spaces over the rational numbers.
Then, a mapping Q :V −→W satisfies functional equation (1.1) if and only if equation
(1.3) is valid for Q, where m is a fixed integer with m �= 0,±1 .

Proof. (Necessity) Assume that Q satisfies (1.1). It is easy to check that Q(0) = 0
and so Q(2x) = 4Q(x) for all x ∈ V . It is also routine to show that Q(mx) = m2Q(x)
for all x ∈V . Replacing x by mx in (1.1), we have

Q(mx+ y)+Q(mx− y) = 2Q(mx)+2Q(y)

= 2m2Q(x)+2Q(y)

= 2Q(x)+2Q(y)+2(m2−1)Q(x)

= Q(x+ y)+Q(x− y)+2
(
m2 −1

)
Q(x).
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Therefore, Q satisfies (1.3).
(Sufficiency) Putting y = 0 in (1.3), we find

Q(mx) = m2Q(x) (3.1)
for all x ∈ V . On the other hand, Q(−mx) = (−m)2Q(x) = m2Q(x) = Q(mx) , and so
Q(−x) = Q(x) . This means that Q is even. Interchanging y by my in (1.3) and using
the eveness of Q , we get

Q(mx+my)+Q(mx−my) = Q(x+my)+Q(x−my)+2
(
m2−1

)
Q(x)

= Q(x+my)+Q(my− x)+2
(
m2−1

)
Q(x) (3.2)

for all x,y ∈V . Substituting (x,y) by (y,x) in (3.2) and applying (3.1), we obtain
m2[Q(x+ y)+Q(x− y)] = Q(mx+ y)+Q(mx− y)+2

(
m2−1

)
Q(y)

= Q(x+ y)+Q(x− y)+2
(
m2−1

)
Q(x)+2

(
m2−1

)
Q(y)

for all x,y ∈ V . It now follows from the above relation that Q satisfies the functional
equation (1.1). �

Throughout this paper, N stands for the set of all positive integers, N0 := N∪{0} ,
R+ := [0,∞) . For any l ∈ N0 , n ∈ N , q = (q1, . . . ,qn) ∈ {−1,1}n and x = (x1, . . . ,xn)
∈Vn we write lx := (lx1, . . . , lxn) and qx := (q1x1, . . . ,qnxn) , where lx stands, as usual,
for the l th power of an element x of the commutative group V .

In the sequel, let V and W be vector spaces over the rational numbers, n ∈ N

and xn
i = (xi1,xi2, . . . ,xin) ∈ Vn , where i ∈ {1,2} . We shall denote xn

i by xi when
no confusion can arise. Let x1,x2 ∈ Vn and k ∈ N0 with 0 � k � n . Put M ={
Nn = (N1, . . . ,Nn)| Nj ∈ {x1 j ± x2 j,x1 j}

}
, where j ∈ {1, . . . ,n} . Consider

M n
k :=

{
Nn ∈ M | Card{Nj : Nj = x1 j} = k

}
.

DEFINITION 3.2. A mapping f : Vn −→W is said to be n-quadratic or briefly
multi-quadratic if f satisfies (1.3) in each variable.

For such mappings, we use the following notations:
f (M n

k ) := ∑
Nn∈M n

k

f (Nn), (3.3)

f (M n
k ,z) := ∑

Nn∈M n
k

f (Nn,z) (z ∈V ).

We are going to show that if a mapping f : Vn −→W satisfies the equation

∑
q∈{−1,1}n

f (mx1 +qx2) =
n

∑
k=0

(
2m2−2

)k
f (M n

k ) , (3.4)

where f
(
M n

k

)
is defined in (3.3) and m is a fixed integer with m �= 0,±1, then it is

multi-quadratic and vice versa.
Let m be as in (1.3). We say a mapping f : Vn −→ W satisfies the r -power

condition in the j th component if
f (z1, . . . ,z j−1,mzj,z j+1, . . . ,zn) = mr f (z1, . . . ,z j−1,z j,z j+1, . . . ,zn),

for all (z1, . . . ,zn) ∈ Vn . The 2-power condition is sometimes called the quadratic
condition.

We remember that the binomial coefficient for all n,r ∈ N0 with n � r is defined
and denoted by

(n
r

)
:= n!

r!(n−r)! .
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THEOREM 3.3. For a mapping f :Vn −→W , the following assertions are equiv-
alent:

(i) f is multi-quadratic;

(ii) f satisfies equation (3.4) and the quadratic condition in each variable.

Proof. (i)⇒(ii) It is easily verified that f satisfies the quadratic condition in all
variables. We now prove that f satisfies equation (3.4) by induction on n . For n = 1, it
is trivial that f satisfies equation (1.3). If (3.4) is valid for some positive integer n > 1,
then,

∑
q∈{−1,1}n+1

f
(
mxn+1

1 +qxn+1
2

)
= ∑

q∈{−1,1}n

f (mxn
1 +qxn

2,x1,n+1 + x2,n+1)

+ ∑
q∈{−1,1}n

f (mxn
1 +qxn

2,x1,n+1− x2,n+1)

+2
(
m2−1

)
∑

q∈{−1,1}n

f (mxn
1 +qxn

2,x1,n+1)

=
n

∑
k=0

∑
q∈{−1,1}

(
2m2−2

)k
f (M n

k ,x1,n+1 +qx2,n+1)

+2
(
m2−1

) n

∑
k=0

(
2m2−2

)k
f (M n

k ,x1,n+1)

=
n+1

∑
k=0

(
2m2−2

)k
f
(
M n+1

k

)
.

This means that (3.4) holds for n+1.
(ii)⇒(i) Fix j ∈ {1, . . . ,n} . Putting x2k = 0 for all k ∈ {1, . . . ,n}\{ j} in the left

side of (3.4) and using the assumption, we get
2n−1×m2(n−1)[ f

(
x11, . . . ,x1, j−1,mx1 j + x2 j,x1, j+1, . . . ,x1n

)
+ f

(
x11, . . . ,x1, j−1,mx1 j − x2 j,x1, j+1, . . . ,x1n

)
]

= 2n−1[ f
(
mx11, . . . ,mx1, j−1,mx1 j + x2 j,mx1, j+1, . . . ,mx1n

)
+ f

(
mx11, . . . ,mx1, j−1,mx1 j − x2 j,mx1, j+1, . . . ,mx1n

)
]. (3.5)

Set
f ∗(x1 j,x2 j) : = f

(
x11, . . . ,x1, j−1,x1 j + x2 j,x1, j+1, . . . ,x1n

)
+ f

(
x11, . . . ,x1, j−1,x1 j − x2 j,x1, j+1, . . . ,x1n

)
.

By the above replacements in (3.4), it follows from (3.5) that
2n−1×m2(n−1)[ f

(
x11, . . . ,x1, j−1,mx1 j + x2 j,x1, j+1, . . . ,x1n

)
+ f

(
x11, . . . ,x1, j−1,mx1 j − x2 j,x1, j+1, . . . ,x1n

)
]

=
n−1

∑
k=0

[(
n−1

k

)
2n−k−1(2m2−2)k

]
f ∗(x1 j,x2 j)

+
n−1

∑
k=1

[(
n−1
k−1

)
2n−k(2m2−2)k

]
f (x11, . . . ,x1n)+ (2m2−2)n f (x11, . . . ,x1n)
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= (2m2−2+2)n−1 f ∗(x1 j,x2 j)

+ (2m2−2)

[
(2m2−2)n−1 +

n−2

∑
k=0

(
n−1

k

)
2n−k−1× (2m2−2)k

]
f (x11, . . . ,x1n)

= (2m2)n−1 f ∗(x1 j,x2 j)+ (2m2−2)(2m2−2+2)n−1 f (x11, . . . ,x1n)

= 2n−1m2(n−1)[ f ∗(x1 j,x2 j)+ (2m2−2) f (x11, . . . ,x1n)]. (3.6)

Now, relation (3.6) implies that

f
(
x11, . . . ,x1, j−1,mx1 j + x2 j,x1, j+1, . . . ,x1n

)
+ f

(
x11, . . . ,x1, j−1,mx1 j − x2 j,x1, j+1, . . . ,x1n

)
= f ∗(x1 j,x2 j)+ (2m2−2) f (x11, . . . ,x1n) .

This means that f is quadratic in the j th variable. Since j is arbitrary, we obtain the
desired result. �

4. Random stability of multi-quadratic mappings

In this chapter, we prove the Hyers-Ulam stability of multi-quadratic mappings in
the setting of random normed spaces.

From now on, for a mapping f : Vn −→W , we consider the difference operator
D f : Vn×Vn −→W by

D f (x1,x2) := ∑
q∈{−1,1}n

f (mx1 +qx2)−
n

∑
k=0

(
2m2−2

)k
f (M n

k ) ,

where f
(
M n

k

)
is defined in (3.3) and m is a fixed integer with m �= 0,±1. With this

notation, we have the next stability result for functional equation (3.4).

THEOREM 4.1. Let V be a linear space, (Z ,Λ,τM) be an RN -space and
(W,μ ,τM) be a complete RN -space. Suppose that ψ : Vn ×Vn −→ Z is a mapping
such that for some 0 < α < m2n ,

Λψ(mx,0)(t) � Λαψ(x,0)(t) (x ∈Vn, t > 0) (4.1)

and

lim
p→∞

Λψ(mpx1,mpx2)(m
2npt) = 1 (x1,x2 ∈Vn, t > 0). (4.2)

If f : Vn −→W is a mapping satisfying

μD f (x1,x2)(t) � Λψ(x1,x2)(t), (4.3)

for all x1,x2 ∈ Vn and all t > 0 , then there exists a unique solution Q : Vn −→W of
(3.4) such that

μ f (x)−Q(x)(t) � Λψ(x,0)
(
2n(m2n−α)t

)
, (4.4)

for all x ∈ Vn and all t > 0 . Moreover, if Q has the quadratic condition in each
variable, then it is a multi-quadratic mapping.
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Proof. Putting x2 = 0 in (4.3), we have
μ(

2n f (mx)−
(

∑n
k=0

(
n
k

)
2n−k(2m2−2)k

)
f (x)

)(t) � Λψ(x,0) (t) , (4.5)

for all x := x1 ∈Vn and t > 0. An easy computation shows that
n

∑
k=0

(
n
k

)
2n−k(2m2 −2)k = (2m2)n. (4.6)

It follows from (4.5) and (4.6) that
μ(2n f (mx)−(2m2)n f (x))(t) � Λψ(x,0) (t) , (4.7)

for all x ∈Vn and t > 0. Hence, relation (4.5) implies that
μ( 1

m2n f (mx)− f (x)
)(t) � Λψ(x,0)

(
2nm2nt

)
, (4.8)

for all x ∈Vn . Substituting x by mpx in (4.8) and applying (4.1), we get

μ(
f(mp+1x)
m(p+1)2n − f (mpx)

m2np

)(t) � Λψ(mpx,0)

(
2nm2n(p+1)t

)

� Λα pψ(x,0)

(
2nm2n(p+1)t

)
� Λψ(x,0)

(
2nm2n

(
m2n

α

)p

t

)
, (4.9)

for all x ∈ Vn and all non-negative integers p . Using inequalities (4.8) and (4.9), we
obtain

μ( f (mpx)
m2np − f (x)

)
(

1
2nm2n

p−1

∑
j=0

( α
m2n

) j
t

)

= μ(
∑p−1

j=0

(
f(mj+1x)
m( j+1)2n − f(mjx)

m2n j

))
(

1
2nm2n

p−1

∑
j=0

( α
m2n

) j
t

)

� (τM)p−1
j=0

⎛
⎜⎝μ(

f(mj+1x)
m( j+1)2n − f(mjx)

m2n j

)( 1
2nm2n

( α
m2n

) j
t

)⎞⎟⎠
= μ( 1

m2n f (mx)− f (x)
)( 1

2nm2n t

)
� Λψ(x,0)(t),

for all x ∈Vn and all non-negative integers p . In other words,

μ( f (mpx)
m2np − f (x)

)(t) � Λψ(x,0)

⎛
⎜⎝ t

1
2nm2n ∑p−1

j=0

(
α

m2n

) j

⎞
⎟⎠ . (4.10)

Interchanging x into mlx in (4.10), we have

μ(
f (mp+l x)
m2n(p+l) −

f (ml x)
m2nl

)(t) � Λψ(x,0)

⎛
⎜⎝ t

1
2nm2n ∑l+p

j=l

(
α

m2n

) j

⎞
⎟⎠ , (4.11)
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for all x ∈ Vn and all integers p � l � 0. Due to the convergence of ∑∞
j=l

(
α

m2n

) j
,

we see that Λψ(x,0)

(
t

1
2nm2n ∑l+p

j=l

(
α

m2n

) j

)
goes to 1 as l and n tend to infinity, and so{

f (mpx)
m2np

}
is a Cauchy sequence in (W,μ ,τM) . The completeness of (W,μ ,τM) as a

RN -space implies that the mentioned sequence converges to some point Q(x) ∈W . It
follows from (4.10) that for each ε > 0

μ(Q(x)− f (x))(t + ε) � τM

(
μ(

Q(x)− f (mpx)
m2np

)(ε),μ( f (mpx)
m2np − f (x)

)(t)
)

� τM

⎛
⎜⎝μ(

Q(x)− f (mpx)
m2np

)(ε),Λψ(0,x)

⎛
⎜⎝ t

1
2nm2n ∑p−1

j=0

(
α

m2n

) j

⎞
⎟⎠
⎞
⎟⎠ ,

for all x ∈Vn . Letting p to infinity in the above inequality, we deduce that

μ(Q(x)− f (x))(t + ε) � Λψ(x,0)
(
2n(m2n−α)t

)
. (4.12)

Taking ε → 0 in (4.12), we get (4.4). Moreover, inequality (4.3) implies that

μ 1
m2np D f (mpx1,mpx2)

(t) � Λψ(mpx1,mpx2)(m
2npt), (4.13)

for all x1,x2 ∈ V and all t > 0. Once more, Letting p to infinity in (4.13), by (4.2),
we observe that the mapping Q satisfies (3.4) . If Q : Vn −→W is another mapping
satisfies (3.4) and (4.4), then

μ(Q(mpx)
m2np −Q(mpx)

m2np

)(t) � min

{
μ( f (mpx)

m2np −Q(mpx)
m2np

) ( t
2

)
,μ(Q(mpx)

m2np − f (mpx)
m2np

) ( t
2

)}
� Λ(ψ(mpx,0))

(
2n−1m2np(m2n −α)t

)
� Λ(ψ(x,0))

((
m2n

α

)p

2n−1(m2n−α)t
)

,

for all x ∈Vn . Therefore

μQ(x)−Q(x)(t) = lim
p→∞

μ(Q(mpx)
m2np −Q(mpx)

m2np

)(t)
� lim

p→∞
Λ(ψ(x,0))

((
m2n

α

)p

2n−1(m2n −α)t
)

= 1.

The relation above shows that Q(x)= Q(x) for all x∈Vn . This completes the proof. �

The following corollary is a direct consequences of Theorem 4.1 concerning the
stability of (3.4).

COROLLARY 4.2. Let V be a linear space, (Z ,Λ,τM) be an RN -space and
(W,μ ,τM) be a complete RN -space. Let also s be a real number such that s ∈ [0,2n)
and z0 ∈ Z . If f : Vn −→W is a mapping such that

μD f (x1,x2)(t) � Λ(
∑2

i=1 ∑n
j=1 ‖xi j‖s

)
z0

(t), (4.14)
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for all x1,x2 ∈ Vn and all t > 0 , then there exists a unique solution Q : Vn −→W of
(3.4) satisfying

μ f (x)−Q(x)(t) � Λ∑n
j=1 ‖x1 j‖sz0

(
2n(m2n−ms)t

)
,

for all x ∈ Vn and all t > 0 . In particular, if Q has the quadratic condition in each
variable, then it is a multi-quadratic mapping.

Proof. Putting ψ(x1,x2) :=
(

∑2
i=1 ∑n

j=1 ‖xi j‖s
)

z0 and applying Theorem4.1 when

α = ms , we get the desired result. �
We have the next stability theorem which is analogous to Theorem 4.1 with some-

what different method in the proof.

THEOREM 4.3. Let V be a linear space, (Z ,Λ,τM) be an RN -space and
(W,μ ,τM) be a complete RN -space. Suppose that ψ : Vn ×Vn −→ Z is a mapping
such that for some α > m2n ,

Λψ(m−1x,0)(t) � Λψ(x,0)(αt) (x ∈Vn, t > 0) (4.15)

and

lim
n→∞

Λm2npψ(mpx1,mpx2)(t) = 1 (x1,x2 ∈Vn, t > 0). (4.16)

If f : Vn −→W is a mapping satisfying

μD f (x1,x2)(t) � Λψ(x1,x2)(t), (4.17)

for all x1,x2 ∈ Vn and all t > 0 , then there exists a unique solution Q : Vn −→W of
(3.4) such that

μ f (x)−Q(x)(t) � Λψ(x,0)

(
α −2n(m2n)

α
t

)
, (4.18)

for all x ∈Vn and t > 0 .

Proof. Putting x2 = 0 in (4.3), we arrive at relation (4.7) and so

μ( f (x)−m2n f( x
m ))(t) � Λψ( x

m ,0) (2nt) , (4.19)

for all x := x1 ∈Vn and t > 0. It follows from (4.15) and (4.19) that

μ( f (x)−m2n f( x
m ))(t) � Λψ(x,0) (2

nαt) . (4.20)

Replacing x by x
mp in (4.20), we get

μ(
m2np f( x

mp )−m2n(p+1) f
(

x
mp+1

))(t) � Λψ(x,0)

(
2n
( α

m2n

)p
t
)

,

for all x ∈Vn and t > 0 and all non-negative integers p . Since

f (x)−m2np f
( x

mp

)
=

p−1

∑
j=0

m2n j f
( x

mj

)
−m2n( j+1) f

( x
mj+1

)
,

we have

μ( f (x)−m2np f( x
mp ))

(
1
2n

p−1

∑
j=0

(
m2n

α

) j

t

)
� Λψ(x,0)(t), (4.21)
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for all x ∈Vn and t > 0. In other words,

μ( f (x)−m2np f( x
mp ))(t) � Λψ(x,0)

⎛
⎜⎝ t

1
2n ∑p−1

j=0

(
m2n

α

) j

⎞
⎟⎠ , (4.22)

for all x ∈Vn and t > 0. Substituting x by x
ml in (4.22), we have

μ(
m2nl f

(
x

ml

)
−m2n(p+l) f

(
x

mp+l

))(t) � Λψ(x,0)

⎛
⎜⎝ t

1
2n ∑l+p

j=l

(
m2n

α

) j

⎞
⎟⎠ , (4.23)

for all x ∈ Vn and all integers p � l � 0. Since the series ∑∞
j=l

(
m2n

α

) j
is conver-

gent, we see that Λψ(x,0)

(
t

1
2n ∑l+p

j=l

(
m2n

α

) j

)
goes to 1 as l and n tend to infinity, and so{

m2np f
(

x
mp

)}
is a Cauchy sequence in (W,μ ,τM) . The completeness of (W,μ ,τM)

as a RN -space necessitates that the last sequence converges to some point Q(x) ∈W .
The remaining assertion goes through in a similar method to the corresponding part of
Theorem 4.1. This finishes the proof. �

COROLLARY 4.4. Let V be a linear space, (Z ,Λ,τM) be an RN -space and
(W,μ ,τM) be a complete RN -space. Suppose that s is a real number such that s ∈
[2n,∞) and z0 ∈ Z . If f : Vn −→W is a mapping such that

μD f (x1,x2)(t) � Λ(
∑2

i=1 ∑n
j=1 ‖xi j‖s

)
z0

(t) (4.24)

for all x1,x2 ∈ Vn and all t > 0 , then there exists a unique solution Q : Vn −→W of
(3.4) satisfying

μ f (x)−Q(x)(t) � Λ∑n
j=1 ‖x1 j‖s1 j z0

(
2n(ms −m2n)

ms t

)
for all x ∈Vn and all t > 0 .

Proof. Putting ψ(x1,x2) :=
(

∑2
i=1 ∑n

j=1 ‖xi j‖s
)

z0 and applying Theorem4.1 when

α = ms , we get the desired result. �
For two sets X and Y , the set of all mappings from X to Y is denoted by YX .

Let A be a nonempty set, (X ,d) be a metric space, ψ ∈ R
An

+ , and F1,F2 be operators
mapping a nonempty set D ⊂ XA into XAn

. We say that operator equation

F1ϕ(a1, . . . ,an) = F2ϕ(a1, . . . ,an) (4.25)

is ψ -hyperstable provided every ϕ0 ∈ D satisfying inequality

d(F1ϕ0(a1, . . . ,an),F2ϕ0(a1, . . . ,an)) � ψ(a1, . . . ,an), a1, . . . ,an ∈ A,

fulfils (4.25); this definition is introduced in [10]. In other words, a functional equation
F is hyperstable if any mapping f satisfying the equation F approximately is a true
solution of F . Under some mild conditions, the equation (3.4) can be hyperstable as
follows.
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COROLLARY 4.5. Let V be a linear space, (Z ,Λ,τM) be an RN -space and
(W,μ ,τM) be a complete RN -space. Let si j be non-negative real numbers such that
∑2

i=1 ∑n
j=1 si j �= 2n and z0 ∈ Z . If f : Vn −→W is a mapping such that

μD f (x1,x2)(t) � Λ∏2
i=1 ∏n

j=1 ‖xi j‖si j z0
(t)

for all x1,x2 ∈ Vn and all t > 0 , then f satisfies (3.4). Furthermore, if Q has the
quadratic condition in each variable, then it is a multi-quadratic mapping.

Proof. Putting ψ(x1,x2) := ∏2
i=1 ∏n

j=1‖xi j‖si j z0 in Theorem 4.1 and Theorem
4.3, we obtain the result. �
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[12] P. GĂVRUŢA, A generalization of the Hyers-Ulam-Rassias stability of approximately additive map-
pings, J. Math. Anal. Appl., 184 (1994), 431–436.

[13] D. H. HYERS, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA., 27
(1941), 222–224.

[14] D. H. HYERS, G. ISAC AND TH. M. RASSIAS,Stability of Functional Equations in Several Variables,
Birkhauser, 1998.

[15] S.-M. JUNG, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Vol. 48,
Springer Optimization and Its Applications, Springer, New York, NY, USA, 2011.

[16] M. K. KANG, Random stability of quadratic functional equations, J. Adv. Physics, 16 (2019), 498–
507.

[17] P. KANNAPPAN, Functional Equations and Inequalities with Applications, Springer, 2009.

doi.org/10.1007/s00025-018-0815-8
https://doi.org/10.1186/s13660-021-02682-z
doi:10.1155/2011/957541
https://doi.org/10.1186/s13662-021-03541-3
doi:10.3934/math.2020336


1004 C. PARK, A. BODAGHI AND I. A. ALIAS

[18] M. J. KIM, S. W. SCHIN, D. KI, J. CHANG AND J. H. KIM, Fixed points and random stability of a
generalized Apollonius type quadratic functional equation, Fixed Point Theory Appl., 2011, Art. ID
671514, 11 pp, doi:10.1155/2011/671514 .

[19] Y.-H. LEE, S.-M. JUNG AND M. TH. RASSIAS, Uniqueness theorems on functional inequalities
concerning cubic-quadratic-additive equation, J. Math. Inequal., 12 (1) (2018), 43–61.

[20] Y.-H. LEE, S.-M. JUNG AND M. TH. RASSIAS, On an n-dimensional mixed type additive and
quadratic functional equation, Applied Mathematics and Computation, 228 (2014), 13–16.

[21] TH. M. RASSIAS,Functional Equations and Inequalities, Kluwer Academic Publishers, 2000.
[22] TH. M. RASSIAS,On the stability of the linear mapping in Banach space, Proc. Amer. Math. Soc., 72

(2) (1978), 297–300.
[23] P. K. SAHOO AND P. KANNAPPAN, Introduction to Functional Equations, CRC Press, Boca Raton

(2011).
[24] S. SALIMI AND A. BODAGHI, A fixed point application for the stability and hyperstability of multi-

Jensen-quadratic mappings, J. Fixed Point Theory Appl., 22:9 (2020),
https://doi.org/10.1007/s11784-019-0738-3 .

[25] S. W. SCHIN, D. KI, J. CHANG, M. J. KIM AND C. PARK, Stability of quadratic functional equations
in random normed spaces, Korean J. Math. Soc., 18, no. 2 (2010), 395–407.

[26] B. SCHWEIZER AND A. SKLAR, Probabilistic metric spaces, Elsevier, North Holand, New York,
1983.

[27] A. N. S̆ERSTNEV, On the motion of a random normed space, Dokl. Akad. Nauk SSSR, 149 (1963)
280283.

[28] S. M. ULAM, Problems in Modern Mathematics, Chapter VI, Science Ed., Wiley, New York, 1940.
[29] X. YANG, On the stability of quadratic functional equations in F-spaces, J. Func. Spaces, vol. 2016,

Article ID 5636101, 7 pages, http://dx.doi.org/10.1155/2016/5636101 .
[30] X. ZHAO, X. YANG AND C.-T. PANG, Solution and stability of the multiquadratic functional equa-

tion, Abstr. Appl. Anal., (2013) Art. ID 415053, 8 pp.

(Received May 2, 2021) Choonkil Park
Research Institute for Natural Sciences

Hanyang University
Seoul 04763, Korea

e-mail: baak@hanyang.ac.kr

Abasalt Bodaghi
Department of Mathematics

Garmsar Branch, Islamic Azad University
Garmsar, Iran

e-mail: abasalt.bodaghi@gmail.com

Idham Arif Alias
Department of Mathematics

Faculty of Science, Universiti Putra Malaysia
43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

e-mail: idham aa@upm.edu.my

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com

doi:10.1155/2011/671514
https://doi.org/10.1007/s11784-019-0738-3
http://dx.doi.org/10.1155/2016/5636101

