

UNIVERSITI PUTRA MALAYSIA

TOWARDS THE DEVELOPMENT OF A PROTOCOL FOR CRYOPRESERVATION OF EMBRYOS OF RAMBUTAN (NEPHELIUM LAPPACEUM L.)

HIEW YEE HOOI

FP 1991 9

TOWARDS THE DEVELOPMENT OF A PROTOCOL FOR CRYOPRESERVATION OF EMBRYOS OF RAMBUTAN (NEPHELIUM LAPPACEUM L.)

BY

HIEW YEE HOOI

Thesis Submitted in Fulfilment of the Requirements for the Degree of Master of Science in the Faculty of Agriculture Universiti Pertanian Malaysia

MARCH 1991

DEDICATED

to my parents

for their understanding and encouragement which have been a constant source of inspiration for me throughout this study

ACKNOWLEDGEMENTS

Grateful acknowledgement is extended to Universiti Pertanian Malaysia for enabling this study to be carried out.

The author also wishes to express her sincere appreciation to:

Professor Chin Hoong Fong and Dr. Hor Yue Luan, supervisor and co-supervisor of this study, for their counsel and encouragement.

Dr. Zaliha Christine Alang for her permission to use the Plant Tissue Culture Laboratory facilities for carrying out a major portion of this research.

Professor Yap Thoo Chai and Dr. Ridzwan A. Halim for suggestions on statistical analysis of data.

Dr. Baskaran Krishnapillay for his advice and guidance throughout this study.

Encik Abdul Ghani Hashim and Mr. Teoh Peng Kee for their professional photographic work.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	iii
LIST OF TABLES	viii
LIST OF FIGURES	xii
LIST OF PLATES	xiii
LIST OF ABBREVIATIONS	xvi
ABSTRACT	xvii
ABSTRAK	xx

CHAPTER

1	INTRODUCTION	1
2	REVIEW OF LITERATURE	6
	Characteristics of Recalcitrant Seeds	6
	Moisture Content of Recalcitrant Seeds	9
	Desiccation and Chilling Sensitivity of Recalcitrant Seeds	12
	Storage Behaviour of Recalcitrant Seeds of Tropical Tree Fruits	18
	In <u>Vitro</u> Storage of Germplasm Conservation	21
	Nature of Plant Material	23
	Pre-freezing Treatments	25
	Cryoprotection	27
	Freezing	33
	Slow Cooling Method	34
	Rapid Cooling Method	34
	Pre-freezing Method	35

Thawing	39
Recovery	40
Cryopreservation of Zygotic Embryos	41
MATERIALS AND METHODS	45
Study Layout	45
Seed Materials	48
Experimental Procedures	48
Excision of Embryos	48
Regulation of Embryo Moisture	50
Chemicals	51
Preparation of Stock Solutions and Culture Media	51
Incubation of Cultures	53
Preparation of Cryoprotectants	53
Cooling and Thawing Procedures	54
Measurements and Observations	55
Moisture Content	55
Dry Matter Content and Shoot to Root Ratio of <u>In Vitro</u> Grown Seedlings	57
Germination	58
Experiments	59
Selection of Optimal Stage of Fruit Maturity for Excised Embryos	59
Selection of Embryos for Cryopreservation Studies	61

3

PAGE

PAGE

Establishment of a Suitable Medium for the Growth and Development of Excised Rambutan Embryos	63
Desiccation Effects on Whole Seeds and Embryos in Relation to Viability and Storage	66
Use of Cryoprotectants	68
Modification of Culture Medium for Improved Survival and Growth of Cryopreserved Embryos	72
RESULTS	74
Selection of Optimal Stage of Fruit Maturity for Excised Embryos	74
Selection of Embryos for Cryopreservation Studies	82
Establishment of a Suitable Medium for the Growth and Development of Excised Embryos	88
Desiccation Effects on Whole Seeds and Embryos in Relation to Viability and Storage	112
Use of Cryoprotectants	119
Modification of Culture Medium for Improved Survival and Growth of Cryopreserved Embryos	135
DISCUSSION	137
Selection of Optimal Stage of Fruit Maturity for Excised Embryos	137
Selection of Embryos for Cryopreservation Studies	143
Establishment of Suitable Medium for the Growth and Development of Excised Embryos	143

4

5

PAGE

	Desiccation Effects on Whole Seeds and Embryos in Relation to Viability	
	and Storage	147
	Use of Cryoprotectants	151
	Modification of Culture Medium for Improved Survival and Growth of	
	Cryopreserved Embryos	157
6	SUMMARY AND CONCLUSION	159
BIBLIOGRAPHY		163
APPENDIX		180
A	Background of the Fruit (<u>Nephelium lappaceum</u>)	180
В	Murashige and Skoog (1962) Inorganic Salts and Vitamins	191
С	ANOVA Tables	19 2
VITA		209

LIST OF TABLES

TABLE		PAGE
1	Viability Percentage of Embryos Excised from the Three Stages of Fruit Maturity After Five Weeks In Culture	78
2	Categorizing Excised Embryos by Size, from a Random Sample of Seeds Taken from Mature Unripe Fruits	84
3	Fresh Weight and Moisture Content of Excised Embryos from the Various Selection Methods	86
4a	Mean Dry Matter Content of Plantlets Grown <u>In Vitro</u> on Media Containing NAA/Kinetin and With or Without Activated Charcoal	89
4b	Mean Shoot to Root Ratio of Plantlets Grown <u>In Vitro</u> on Media Containing NAA/Kinetin and With or Without Activated Charcoal	90
5a	Mean Dry Matter Content of Plantlets Grown <u>In Vitro</u> on Media Containing NAA/BAP and With or Without Activated Charcoal	99
5b	Mean Shoot to Root Ratio of Plantlets Grown <u>In Vitro</u> on Media Containing NAA/BAP and With or Without Activated Charcoal	100
ба	Mean Dry Matter Content of Plantlets Grown <u>In Vitro</u> on Media Containing NAA/2iP and With or Without Activated Charcoal	105
6b	Mean Shoot to Root Ratio of Plantlets Grown <u>In Vitro</u> on Media Containing NAA/2iP and With or Without Activated Charcoal	106
7	Critical Moisture Content and Survival Percentage of Excised Embryos With and Without Storage in Liquid Nitrogen	120

TABLE

8	Survival Percentage of Excised Embryos After Cryoprotecting in Various Combination of Cryoprotectants for Various Period of Time	123
9a	Survival Percentage of Excised Embryos Cryoprotected for Three Hours Followed by Storage Treatments and Direct Placement in Liquid Nitrogen	125
9b	Survival Percentage of Excised Embryos Cryoprotected for Six Hours Followed by Storage Treatments and Direct Placement in Liquid Nitrogen	126
10a	Moisture Content in Excised Embryos After Cryoprotection and Desiccation for 1, 2, 3, 4 and 5 Hours.	129
10b	Survival Percentage of Cryopreserved Embryos After Cryoprotection and Desiccation for 1, 2, 3, 4 and 5 Hours	129
11	Survival Percentage of Excised Embryos After Six Hours of Cryoprotection Followed by Partial Desiccation for 1 and 2 Hours and Two Methods of Cooling	134
12	ANOVA Table of Viability Percentage of Excised Embryos from Three Stages of Fruit Maturity After Five Weeks In Culture	194
13a	Mean Square Values for the Regression of Moisture Content and Drying Time of Excised Embryos from the Three Stages of Fruit Maturity	195
13b	Mean Square Values for the Regression of Survival Percentage and Moisture Content of Excised Embryos from the Three Stages of Fruit Maturity	195

TABLE

PAGE	

14	Mean Square Values for Mean, Coefficient of Variation of Fresh Weight and Moisture Content of Excised Embryos for the Various Selection Methods	196
15a	ANOVA Table of Mean Dry Matter Content of Plantlets Grown <u>In Vitro</u> on Media Containing NAA/Kinetin and With or Without Activated Charcoal	197
15b	ANOVA Table of Shoot to Root Ratio of Plantlets Grown <u>In Vitro</u> on Media Containing NAA/Kinetin and With or Without Activated Charcoal	198
16a	ANOVA Table of Mean Dry Matter Content of Plantlets Grown <u>In Vitro</u> on Media Containing NAA/BAP and With or Without Activated Charcoal	199
16b	ANOVA Table of Shoot to Root Ratio of Plantlets Grown <u>In Vitro</u> on Media Containing NAA/BAP and With or Without Activated Charcoal	200
17a	ANOVA Table of Mean Dry Matter Content of Plantlets Grown <u>In Vitro</u> on Media Containing NAA/2iP and With or Without Activated Charcoal	201
17b	ANOVA Table of Shoot to Root Ratio of Plantlets Grown <u>In Vitro</u> on Media Containing NAA/2iP and With or Without Activated Charcoal	202
18a	Mean Square Values for the Regression of Moisture Content and Drying Time of Whole Seeds and Embryos Excised from Desiccated Seeds	203

TADLE		PAGE
18b	Mean Square Values for the Regression of Survival Percentage and Moisture Content of Whole Seeds, Embryos Excised from Desiccated Seeds and Excised Embryos	203
19	ANOVA Table of Moisture Content and Survival Percentage of Excised Embryos Desiccated Over a Moisture Range of 10% to 15%	204
20a	ANOVA Table of Survival Percentage of Excised Embryos After Cryoprotecting in Various Combination of Cryoprotectants for Various Period of Time	204
20b	ANOVA Table of Survival Percentage of Excised Embryos After Cryoprotecting in Various Combinations of Cryoprotectants for Various Period of Time	205
21	ANOVA Table of Survival Percentage of Excised Embryos Cryoprotected for Three Hours Followed by Storage Treatments and Direct Placement in Liquid Nitrogen	206
22	ANOVA Table of Survival Percentage of Excised Embryos Cryoprotected for Six Hours Followed by Storage Treatments and Direct Placement in Liquid Nitrogen	207
23	ANOVA Table of Survival Percentage of Cryopreserved Embryos After Cryoprotection and Desiccation for 1, 2, 3, 4 and 5 Hours	208
24	ANOVA Table of Survival Percentage of Excised Embryos After Six Hours of Cryoprotection Followed by Partial Desiccation for 1 and 2 Hours and Two Methods of Cooling	208
	neeneab or coorring	200

xi

LIST OF FIGURES

FIGURE		PAGE
la	Moisture Content of Excised Embryos from Three Stages of Fruit Maturity Over a Desiccation Period of 10 Hours	79
lb	Desiccation Tolerence of Excised Embryos from Three Stages of Fruit Maturity Over a Desiccation Period of 10 Hours	81
2a	Moisture Content of Whole Seeds and Embryos Excised from Them Over a Desiccation Period of 50 Hours	114
2b	Desiccation Tolerence of Whole Seeds and Embryos Excised from Desiccated Seeds	115
2c	Desiccation Tolerence of Embryos Excised Prior To and After Desiccation	116

LIST OF PLATES

PLATE		PAGE
1	Rambutan Seeds (Variety R7)	49
2	Embryos Excised from Rambutan Seeds	49
3	Four Maturity Stages of Fruit (a) Immature Young (b) Mature Unripe (c) Mature Ripe (d) Mature Fully Ripe	75
4	Development of Excised Embryos from the Four Stages of Fruit Maturity After Five Weeks In Culture (a) Immature Young (b) Mature Unripe (c) Mature Ripe (d) Mature Fully Ripe	76
5	Variability in Embryo Size Excised from a Random Sample of Seeds	85
6	Selected Embryo Measuring 3.0 ² -4.0 ² mm in Surface Area/Side Used in the Study	85
7a-b	Growth and Development of Excised Embryos in Medium With and Without Charcoal (With the Presence of (a)0, (b)0.1, (c)1.0 and (d)10.0mg/1 NAA)	92
7c-d	Growth and Development of Excised Embryos in Medium With and Without Charcoal (With the Presence of (a)0, (b)0.1, (c)1.0 and (d)10.0mg/l NAA in Combination With 0.1mg/l Kinetin)	93
7e-f	Growth and Development of Excised Embryos in Medium With and Without Charcoal (With the Presence of (a)0, (b)0.1, (c)1.0 and (d)10.0mg/l NAA in Combination With 1.0mg/l Kinetin)	94
7g-h	Growth and Development of Excised Embryos in Medium With and Without Charcoal (With the Presence of (a)0, (b)0.1, (c)1.0 and (d)10.0mg/l NAA in Combination With 10.0mg/l Kinetin)	95
8a	Plantlet Development in Medium Containing 0.1mg/l Each of NAA and Kinetin in the Absence of Charcoal	96

PLATE

8b	Plantlet Development in Medium Containing 1.0mg/l Each of NAA and Kinetin in the Presence of Charcoal	97
9a	Plantlet Development in Medium Containing 0.lmg/l Each of NAA and BAP in the Absence of Charcoal	102
9b	Plantlet Development in Medium Containing 1.0mg/l Each of NAA and BAP in the Presence of Charcoal	103
10a	Plantlet Development in Medium Containing 0.lmg/l Each of NAA and 2iP in the Absence of Charcoal	107
10b	Plantlet Development in Medium Containing 1.0mg/l Each of NAA and 2iP in the Presence of Charcoal	108
11	Callus Growth in Medium Containing 10.0mg/l Each of NAA and BAP in the Absence of Charcoal	111
12	Dead Excised Embryos with Critical Moisture Content After Exposure to Liquid Nitrogen	121
13a-b	Embryos Showing Root Development After Cryoprotection Followed by Rapid Freezing	131
13c	Embryos Showing Shoot Development After Cryoprotection Followed by Rapid Freezing	132
14a	Development of Non-Cryopreserved Embryos in Enriched Medium After 5 Weeks In Culture	136
14b	Development of Cryopreserved Embryos in Enriched Medium After 5 Weeks In Culture	136

PLATE		PAGE
15	The Rambutan Fruits	182
16	Different Shape and Size of Rambutan Seeds (a): Rambutan Seeds of Variety R7	182
17	Embryonic Axis of Rambutan That Enclosed Within the Cotyledons	183
18	The Different Attachment Positions of Rambutan Embryos Between the Two Unevenly Size Cotyledons	183
19	Budded Rambutan Trees (Variety R7)	189
20	Leafs and Young Shoots of Rambutan (Variety R7)	189
21	An Inflorescence Having Structurally Hermaphrodite Flowers (Variety R7)	190
22a	Young and Immature Rambutan Fruits (Variety R7)	191
22b	Matured Ripe Rambutan Fruits (Variety R7)	191

LIST OF ABBREVIATIONS

The following abbreviations were used in the text: NAA ℵ-Napthalene acetic acid BAP Benzylaminopurine 2iP 2-isopentyl adenine Least Significant Difference LSD DNMRT Duncan's New Multiple Range Test Relative Humidity RH EtOH Ethyl Alcohol w/w weight by weight v/v volume by volume min minutes °C Degree centigrade miligram mg gram g litre 1 ul microlitre g/1 grams per litre miligrams per litre mg/l MS Murashige and Skoog Medium formulation 8 percentage DMSO Dimethylsulfoxide rpm revolution per minute Gibberellic acid GA 3

Abstract of the thesis presented to the Senate of Universiti Pertanian Malaysia as fulfilment of the requirements for the degree of Master of Science

TOWARDS THE DEVELOPMENT OF A PROTOCOL FOR CRYOPRESERVATION OF EMBRYOS OF RAMBUTAN (Nephelium lappaceum L.)

by

HIEW YEE HOOI

MARCH, 1991

Supervisor	:	Professor Chin Hoong Fong
Faculty	:	Agriculture
Key Words	:	Nephelium lappaceum, excised embryos,
		cryopreservation.

Long term storage of recalcitrant seeds by conventional storage methods thus far have been unsuccessful. In this study, the excised embryos from seeds of Rambutan (<u>Nephelium lappaceum</u>), a recalcitrant tropical fruit species has been attempted for long term storage through cryopre

xvii

Stage of fruit maturity was found to be one of the important factor for the survival of embryos <u>in vitro</u>. The embryos excised from mature unripe fruits were selected as the most appropriate for use in this study.

Minimizing variability in fresh weight and moisture content was found to be essential in this study. Selection of uniform sized embryos, measuring $3.0^2-4.0^2$ mm in surface area per side of the cubical blocks of cotyledonary tissue that enclosed the embryos; ensured uniform fresh weight and moisture content.

A modified Murashige and Skoog medium containing 1.0 mg/l each of NAA and Kinetin, 2 g/l of activated charcoal and 170 mg/l of NaH₂PO₄.H₂O was found to be suitable medium for the development and growth of the excised embryos of rambutan.

Critical moisture limit of rambutan embryos was found to be around 10-15%. Attempts at direct storage of excised embryos in liquid nitrogen after desiccation to near critical moisture limit was found to be unsuccessful.

xviii

Embryos cryoprotected with 10%DMSO+10%Glycerol for 6 hours followed by partial desiccation to moisture contents of 29-33% and slow freezing to -40° C at approximately 1° C/min before plunging into liquid nitrogen survived cryopreservation and gave approximately 40% viability. However, the surviving embryos were abnormal in growth with either root or shoot development only.

Improvement in growth and development of cryopreserved embryos was attempted by supplementing the initially established medium with additional growth promoting substances namely, GA₃, glutamine, arginine, sulphate. asparagine and adenine However, the development of the surviving embryos in the enriched medium was not different from the initial medium in which abnormal growth of plantlets was observed.

xix

Abstrak tesis yang dikemukakan kepada Senat Universiti Pertanian Malaysia bagi memenuhi syarat-syarat untuk memperolehi Ijazah Master Sains.

TERHADAP PERKEMBANGAN SATU PROTOKOL BAGI PENYIMPANAN KRIO EMBRIO RAMBUTAN (Nephelium lappaceum L.)

oleh

HIEW YEE HOOI

MAC, 1991

Penyelia	:	Professor	Chin	Hoong	Fong
Fakulti	:	Pertanian			

Setakat ini, penyimpanan biji benih tempoh panjang melalui kaedah penyimpanan biasa, belum menemui kejayaan. Dalam kajian ini, embrio yang telah diasingkan dari biji benih rambutan (<u>Nephelium lappaceum</u>), sejenis spesis rekalsitran, telah dikaji sebagai bahagian tumbuhan untuk penyimpanan tempoh panjang melalui kaedah kriogenik.

Peringkat kematangan buah didapati sebagai satu faktor penting demi pengekalan keadaan terus hidup embryo secara <u>in vitro</u>. Embrio dari biji benih dalam buah matang tetapi belum masak, didapati sesuai sekali diguna dalam kajian ini.

Pengurangan variabiliti baqi berat basah dan kandungan kelembapan embrio didapati amat penting dalam kajian ini. Pemilihan embrio yang saiznya seragam, berukuran luas permukaannya $3.0^2-4.0^2$ mm tiap sebelah ketulan kiub tisu kotiledon yang mengandungi embrio memastikan berat adalah amat perlu demi basah dan kandungan kelembapan embrio yang seragam diperolehi.

Medium Murashige dan Skoog diubahsuai, yang mengandungi 1.0 mg/l NAA dan Kinetin masing-masing, 2 g/l arang diaktifkan dan 170 mg/l $NaH_2PO_4.H_2O$ didapati sesuai untuk perkembangan dan tumbesaran embrio rambutan.

Untuk embrio rambutan, had kritikal kelembapan didapati lebih kurang 10-15%. Percubaan untuk menyimpan embrio secara terus dalam nitrogen cecair selepas dikeringkan sehingga hampir had kritikal, didapati tidak berjaya.

xxi

Embrio yang dirawat dengan DMSO 10% + Glycerol 10% selama 6 jam diikuti oleh separuh kekeringan sehingga 29-33% kelembapan dan dibekukan dengan perlahan pada kadar 1^oC/min sehingga -40^oC sebelum diletakkaan kedalam nitrogen cecair, didapati terus hidup dan menunjukkan viabiliti lebih kurang 40%. Walaubagaimana pun, hanya pertumbuhan embrio yang abnormal dengan perkembangan bahagian akar atau pucuk sahaja didapati.

Untuk memperolehi tumbesaran normal bagi embrio selepas krioawetan, penambahan bahan penggalakan tumbesaran, iaitu GA₃, glutamine, arginine, asparagine dan adenine sulphate kepada medium kultur yang ditentukan dahulu, telah dicuba. Walaubagaimana pun, pertumbuhan embrio selepas krioawetan dalam media dengan tambahan bahan penggalakan ini tidak berbeza dari yang terdahulu di mana pertumbuhan plantlet abnormal masih diperhatikan.

xxii

CHAPTER 1

INTRODUCTION

Seeds is one of the most important inputs in crop production; its quality greatly influences subsequent performance and yield. Thus, the maintenance of seed viability in storage is of particular importance. Roberts (1973) introduced the terms `orthodox' and `recalcitrant' to describe the storage behaviour of seeds.

Orthodox seeds are those that can tolerate desiccation and freezing temperatures. They can be generally dried to moisture contents in the range of 1-5% without damage. In dehydrated state, orthodox seeds can be stored for long periods with no serious loss of viability. Recalcitrant seeds on the other hand, are those seeds that are normally shed in a moist condition and do not undergo drying during maturation. Attempts to dry these seeds below some relatively high critical value of moisture content (12-31%) result in desiccation injury and death. Futhermore, recalcitrant seeds are also sensitive to freezing injury at low temperatures.

1

Many of the major plantation crops, fruit trees and timber species produce recalcitrant seeds. Little attention has been given to the storage of the seeds of tropical tree fruit species (Hanson, 1984) and there are many storage problems yet to be solved. Before considering the various storage methods available, it is necessary to identify those seeds species to which recalcitrant behaviour has been attributed (Roberts and King, 1982).

A number of list of recalcitrant seed species have been produced (Chin, 1978; Chin and Roberts, 1980; Harrington, 1972; Roberts, 1975; Roberts and King, 1982). Unfortunately, comprehensive compilation is hampered by incomplete information for many species. Furthermore, in some cases seed may have been reported to have been killed by drying, and therefore might be classified as recalcitrant, when it is possible that the drying method was at fault and that the seed is really orthodox. Inevitably, any catalogue of recalcitrant seed species is likely to be subjected to considerable modification as more recalcitrant species are identified and certain species provisionally recorded as recalcitrant are classified as orthodox (King and Roberts, 1980). In realizing importance identification the of of recalcitrant seeds, Chin et al. (1984) proposed a method

2

