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ABSTRACT 
In this research, the direct method of Adam Moulton two-step method was proposed for solving initial 

value problem (IVPs) of second order ordinary differential equations (ODEs) directly. The current 

approach for solving second order ODEs is to reduce to first order ODEs. However, the direct method 

in this research will solved the second order ODEs directly. The Lagrange interpolation polynomial was 

applied in the derivation of the proposed method. The implementation will be in predictor-corrector 

scheme. Numerical results shown that the method gave comparable accuracy and faster execution time 

compared to the existing method. The proposed direct method of Adams Moulton type is suitable for 

solving second order ODEs.  

 
Keywords: Direct method, two-step method, second order ODEs, predictor-corrector method, Van der 

Pol’s problem 

 

 

INTRODUCTION 

 

Ordinary differential equations (ODEs) are very important to solve sciences and engineering 

problems. For example, ODEs are used in Newton’s second law and law of cooling. ODEs are 

also used in Hooke’s law for modeling the motion of a spring and in modeling population growth 

and exponential decay. In engineering, ODEs are used in various field such as mechanical 

vibration, dynamical systems theory and in theory of electrical circuit. 

 

In this research, the general form of initial value problem (IVPs) for the second order ODEs 

will be considered as follows: 

 

                             𝑦′′ = 𝑓(𝑡, 𝑦, 𝑦′), 𝑦(𝑎) = 𝑦0, 𝑦′(𝑎) = 𝑦0
′ , 𝑎 ≤ 𝑡 ≤ 𝑏             (1) 

 

where 𝑦0 and 𝑦0
′  are initial values and f is a continuous function. This IVPs will be solved by the 

proposed direct method without reduced to first order ODEs that will reduce computation cost. 

There are several methods that can be used to solve the second order ODEs numerically but need 

to reduce to first order ODEs, such as Runge-Kutta (RK) method and Adams Bashforth-Moulton 

(ABM) method. The ABM method also known as predictor-corrector method.  

 

Van Der Houmen and Someijer (1987) has proposed predictor-corrector method for second 

order ODEs. Their proposed method has order four and five and phase error of orders up to ten. 

Khiyal and Thomas (1997) proposed a variable order and variable step algorithm to solve second 

order IVP. Numerical method of solving second order IVPs directly with step length k = 4 based 

on collocation of the differential system and interpolation of the approximate solution has been 

introduced by Adesanya et al. (2008). 
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Badmus and Yahaya (2009) developed a uniform order 6 of five-step block methods for 

direct solution of general second order ODEs. Anake (2011) proposed a modified developed one-

step implicit block methods where the proposed method gave very low error terms. Modified block 

method base on the collocation and interpolation of the power series approximation has been 

proposed by Awoyemi et al. (2011). 

 

Two-point four step direct implicit block method has been developed by Majid et al. (2009) 

for solving the second order ODEs directly using variable step-size. This method will estimate the 

solutions of IVPs at two points simultaneously by using four backward steps. Majid et al. (2012) 

proposed direct two-point block one-step method to solve second order ODEs directly. The result 

is faster compared to the existing method. 

 

Omar and Alkasassbeh (2016) studied on generalize implicit one-step third derivative 

block method for solving second order ODEs directly using collocation and interpolation 

approach. The approximate solution of the power series is interpolated at the first and off-step 

points.  

 

The aim of this research is to propose the direct method of Adams Bashforth-Moulton of 

two-step in the predictor-corrector mode for solving the second order ODEs directly.  

 

 

 

FORMULATION 

 

Derivation of the method 

 

The corrector formula of the direct method will be derived in this section. The point, 𝑦𝑚+1 at 𝑡𝑚+1 

can be obtained by integrating equation (1) over the interval [ 𝑡𝑚, 𝑡𝑚+1]. Integrate once we have: 

 

∫ 𝑦′′(𝑡)𝑑𝑡 =
𝑡𝑚+1

𝑡𝑚

∫ 𝑓(𝑡, 𝑦, 𝑦′)𝑑𝑡
𝑡𝑚+1

𝑡𝑚

 

Therefore, 

𝑦′(𝑡𝑚+1) − 𝑦′(𝑡𝑚) = ∫ 𝑓(𝑡, 𝑦, 𝑦′)𝑑𝑡                                               (2)
𝑡𝑚+1

𝑡𝑚

 

 

Integrate twice, we have 

 

∫ ∫ 𝑦′′(𝑡)𝑑𝑡𝑑𝑡 =
𝑡

𝑡𝑚

𝑡𝑚+1

𝑡𝑚

∫ ∫ 𝑓(𝑡, 𝑦, 𝑦′)𝑑𝑡𝑑𝑡
𝑡

𝑡𝑚

𝑡𝑚+1

𝑡𝑚

 

 

 

Therefore, 

𝑦(𝑡𝑚+1) − 𝑦(𝑡𝑚) − ℎ𝑦′(𝑡𝑚) = ∫ ∫ 𝑓(𝑡, 𝑦, 𝑦′)𝑑𝑡𝑑𝑡                                (3)
𝑡

𝑡𝑚

𝑡𝑚+1

𝑡𝑚

 

 

By replacing 𝑓(𝑡, 𝑦, 𝑦′) in equation (2) and (3) with the polynomial interpolation at the points 

{(𝑡𝑚−1, 𝑓𝑚−1), (𝑡𝑚, 𝑓𝑚), (𝑡𝑚+1, 𝑓𝑚+1)}, we have 
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𝑦′(𝑡𝑚+1) − 𝑦′(𝑡𝑚) = ∫ [
(𝑡 − 𝑡𝑚)(𝑡 − 𝑡𝑚+1)

(𝑡𝑚−1 − 𝑡𝑚)(𝑡𝑚−1 − 𝑡𝑚+1)
   𝑓𝑚−1                                

𝑡𝑚+1

𝑡𝑚

 

+ 
 (𝑡 − 𝑡𝑚−1)(𝑡 − 𝑡𝑚+1)

(𝑡𝑚 − 𝑡𝑚−1)(𝑡𝑚 − 𝑡𝑚+1)
   𝑓𝑚 +

(𝑡 − 𝑡𝑚−1)(𝑡 − 𝑡𝑚)

(𝑡𝑚+1 − 𝑡𝑚−1)(𝑡𝑚+1 − 𝑡𝑚)
   𝑓𝑚+1]𝑑𝑡        (4) 

 

𝑦(𝑡𝑚+1) − 𝑦(𝑡𝑚) − ℎ𝑦′(𝑡𝑚) = ∫ (𝑡𝑚+1 − 𝑡)[
(𝑡 − 𝑡𝑚)(𝑡 − 𝑡𝑚+1)

(𝑡𝑚−1 − 𝑡𝑚)(𝑡𝑚−1 − 𝑡𝑚+1)
   𝑓𝑚−1          

𝑡𝑚+1

𝑡𝑚

 

+ 
(𝑡 − 𝑡𝑚−1)(𝑡 − 𝑡𝑚+1)

(𝑡𝑚 − 𝑡𝑚−1)(𝑡𝑚 − 𝑡𝑚+1)
   𝑓𝑛 +

(𝑡 − 𝑡𝑚−1)(𝑡 − 𝑡𝑚)

(𝑡𝑚+1 − 𝑡𝑚−1)(𝑡𝑚+1 − 𝑡𝑚)
   𝑓𝑚+1  ]𝑑𝑡                 (5) 

 

By taking 𝑠 =
𝑡−𝑡𝑚+1

ℎ
 and replacing 𝑑𝑡 = ℎ𝑑𝑠, the corrector formulae can be obtained by 

integrating (4) and (5). 

 

Corrector formulae: 

𝑦′𝑚+1 = 𝑦′𝑚 +
ℎ

12
(5𝑓𝑚+1 + 8𝑓𝑚 − 𝑓𝑚−1) 

𝑦𝑚+1 = 𝑦𝑚 + ℎ𝑦′𝑚 +
ℎ2

24
(3𝑓𝑚+1 + 10𝑓𝑚 − 𝑓𝑚−1).                                    (6) 

 

The predictor formula (7) can be found in Majid et al. (2011), where the author has developed 

the method and extend it to solve the linear boundary value problem.  

 

Predictor formulae: 

𝑦′𝑚+1 = 𝑦′𝑚 +
ℎ

12
(23𝑓𝑚 − 16𝑓𝑚−1 + 5𝑓𝑚−2) 

𝑦𝑚+1 = 𝑦𝑚 + ℎ𝑦′𝑚 +
ℎ2

24
(19𝑓𝑚 − 10𝑓𝑚−1 + 3𝑓𝑚−2).                                    (7) 

 

 

Order of the method 

 

The order of the method will be discussed in this section, and the formula (6) is display in a matrix 

form as follows: 

 

From Eq. (6), we have 

 

0 = −𝑦′
𝑚+1

+ 𝑦′𝑚 +
ℎ

12
(5𝑓𝑚+1 + 8𝑓𝑚 − 𝑓𝑚−1) 

𝑦𝑚+1−𝑦𝑚 = ℎ𝑦′𝑚 +
ℎ2

24
(3𝑓𝑚+1 + 10𝑓𝑚 − 𝑓𝑚−1).   

Then we have  

 

(
0 0 0
0 −1 1

) (

𝑦𝑚−1

𝑦𝑚

𝑦𝑚+1

) = ℎ (
0 1 −1
0 1 0

) (

𝑦′
𝑚−1

𝑦′
𝑚

𝑦′
𝑚+1

) + ℎ2 (
−

1

12

8

12

5

12

−
1

24

10

24

3

24

) (

𝑓𝑚−1

𝑓𝑚

𝑓𝑚+1

). 
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Next, we substitute in linear difference operator, and the derivatives are extended by Taylor 

series. The coefficient matrix 𝐶 is obtained as follows: 

 

𝐶0 = 𝛼0 + 𝛼1 + 𝛼2 = (
0
0

) + (
0

−1
) + (

0
1

) = (
0
0

) 

 

 

𝐶1 = 𝛼1 + 2𝛼2 − (𝛽0 + 𝛽1 + 𝛽2) = (
0

−1
) + 2 (

0
1

) − (
1
1

) − (
−1
0

) = (
0
0

) 

 

𝐶2 =
𝛼1

2
+ 2𝛼2 − (𝛽1 + 2𝛽2) − (𝛾0 + 𝛾1 + 𝛾2) =

1

2
(

0
−1

) + 2 (
0
1

) − (
−1
1

) − (
1

1/2
) = (

0
0

) 

   

𝐶3 =
𝛼1

6
+

8𝛼2

6
− (

𝛽1

2
+ 2𝛽2) − (𝛾1 + 2𝛾2) =

1

6
(

0
−1

) +
8

6
(

0
1

) − (
−3/2
1/2

) − (
18/12
16/24

) = (
0
0

) 

 

𝐶4 =
𝛼1

24
+

16𝛼2

24
− (

𝛽1

6
+

8𝛽2

6
) − (

𝛾1

2
+ 2𝛾2) = (

0
15/24

) − (
−7/6
1/6

) − (
14/12
11/24

) = (
0
0

) 

 

𝐶5 =
𝛼1

120
+

32𝛼2

120
− (

𝛽1

24
+

16𝛽2

24
) − (

𝛾1

6
+

8𝛾2

6
) = (

0
31

120

) − (
−

15

24
1

24

) − (

48

72
34

144

) = (
−1/24

−7/360
) 

 

 

Lambert (1973) stated that the method is of order n if  𝐶0 = 𝐶1 = ⋯ = 𝐶𝑚 = 𝐶𝑚+1 = 0 and 

𝐶𝑚+2 ≠ 0. Since 𝐶5 ≠ 0, hence, the proposed method is order three and known as Direct Adam 

Moulton two-step method of order three (DAM2SM3). 

 

 

Consistency of the method 

 

Let 𝑍𝑗 , 𝑍′𝑗  and 𝑍′′𝑗  below represent the matrices of theoretical solutions for ODE (1), 

          

         𝑍𝑗 = (

𝑦(𝑡𝑗−1)

𝑦(𝑡𝑗)

𝑦(𝑡𝑗+1)

), 𝑍′𝑗 = (

𝑦′(𝑡𝑗−1)

𝑦′(𝑡𝑗)

𝑦′(𝑡𝑗+1)

) and 𝑍′′𝑗 = (

𝑓(𝑡𝑗−1, 𝑦(𝑡𝑗−1), 𝑦′(𝑡𝑗−1))

𝑓(𝑡𝑗, 𝑦(𝑡𝑗), 𝑦′(𝑡𝑗))

𝑓(𝑡𝑗+1, 𝑦(𝑡𝑗+1), 𝑦′(𝑡𝑗+1))

) 

 

Fatunla (1991) stated that the local truncation error for linear multistep method is introduced as 

 

𝐸𝑗 = 𝛼𝑍𝑗 − ℎ𝛽𝑍′
𝑗 − ℎ2𝛾𝑍′′𝑗  

‖𝐸𝑗‖ = 𝛼𝑍𝑗 − ℎ𝛽𝑍′
𝑗 − ℎ2𝛾𝑍′′𝑗 

 

where ‖. ‖is the maximum norm. The maximum norm of LTE for the DAM2SM3 is 

‖𝐸𝑗‖ = ℎ5 (
−

1

24

−
7

360

). 
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As the step-size h moving toward zero, then the DAM2SM3 method is consistent, thus ‖𝐸𝑗‖ is 

also tends to zero. 

 

  

Zero stability of the method 

 

Zero stability is needed to declare the stability of the method at the chosen step-size. The first 

characteristic polynomial 𝜑(𝑅) is introduced: 

 

𝜑(𝑅) = det(𝐴0𝑅 − 𝐴1)  =  0 

 

have the roots 𝑅𝑗 that satisfy |𝑅𝑗| ≤ 1 and the roots have multiplicity not exceeding 2 for |𝑅𝑗| =

1, then the DAM2SM3 is considered as zero stable. 

  

𝜑(𝑁) = det (
𝑅 − 1 0

0 𝑅 − 1
) = 0, 

 

(𝑅 − 1)2 = 0, 𝑅 = 1,1 

 

where 𝐴0 = (
1 0
0 1

) and 𝐴1 = (
1 0
0 1

). Then DAM2SM3 is zero stable. 

  

 

 

Convergence of the method 

 

The Dahlquist convergence theorem states that if linear multistep method is zero stable and 

consistent, then it is a convergent method. The proposed method DAM2SM3 is converges to the 

accurate solution since it has attained consistency and zero stability.    

 

 

Stability Region  

 

The stability region will be obtained by substitute the test equation 

 

𝑦′′ = 𝑓 = 𝜆𝑦′ + 𝛽𝑦 

 

into the proposed method (6). We may get as follows 

 

𝑦′𝑚+1 = 𝑦′𝑚 +
5

12
ℎ𝜆𝑦′𝑚+1 +

5

12
ℎ𝛽𝑦𝑚+1 +

8

12
ℎ𝜆𝑦′𝑚 +

8

12
ℎ𝛽𝑦𝑚 −

1

12
ℎ𝜆𝑦′

𝑚−1

−
1

12
ℎ𝛽𝑦𝑚−1. 

 

𝑦𝑚+1 = 𝑦𝑚 + ℎ𝑦′𝑚 +
3

24
ℎ2𝜆𝑦′𝑚+1 +

3

24
ℎ2𝛽𝑦𝑚+1 +

10

24
ℎ2𝜆𝑦′𝑚 +

10

24
ℎ2𝛽𝑦𝑚 −

1

24
ℎ2𝜆𝑦′

𝑚−1

−
1

24
ℎ2𝛽𝑦𝑚−1. 
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Then we change equations above in matrix form 

 

(
1 0
0 1

) (
𝑦′𝑚+1

𝑦𝑚+1
) = (

1 0
0 1

) (
𝑦′𝑚

𝑦𝑚
) + ℎ (

5

12
𝜆

5

12
𝛽

0 0

) (
𝑦′𝑚+1

𝑦𝑚+1
) + ℎ (

2

3
𝜆

2

3
𝛽

1 0

) (
𝑦′𝑚

𝑦𝑚
) 

 

                                         +ℎ (
−

1

12
𝜆 −

1

12
𝛽

0 0
) (

𝑦′𝑚−1

𝑦𝑚−1
) + ℎ2 (

0 0
1

8
𝜆

1

8
𝛽) (

𝑦′𝑚+1

𝑦𝑚+1
) 

 

+ℎ2 (
0 0

5

12
𝜆

5

12
𝛽

) (
𝑦′𝑚

𝑦𝑚
) + ℎ2 (

0 0

−
1

24
𝜆 −

1

24
𝛽

) (
𝑦′𝑚−1

𝑦𝑚−1
) 

 

From above matrix, we have 

 

𝐴0 = (
1 0
0 1

),  𝐴1 = (
1 0
0 1

) 

 

𝐵0 = (
5

12
𝜆

5

12
𝛽

0 0

) , 𝐵1 =  (
2

3
𝜆

2

3
𝛽

1 0

) , 𝐵2 =  (−
1

12
𝜆 −

1

12
𝛽

0 0

) 

 

𝐶0 = (
0 0

1

8
𝜆

1

8
𝛽) , 𝐶1 = (

0 0
5

12
𝜆

5

12
𝛽) , 𝐶2 =  (

0 0

−
1

24
𝜆 −

1

24
𝛽). 

 

General equation of stability is as follows, 

∑ 𝐴𝑘𝑌𝑚−𝑘 + ℎ ∑ 𝐵𝑘𝑌𝑚−𝑘 + ℎ2 ∑ 𝐶𝑘𝑌𝑚−𝑘 = 0

𝑟+1

𝑘=0

𝑟+1

𝑘=0

𝑟

𝑘=0

 

 

 

By substituting the value r = 1, we have 

 

𝑌𝑚(𝐴0 + ℎ𝐵0 + ℎ2𝐶0) − 𝑌𝑚−1(𝐴1 + ℎ𝐵1 + ℎ2𝐶1) − 𝑌𝑚−2(ℎ𝐵2 + ℎ2𝐶2) = 0 

 

 

 

Solving the determinant of 

𝑤2(𝐴0 − ℎ𝐵0 − ℎ2𝐶0) − 𝑤(𝐴1 + ℎ𝐵1 + ℎ2𝐶1) − (ℎ𝐵2 + ℎ2𝐶2) = 0 

 

By substitute 𝑌 = ℎ2𝛽 and 𝑋 = ℎ𝜆 , the stability polynomial is obtained 

 
24𝑤4 − 10𝑋𝑤4 − 3𝑌𝑤4 − 6𝑋𝑤3 − 17𝑌𝑤3 − 48𝑤3 + 18𝑋𝑤2 − 5𝑌𝑤2 + 24𝑤2 − 2𝑋𝑤 + 𝑌𝑤

24
= 0. 

 

The boundary of the stability region in 𝑋 − 𝑌 plane is determined by substituting the values of 

𝑤 = 0, −1 and 𝑒𝑖𝜃_ where 0 ≤ 𝜃 ≤ 2𝜋 into stability polynomial. The stability region of the direct 

method will be shown in Figure 1 and the bounded shaded is the stable region. 
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Figure 1: Stability region for DAM2SM3 

 

  

IMPLEMENTATION 

 

The implemented program began by using direct Euler method only at the beginning of the interval 

to calculate the three starting initial points. Then the proposed method DAM2SM3 will used the 

initial points and continue the calculation until the end of the interval.  

 

Algorithm of DAM2SM3 

 

   Step 1: Set starting value a, ending value T, step-size h and given initial value. 

   Step 2: Use direct Euler method to find  𝑓0, 𝑓1 and 𝑓2. 

   Step 3: While 𝑡𝑛 < 𝑇, do Step 4 and Step 5. 

   Step 4: Calculate 𝑦′𝑚+1 and 𝑦𝑚+1 using the predictor formulae in (7). 

   Step 5: Calculate 𝑦′𝑚+1 and 𝑦𝑚+1 using the corrector formulae in (6). 

   Step 6: Complete. 

 

NUMERICAL RESULTS 

 

Five numerical examples of second order ODEs problem were tested to study the capability of the 

DAM2SM3 method. All the programs were written in C language.  

 

The following abbreviations are used in the tables which summarize the numerical results.  

 

h  Step size 

FCN  Total function calls 

MAXE  Maximum error 

TIME  Timing in second 
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DAM2SM3 Direct Adam Moulton two-step method of order three 

BI Backward difference with the reduction to first order system (Rasedee 

(2014)) 

ABM3  Adam Moulton two-step method of order three 

RM1S (3) Third order one-step rational method (Fairuz and Majid (2021)) 

 

 

Problem 1. Consider 

𝑦′′ − 𝑥(𝑦′)2 = 0, 𝑦(0) = 1, 𝑦′(0) =
1

2
, [0,1]. 

Exact solution: 

𝑦(𝑥) = 1 +
1

2
ln (

2 + 𝑥

2 − 𝑥
) . 

 

Table 1: Results of DAM2SM3 and ABM3 for Problem 1 

h METHOD MAXE FCN TIME 

0.1 DAM2SM3 2.7246e-003 19 0.059 

ABM3 2.2118e-003 20 0.063 

0.01 DAM2SM3 3.0071e-005 199 0.060 

ABM3 2.2213e-005 200 0.113 

0.001 DAM2SM3 3.0366e-007 1999 0.071 

ABM3 2.2221e-007 2000 0.610 

 

 

Problem 2. Consider  

𝑦′′ + 𝜆2𝑦 = 0, we take 𝜆 = 2, 𝑦(0) = 1, 𝑦′(0) = 2, [0,1]. 
 

Exact solution: 

𝑦(𝑥) = cos 2𝑥 + sin 2𝑥. 
 

 

Table 2: Results of DAM2SM3 and ABM3 for Problem 2 

h METHOD MAXE FCN TIME 

0.1 DAM2SM3 3.2919e-002 19 0.051 

ABM3 4.5170e-002 38 0.041 

0.01 DAM2SM3 3.9336e-004 199 0.054 

ABM3 5.2230e-004 398 0.110 

0.001 DAM2SM3 3.9934e-006 1999 0.064 

ABM3 5.2938e-006 3998 0.683 

 

 

Problem 3. Consider 

𝑦′′ = 2𝑦′ − 𝑦, 𝑦(0) = 0, 𝑦′(0) = 1, [0,1]. 
 

Exact solution: 

𝑦(𝑥) = 𝑥𝑒𝑥. 
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Table 3: Results of DAM2SM3 and ABM3 for Problem 3 

h METHOD MAXE FCN TIME 

0.1 DAM2SM3 6.6979e-002 19 0.044 

ABM3 5.2267e-002 38 0.042 

0.01 DAM2SM3 8.0049e-004   199 0.054 

ABM3 5.4182e-004   398 0.121 

0.001 DAM2SM3 8.1398e-006   1999 0.062 

ABM3 5.4347e-006   3998 0.655 

 

 

Problem 4. Consider 

𝑦′′ = −𝑦 + 2𝑒−𝑥 + 1, 𝑦(0) = 3, 𝑦′(0) = 0, [0,1]. 
Exact solution: 

𝑦(𝑥) = cos 𝑥 + sin 𝑥 + 𝑒−𝑥 + 1. 
 

 

Table 4: Results of DAM2SM3 and ABM3 for Problem 4 

h METHOD MAXE FCN TIME 

0.1 DAM2SM3 1.4231e-002   19 0.066 

ABM3 9.6666e-003   38 0.059 

0.01 DAM2SM3 1.6563e-004   199 0.057 

ABM3 9.9666e-005   398 0.136 

0.001 DAM2SM3 1.6802e-006   1999 0.084 

ABM3 9.9966e-007   3998 0.669 

 

 

Problem 1- 4 have been solved using three different step sizes h = 0.1, 0.01 and 0.001. Tables 1 – 

4 shown the comparison results between the accuracy result using DAM2SM3 and ABM3. Based 

on the results, the DAM2SM3 is comparable compared to ABM3 in term of maximum error.  In 

term of total function calls, DAM2SM3 is lesser compared to ABM3. The execution times for 

DAM2SM3 when solving the tested problems is faster compared to ABM3. The numerical results 

in the Tables show that the DAM2SM3 is suitable for solving second order ODEs directly 

compared to ABM3. 

 

 

Problem 5. Van der Pol oscillator: 

 

𝑦′′ − 𝛼(1 − 𝑦2)𝑦′ + 𝑦 = 0, 𝑦(0) = 2, 𝑦′(0) = 0, [0,1], 𝛼 = 5. 
 

 

Direct method DAM2SM3 was tested on Van der Pol’s problem by taking 𝛼 = 5. This equation 

applied widely in physics (oscillatory phenomenon), electronic and chemical reaction study.  The 

approximate solutions at the end point 𝑦(1) for Van der Pol’s problem are given in Table 5. The 

solutions of Problem 5 when  ℎ = 0.01 are also plotted and shown in Figure 2.  
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Table 5: Result of DAM2SM3 for Problem 5 

h Method 𝑦(1) 

0.1 DAM2SM3 

RM1S(3) 

1.87791253e+00 

1.86765499e+00 

0.01 DAM2SM3 

RM1S(3) 

1.86923623e+00 

1.86945094e+00 

0.001 DAM2SM3 

RM1S(3) 

1.86943665e+00 

1.86943904e+00 

0.0001 DAM2SM3 

RM1S(3) 

1.86943883e+00 

1.86943885e+00 

Tolerance   

10−2 BI 1.878019825e+00 

10−4 BI 1.869403059e+00 

10−6 BI 1.869436891e+00 

10−8 BI 1.869440272e+00 

 

 

 

 
 

Figure 2: Plot of y (approximation solutions) versus values of x  

when ℎ = 0.01 using DAM2SM3 

 

 

In Table 5, the approximate solutions of DAM2SM3 for solving the Van der Pol’s problem were 

compared to RM1S(3) and BI methods at different values of step-size. As the step-size decreased, 

the DAM2SM3 method is able to produce approximate solutions of  𝑦(1) comparable to the values 

given by RM1S(3) and BI methods. 

 

 

CONCLUSION 
 

Direct Adam Moulton two-step method of order three (DAM2SM3) based on predictor-corrector 

scheme has been developed for solving second order derivative of ODEs directly. The accuracy of 
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DAM2SM3 for solving the tested problems improved as the step-sizes decreased. The proposed 

direct method has shown less expensive in terms of total function calls and timing because the 

method has avoided the strategy of reducing to first order ODEs approach because it will enlarge 

the systems of first order equations. The DAM2SM3 also has been tested on Van der Pol’s problem 

and the results are in good agreement to the existing methods in terms of accuracy.   
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