

UNIVERSITI PUTRA MALAYSIA

TOWARDS THE DEVELOPMENT OF A PROTOCOL FOR CRYOPRESERVATION OF EMBRYOS OF A RECALCITRANT SEED (ARTOCARPUS HETEROPHYLLUS LAM.)

BASKARAN KRISHNAPILLAY

FP 1989 8

TOWARDS THE DEVELOPMENT OF A PROTOCOL FOR CRYOPRESERVATION OF EMBRYOS OF A RECALCITRANT SEED (ARTOCARPUS HETEROPHYLLUS LAM.)

By

BASKARAN KRISHNAPILLAY

Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy in the Faculty of Agriculture Universiti Pertanian Malaysia

July 1989

DEDICATED

to the memory of my late

Father

VARGHESE KRISHNAPILLAY

and

to my Mother whose patience and understanding has been a constant source of inspiration for me throughout this study

ACKNOWLEDGEMENT

It pleases me to have this opportunity of expressing my sincere gratitude to Universiti Pertanian Malaysia and in particular the Faculty of Agriculture for enabling this study to be carried out. My sincere thanks are also due to the International Board for Plant Genetic Resources (IBPGR/FAO), Rome for financial support through their grant No. 85/114 (a) without which this study would not have been possible.

I am extremely grateful and greatly indebted to my supervisor Professor Chin Hoong Fong for his dedicated efforts, stimulating discussions, active participation and constant encouragement throughout the planning and execution of this research.

My sincere thanks also goes to my co-supervisor Dr Hor Yue Luan for his advice, constructive criticisms, constant encouragement and guidance throughout this study.

I take this opportunity also to thank Dr Zaliha Christine Alang of the Biotechnology Department for allowing me the use of the Plant Tissue Culture Laboratory facilities for carrying out a major portion of this research and also for her constant assistance provided throughout this study. Thanks are also due to Dr Gan Yik Yuan for her help and guidance during protein separation studies using electrophoresis.

My sincere appreciation is extended to Mr Ho Oi Kuan for his technical assistance in the preparation of the electron micrographs; Mr How Peng Guan for technical assistance in the preparation of the histological slides; Capt. Yap Yen Kiew for the construction of the starchgel electrophoresis kit; Encik Abdul Ghani Hashim (Fakulti Sains dan Pengajian Alam Sekitar) for his professional photographic work; Encik Abdul Ghani Hashim (Unit Hydroponik) for the loan of his printer during the preparation of this manuscript; the Faculty of Forestry, U.P.M. for use of their misting and glasshouse facilities and Mr Ong Choon Hoe for his valuable friendship and assistance in the laboratory during the course of the study.

Thanks are also due to the Director, Dr M M Guha of Agricultural Research and Advisory Bureau for allowing the use of his office facilities during the entire course of this study.

Sincere thanks are due to Mr and Mrs Ramachandran for help provided for proof reading of the original drafts and in the preparation of the final manuscript.

Lastly but not the least, I wish to thank all my family members especially Rajan, Richard, Sara and George Krishnapillay for being very understanding and for their constant encouragement and support throughout the course of this study.

TABLE OF CONTENTS

ACKNOWLEDGEMENT	iii
LIST OF TABLES	ix
LIST OF PLATES	xiv
LIST OF FIGURES	xviii
LIST OF ABBREVIATIONS	xix
ABSTRACT	xx
ABSTRAK	xxiii

CHAPTERS

1	INTRODUCTION	1
1.1	Need for the Study	1
1.2	Selection of Crop for the Study	2
1.3	Objectives of the Study	3
2	REVIEW OF LITERATURE	6
2.1	Present State of Recalcitrant Seed Storage	6
2.2	Characteristics of Recalcitrant Seeds	7
2.3	Moisture Content of Recalcitrant Seeds	9
2.4	Desiccation Sensitivity of Recalcitrant Seeds	11
2.5	Chilling Sensitivity in Recalcitrant Seeds	16
2.6	Potential of In Vitro Storage for Germplasm Conservation of Difficult Materials	19
2.7	Cryopreservation of Embryos	21
2.8	Chemical Dehydration and Toxicity	24
2.9	Freezing Injury	25

2.10	Mechanism of Natural Tolerance to Freezing Injury	27
2.11	Cryoprotective Agents	29
2.12	Use of Cryoprotective Compounds and Their Mixtures	33
2.13	Thawing	34
2.14	Recovery/Recovery Medium	35
2.15	Summary	36
3	MATERIALS AND METHODS	37
3.1	Study Layout	37
3.2	Seed Materials and Sampling	40
3.3	Experimental Procedures	42
	Packaging and Storage	42
	Excision of Embryos	42
	Regulation of Embryo Moisture	42
	Glassware Cleaning for In Vitro Studies	43
	Chemicals	44
	Preparation of Stock Solutions and Culture Media	44
	Incubation of Cultures	45
	Preparation of Cryoprotectants	46
	Cooling and Thawing Procedures	47
	Preparation of Starch Gel and Sample for Separation of Proteins by Starch Gel Electrophoresis	47
	Preparation of Sections for Light Microscopy	50
	Preparation of Sections for Transmission Electron Microscopy	51
	Photography	53

3.4	Measurements and Observations	53
	Moisture Content	53
	Dry Matter Content and Shoot to Root Ratio of In Vitro Grown Seedlings	54
	Conductivity of Embryo Leachate	57
	Uptake of Oxygen During Respiration	57
	Comparison of Some Metabolic Enzymes After Electrophoretic Separation	58
3.5	Experiments	58
	Selection of Optimal Stage of Fruit Maturity for Excised Embryos (Experiments 1a – c)	58
	Selection of Embryos for Cryopreservation Studies (Experiments 2a – b)	61
	Establishment of a Suitable Medium for the Growth and Development of Excised Jackfruit Embryos (Experiments 3a – c)	62
	Dehydration Effects on Embryo Viability and Storage (Experiments 4a – e)	65
	Use of Cryoprotectants (Experiments 5a - g)	69
	Modification of Culture Medium for Improved Growth and Planting Out of Cryopreserved Seedlings (Experiments 6a - b)	74
3.6	Statistical Analysis	76
4	RESULTS	77
4.1	Selection of Optimum Stage of Maturity for Excised Embryos	77
4.2	Selection of Embryos for Cryopreservation Studies	84
4.3	Establishment of a Suitable Medium for the Growth and Development of Excised Jackfruit Embryos	88
4.4	Dehydration Effects on Embryo Viability and Storage	103

4.5	Use of Cryoprotectants	126
4.6	Modification of Culture Medium for Improved Growth and Planting Out of the Cryopreserved Embryos	147
5	DISCUSSION	153
6	SUMMARY AND CONCLUSION	179
BIBLIOGRAP	HY	182
APPENDIX		196
Α	Background of the Fruit Artocarpus heterophyllus	196
В	Murashige and Skoog (1962) Inorganic Salts and Vitamins	204
С	Preparation of Chemicals	205
D	Anova Tables	211
VITAE		227

LIST OF TABLES

 Viability Percentage of Embryos Excised from the Three Stages of Fruit Maturity, After Six Weeks in Culture Moisture Content and Viability Percentage of Excised Embryos from the Three Stages of Fruit Maturity After Desiccation Over a Period of Six Hours Categorizing Excised Embryos by Size, from a Random Sample of Seeds Taken from Mature Unripe Fruits Fresh Weight, Moisture Content and Coefficient of Variation of Moisture Content of Excised Embryos from the Various Selection Methods Mean Dry Matter Content of Plantlets Grown 	
 Moisture Content and Viability Percentage of Excised Embryos from the Three Stages of Fruit Maturity After Desiccation Over a Period of Six Hours Categorizing Excised Embryos by Size, from a Random Sample of Seeds Taken from Mature Unripe Fruits Fresh Weight, Moisture Content and Coefficient of Variation of Moisture Content of Excised Embryos from the Various Selection Methods Mean Dry Matter Content of Plantlets Grown 	9
 3 Categorizing Excised Embryos by Size, from a Random Sample of Seeds Taken from Mature Unripe Fruits 4 Fresh Weight, Moisture Content and Coefficient of Variation of Moisture Content of Excised Embryos from the Various Selection Methods 5 Mean Dry Matter Content of Plantlets Grown 	9
 Fresh Weight, Moisture Content and Coefficient 8 of Variation of Moisture Content of Excised Embryos from the Various Selection Methods Mean Dry Matter Content of Plantlets Grown 0 	6
5 Moon Dry Matter Content of Plantlets Grown	6
In Vitro on Media Containing NAA/Kinetin and With or Without Activated Charcoal	0
6 Shoot to Root Ratio of Plantlets Grown In Vitro 9 on Media Containing NAA/Kinetin and With or Without Activated Charcoal	1
7 Mean Dry Matter Content of Plantlets Grown 9 In Vitro on Media Containing NAA/BAP and With or Without Activated Charcoal	4
8 Shoot to Root Ratio of Plantlets Grown In Vitro 9 on Media Containing NAA/BAP and With or Without Activated Charcoal	5
9 Mean Dry Matter Content of Plantlets Grown 9 In Vitro on Media Containing NAA/2iP and With or Without Activated Charcoal	8
10 Shoot to Root Ratio of Plantlets Grown In Vitro 9 on Media Containing NAA/2iP and With or Without Activated Charcoal	8
11Moisture Content of Excised Embryos Obtained10for the Various Methods of Drying	4
12In Vitro Survival Percentage of Excised Embryos10After Various Methods and Periods of Drying	4

ix

13	Moisture Content and Survival Percentage of Excised Embryos Desiccated Over a Moisture Range of 10–15%	109
14	Physiological and Biochemical Changes in Excised Embryos Desiccated Over a Period of One to Six Hours	111
15	Survival Percentage of Stored Excised Embryos (Desiccated to 14–15% and 12–13% Moisture Content Respectively) Cultured Weekly Over a Period of Four Weeks	123
16	Survival Percentage of Excised Embryos Dried to Near Critical Moisture Level and Stored in Liquid Nitrogen	123
17	Survival Percentage of Excised Embryos After Cryoprotecting in Various Combination of Cryoprotectants for Various Period of Time	127
18	Survival Percentage of Excised Embryos Cryoprotected for Six Hours Followed by Storage Treatments and Direct Placement in Liquid Nitrogen	129
19	Survival Percentage of Excised Embryos Cryoprotected for Twelve Hours Followed by Storage Treatments and Direct Placement in Liquid Nitrogen	130
20	Moisture Content in Excised Embryos After Cryoprotection and Desiccation for One, Two and Three Hours	132
21	Survival Percentage of Cryopreserved Embryos After Cryoprotection and Desiccation for One, Two and Three Hours	133
22	Survival Percentage of Excised Embryos After Twelve Hours of Cryoprotection Followed by Partial Desiccation for One and Two Hours and Two Methods of Cooling	133
23	Survival Percentage of Cryoprotected Embryos Partially Desiccated and Subjected to Slow Freezing Protocol	137

24	Assessment of Viability of Cryopreserved Embryos Stored in Liquid Nitrogen Over a Period of One Month Using the Slow Freezing Protocol	137
25	Mean Dry Matter Content and Shoot to Root Ratio of Control and Cryopreserved Embryos Cultured on Two Different Media	148
26	Survival Percentage of Control and Cryopreserved Seedlings in Polybags After Eight Weeks of Planting in the Nursery	148
27	ANOVA Table of Viability Percentage of Excised Embryos from Three Stages of Fruit Maturity After Six Weeks in Culture	211
28	Mean Square Values for Minimum, Maximum, Mean and Range of Fresh Weights of Excised Embryos from the Various Selection Methods	212
29	Mean Square Values for Minimum, Maximum, Mean, Range and Coefficient of Variation in Moisture Content of Excised Embryos from the Various Selection Methods	212
30	ANOVA Table of Mean Dry Matter Content of Plantlets Grown In Vitro on Media Containing NAA/Kinetin and With or Without Activated Charcoal	213
31	ANOVA Table of Shoot to Root Ratio of Plantlets Grown In Vitro on Media Containing NAA/Kinetin and With or Without Activated Charcoal	214
32	ANOVA Table of Mean Dry Matter Content of Plantlets Grown In Vitro on Media Containing NAA/BAP and With or Without Activated Charcoal	215
33	ANOVA Table of Shoot to Root Ratio of Plantlets Grown In Vitro on Media Containing NAA/BAP and With or Without Activated Charcoal	216
34	ANOVA Table of Mean Dry Matter Content of Plantlets Grown In Vitro on Media Containing NAA/2iP and With or Without Activated Charcoal	217
35	ANOVA Table of Shoot to Root Ratio of Plantlets Grown In Vitro on Media Containing NAA/2iP and With or Without Activated Charcoal	218

TABLE		PAGE
36	ANOVA Table of Moisture Content and Survival Percentage of Excised Embryos Desiccated Over a Moisture Range of 10–15%	219
37	Mean Square Values of Moisture Content, In Vitro Survival Percentage, Leachate Conductivity, Tetrazolium Test and Respiration Rate of Excised Embryos Desiccated for a Period of One to Six Hours	219
38	Mean Square Values of Survival Percentage of Stored Excised Embryos (Desiccated to 14- 15% Moisture Content), Cultured Weekly Over a Period of Four Weeks	220
39	Mean Square Values of Survival Percentage of Stored Excised Embryos (Desiccated to 12- 13% Moisture Content), Cultured Weekly Over a Period of Four Weeks	220
40	ANOVA Table of Survival Percentage of Excised Embryos Dried to Near Critical Moisture Level and Stored in Liquid Nitrogen	221
41	ANOVA Table of Survival Percentage of Excised Embryos After Cryoprotecting in Various Combination of Cryoprotectants for Various Period of Time	221
42	ANOVA Table of Survival Percentage of Excised Embryos Cryoprotected for Six Hours Followed by Storage Treatments and Direct Placement in Liquid Nitrogen	222
43	ANOVA Table of Survival Percentage of Excised Embryos Cryoprotected for Twelve Hours Followed by Storage Treatments and Direct Placement in Liquid Nitrogen	223
44	ANOVA Table of Survival Percentage of Cryopreserved Embryos After Cryoprotection and Desiccation for One, Two and Three Hours	224
45	ANOVA Table of Survival Percentage of Excised Embryos After Twelve Hours of Cryoprotection Followed by Partial Desiccation for One and Two Hours and Two Methods of Cooling	224

TABLE

46	ANOVA Table of Survival Percentage of Cryoprotected Embryos Partially Desiccated and Subjected to Slow Freezing Protocol	225
47	ANOVA Table of Assessment of Cryopreserved Embryos Stored in Liquid Nitrogen Over a Period of One Month Using the Slow Freezing Protocol	225
48	Mean Square Values for Mean Dry Matter Content and Shoot to Root Ratio of Control and Cryopreserved Embryos Cultured on Two Different Media	226
49	ANOVA Table of Survival Percentage of Control and Cryopreserved Seedlings in Polybags After Eight Weeks of Planting in the Nursery	226

LIST OF PLATES

PLATE		PAGE
1	A Jackfruit of Variety NS. 1	41
2	Excision of the Embryo of Jackfruit Using a Sharp Scalpel	41
3	The Selected Three Stages of Fruit Along With Their Seeds (a) Fully Ripe (b) Ripe Fruit (c) Mature Unripe Fruit	78
4	Developing Plantlets from Embryos Excised from Fruits at the Three Stages of Maturity After Six Weeks in Culture (a) Fully Ripe Fruit (b) Ripe Fruit (c) Mature Unripe Fruit (Culture tube diam. 25 mm)	80
5	Comparison of Four Metabolic Enzymes in the Embryos from Fruits at the Three Stages of Maturity (a) Fully Ripe Fruits (b) Ripe Fruits (c) Mature Unripe Fruits	83
6	Variability in Embryo Size Excised from a Random Sample of Seeds	85
7	Close up of Selected Embryo Measuring 4.0- 5.0 mm Used in the Study	85
8	Plantlet Development in Medium Containing 0.1 mg/l each of NAA and Kinetin in the Absence of Charcoal After Eight Weeks of Growth (Culture tube diam. 25 mm)	92
9	Plantlet Development in Medium Containing 1.0 mg/l each of NAA and Kinetin in the Presence of Charcoal, After Eight Weeks of Growth (Culture tube diam. 25 mm)	92
10	Plantlet Development in Medium Containing 0.1 mg/l each of NAA and BAP in the Absence of Charcoal, After Eight Weeks of Growth (Culture tube diam. 25 mm)	97
11	Plantlet Development in Medium Containing 1.0 mg/l each of NAA and BAP in the Presence of Charcoal, After Eight Weeks of Growth (Culture tube diam. 25 mm)	97

12	Plantlet Development in Medium Containing 0.1 mg/l each of NAA and 2iP in the Absence of Charcoal, After Eight Weeks of Growth (Culture tube diam. 25 mm)	100
13	Plantlet Development in Medium Containing 1.0 mg/l each of NAA and 2iP in the Presence of Charcoal, After Eight Weeks of Growth (Culture tube diam. 25 mm)	100
14	Comparison of Root Development in Media With and Without Charcoal	101
15	Viability of Embryos Dried Over a Period of Six Hours by Ambient Drying Method (Culture tube diam. 20 mm)	105
16	Viability of Embryos Dried Over a Period of Six Hours by Air-Condition Drying Method (Culture tube diam. 20 mm)	105
17	Viability of Embryos Dried Over a Period of Six Hours by Laminar Air Flow Drying Method (Culture tube diam. 20 mm)	106
18	Viability of Embryos Dried Over a Period of Six Hours by Silica-Gel Drying Method (Culture tube diam. 20 mm)	106
19	Stunted Growth of Embryos Dried to Moisture Content of 9-10%	108
20	Embryo Growth and Development After Drying to Six Moisture Levels in a Laminar Air Flow Cabinet (a) 14-15% (b) 13-14% (c) 12-13% (d) 11-12% (e) 10-11% (f) 9-10%	108
21	Cellular Structure of Radicle Tip and Cortex from Excised Embryos of Fresh Jackfruit Seeds (0 Hours of Drying) (a) Radicle Tip (x 200) (b) Cortex Tissue of Radicle (x 400)	114
22	Cellular Structure of Radicle Tip and Cortex from Excised Embryos Subjected to One Hour of Drying in a Laminar Air Flow Cabinet (a) Radicle Tip (x 400) (b) Cortex Tissue of Radicle (x 400)	116
23	Cellular Structure of Radicle Tip and Cortex from Excised Embryos Subjected to Two Hours of Drying in a Laminar Air Flow Cabinet (a) Radicle Tip (x 400) (b) Cortex Tissue of Radicle (x 400)	117

PLATE		PAGE
24	Cellular Structure of Radicle Tip and Cortex from Excised Embryos Subjected to Three Hours of Drying in a Laminar Air Flow Cabinet (a) Radicle Tip (x 400) (b) Cortex Tissue of Radicle (x 400)	118
25	Cellular Structure of Radicle Tip and Cortex from Excised Embryos Subjected to Four Hours of Drying in a Laminar Air Flow Cabinet (a) Radicle Tip (x 400) (b) Cortex Tissue of Radicle (x 400)	119
26	Cellular Structure of Radicle Tip and Cortex from Excised Embryos Subjected to Five Hours of Drying in a Laminar Air Flow Cabinet (a) Radicle Tip (x 400) (b) Cortex Tissue of Radicle (x 400)	120
27	Cellular Structure of Radicle Tip and Cortex from Excised Embryos Subjected to Six Hours of Drying in a Laminar Air Flow Cabinet (a) Radicle Tip (x 400) (b) Cortex Tissue of Radicle (x 400)	121
28	Embryos at 14–15% Moisture Showing Survival After Storage in Liquid Nitrogen for Twelve Hours (Culture tube diam. 25 mm)	125
29	Embryos at 13–14% Moisture Showing Survival After Storage in Liquid Nitrogen for Twelve Hours (Culture tube diam. 25 mm)	125
30	Embryos at 12–13% Moisture Showing Survival After Storage in Liquid Nitrogen for Twelve Hours (Culture tube diam. 25 mm)	125
31	Embryos Showing Either Shoot or Root Development After Cryoprotection Followed by Rapid Freezing After Four Weeks in Culture	135
32	Embryos Showing Normal Development of Shoot and Root After Cryoprotection Followed by Slow Freezing After Four Weeks in Culture	135
33	Ultrastructure of Radicle Cells from Fresh Jackfruit Embryo	140
34	Ultrastructure of Radicle Cells from Jackfruit Embryos Cryopreserved After Desiccating to 14-15% Moisture Content	141

-	-		-	-
P	L	А	Т	E

35	Ultrastructure of Radicle Cells from Jackfruit Embryos Cryopreserved After Desiccating to 12–13% Moisture Content	142
36	Ultrastructure of Radicle Cells from Jackfruit Embryos Cryopreserved After Desiccating to 9-10% Moisture Content	144
37	Ultrastructure of Radicle Cells from Jackfruit Embryos Cryopreserved Directly in Liquid Nitrogen After Twelve Hours of Cryoprotection and Partial Desiccation to 29-33% Moisture Content	145
38	Ultrastructure of Radicle Cells from Jackfruit Embryos Cryopreserved After Twelve Hours of Cryoprotection Followed by Partial Desiccation to 29-33% Moisture Content and Slow Cooling to -40°C	146
39	Control Embryos Developing on Initially Established and Enriched Media (a) Initially Established Medium (b) Enriched Medium	150
40	Cryopreserved Embryos Developing on Initially Established and Enriched Media (a) Initially Established Medium (b) Enriched Medium	151
41	Plantlets in Glasshouse After Removal from the Misting Chamber	152
42	Comparison Between Control and Cryopreserved Plantlets After Five Weeks in a Misting Chamber (a) Control Plantlet (b) Cryopreserved Plantlet	152
43	Fresh Seeds and Seeds Stored for Three Days (a) Fresh Seeds (b) Seeds Stored for Three Days Showing Signs of Germination	154
44	Jackfruit Trees in a Small Scale Plantation	198
45	Close up of Jackfruits Developing on the Tree	198
46	A Section Through a Jackfruit Showing the Fruit (f), Seed (s) and Embryo (e)	200

LIST OF FIGURES

PAGE

48

1 Graph Showing Rate of Cooling for the Alcohol Bath (Julabo - Model F40-HC)

LIST OF ABBREVIATIONS

The following abbreviations were used in the text :

NAA	&-Napthalene acetic acid
BAP	Benzylaminopurine
2iP	2-isopentyl adenine
LSD	Least Significant Difference
DNMRT	Duncan's New Multiple Range Test
RH	Relative Humidity
EtOH	Ethyl alcohol
TBA	Tertiary Butyl Alcohol
w/w	weight by weight
v/v	volume by volume
min	minutes
°C	Degree centigrade
mg	milligram
g	gram
g 1	gram litre
g 1 µ1	gram litre microlitre
g l μl Kg/cm²	gram litre microlitre Kilogram per square centimetre
g l μl Kg/cm² μS	gram litre microlitre Kilogram per square centimetre Microsemens
g l µl Kg/cm² µS g/l	gram litre microlitre Kilogram per square centimetre Microsemens grams per litre
g l µl Kg/cm² µS g/l mg/l	gram litre microlitre Kilogram per square centimetre Microsemens grams per litre miligram per litre
g l µl Kg/cm² µS g/l mg/l MS	gram litre microlitre Kilogram per square centimetre Microsemens grams per litre miligram per litre Murashige and Skoog Medium formulation
g l µl Kg/cm² µS g/l mg/l MS %	gram litre microlitre Kilogram per square centimetre Microsemens grams per litre miligram per litre Murashige and Skoog Medium formulation percentage
g l µl Kg/cm ² µS g/l mg/l MS % DMSO	gram litre microlitre Kilogram per square centimetre Microsemens grams per litre miligram per litre Murashige and Skoog Medium formulation percentage Dimethysulfoxide
g l µl Kg/cm ² µS g/l mg/l MS % DMSO Kg	gram litre microlitre Kilogram per square centimetre Microsemens grams per litre miligram per litre Murashige and Skoog Medium formulation percentage Dimethysulfoxide
g 1 µl Kg/cm ² µS g/l mg/l MS % DMSO Kg rpm	gram litre microlitre Kilogram per square centimetre Microsemens grams per litre miligram per litre Murashige and Skoog Medium formulation percentage Dimethysulfoxide Kilogram revolution per minute

ABSTRACT

Abstract of the thesis submitted to the Senate of Universiti Pertanian Malaysia in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

TOWARDS THE DEVELOPMENT OF A PROTOCOL FOR CRYOPRESERVATION OF EMBRYOS OF A RECALCITRANT SEED (ARTOCARPUS HETEROPHYLLUS LAM.)

by

BASKARAN KRISHNAPILLAY

July, 1989

Supervisor	:	Professor Chin Hoong Fong
Co-Supervisor	:	Dr Hor Yue Luan
Faculty	:	Agriculture

Long term storage of recalcitrant seeds by conventional storage methods have by far been unsuccessful. In this study the excised embryos of seeds of jackfruit (Artocarpus heterophyllus). a recalcitrant species has been attempted at for long term preservation using cryogenic means.

Stage of fruit maturity was critical in the study where embryos excised from mature unripe fruits were found to be the most appropriate.

Selection of uniform sized embryos (4.0 - 5.0 mm in length) minimised variability in embryo fresh weight and moisture content to a considerable extent.

A modified Murashige and Skoog medium containing 1.0 mg/l each of NAA and BAP, 2 g/l of activated charcoal and 170 mg/l of $NaH_2PO_4.H_2O$ was found to be a suitable medium for development and growth of the excised jackfruit embryos.

The safe critical moisture limit for excised jackfruit embryos was found to be around 14-15%. Storage of embryos dried to this moisture limit by conventional storage methods with a view to long term storage was unsuccessful. The maximum storage period achieved was only one month. Attempts at direct storage in liquid nitrogen after desiccation to near critical moisture limit was also found to be unsuccessful.

Embryos cryoprotected with 10% DMSO + 0.5% proline for 12 hours followed by a partial desiccation to moisture contents of 29-33% and slowly frozen to -40°C at approximately 1°C/min before plunging into liquid nitrogen survived cryopreservation and gave approximately 60% normal recovery. No significant decline in the viability percentage was observed in those embryos stored by this method for a period of one month.

For normal recovery growth of embryos after cryopreservation, addition of other growth promoting substances namely GA₃, glutamine, argenine, asparagine and adenine sulphate to the initially established medium was found to be beneficial.

Only 50% of the well developed plantlets transferred to polythene bags were able to survive the transplanting shock and resume normal growth in the glasshouse. The plantlets required a hardening period of five weeks in a high humidity chamber before they were able to withstand the ambient conditions in the glasshouse.

ABSTRAK

Abstrak tesis yang dikemukakan kepada Senat Universiti Pertanian Malaysia bagi memenuhi sebahagian daripada syarat-syarat untuk memperolehi Ijazah Doktor Falsafah.

TOWARDS THE DEVELOPMENT OF A PROTOCOL FOR

CRYOPRESERVATION OF EMBRYOS OF A RECALCITRANT SEED

(ARTOCARPUS HETEROPHYLLUS LAM.)

oleh

BASKARAN KRISHNAPILLAY

July, 1989

Penyelia	:	Professor Chin Hoong Fong
Penolong Penyelia	:	Dr Hor Yue Luan
Fakulti	:	Pertanian

Penyimpanan biji benih tempoh panjang melalui kaedah penyimpanan biasa, belum berjaya setakat ini. Dalam kajian ini, embrio-embrio yang telah diasingkan dari biji benih nangka (Artocarpus heterophyllus), sejenis spesies rekalsitran, telah dikaji sebagai bahagian tumbuhan untuk penyimpanan tempoh panjang melalui kaedah kriogenik.

Peringkat kematangan buah didapati sangat penting. Embrio dari biji benih dalam buah yang matang tetapi belum masak, didapati yang sesuai sekali. Pemilihan embrio yang saiznya seragam (4.0 - 5.0 mm panjangnya) didapati mengurangkan variabiliti dalam berat segar dan kandungan kelembapan embrio.

Medium Murashige dan Skoog diubahsuai, yang mengandungi 1.0 mg/l NAA dan BAP masing-masing, 2 g/l arang diaktifkan dan 170 mg/l NaH₂PO₄.H₂O didapati sesuai untuk perkembangan dan tumbesaran embrio nangka.

Untuk embrio nangka, had kritikal kelembapan didapati lebih kurang 14-15%. Ujian untuk menyimpan embrio yang dikeringkan kepada kelembapan ini, melalui kaedah biasa tidak berjaya. Tempoh penyimpanan maksimum yang dicapai hanyalah selama sebulan sahaja. Percubaan untuk menyimpan embrio secara terus dalam nitrogen cecair selepas dikeringkan sehingga hampir had kritikal, juga didapati tidak sesuai.

Embrio yang dirawat dengan DMSO 10% + 0.5% prolin selama 12 jam diikuti oleh separuh kekeringan sehingga 29-33% kelembapan dan dibekukan dengan perlahan pada kadar 1°C/min sehingga -40°C sebelum diletakkan kedalam nitrogen cecair, didapati terus hidup dan menunjukkan kepulihan lebih kurang 60%. Tiada penurunan yang bererti dalam peratus viabiliti bagi embrio yang disimpan melalui kaedah ini selama sebulan.

Untuk memperolehi tumbesaran normal bagi embrio selepas krioawetan, penambahan bahan penggalakan tumbesaran (iaitu GA₃,

