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simplest example of hydrodynamic instability where nonlinear temperature profile 

prevails. A newly defined transient Rayleigh number that incorporates the mode of 

heat transport and the critical time can be used to predict the onset of convection. 

The mode of heat transport is characterized by a thermal boundary condition that 

determines the BioI number and its corresponding critical Rayleigh number. The 

study of onset of convection can be verified by using Computational Fluid Dynamic 

(CFD) to solve the governing partial differential equations for heat conduction, 

momentum, energy and chemical species. The simulation of heat transfer in the 

thennal layer was carried out by the commercial software, FLUENT. The occurrence 

of the convection was observed for two boundary conditions: constant heat flux and 

fixed surface temperature. Most of the observed values were in good agreement with 

the theoretical values. The critical time and critical depth for transient heat transfer 
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konduktiviti, momentum, tenaga dan bahan kimia Simulasi permindahan haba di 
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CHAPTER I 

INTRODUCTION 

When a layer of fluid is heated below and cooled above, its density generally 

changes. If the layer of fluid is in a gravitational field, the hotter, lighter fluid rises 

while the colder, heavier fluid sinks. This kind of motion, due solely to non

uniformity of fluid temperature in the presence of a gravitational field, is called 

natural convection. 

Convection currents induced in fluid by nonnal bottom heating and top 

evaporative cooling are natural phenomena commonly found in any lake, pond, or a 

glass of water. Thus, the prediction of the onset of convection is useful in 

astrophysics, geology, oceanography, climatology, meteorology and other natural 

sciences. Also, one major area of application where natural convection represents the 

key phenomenon is in energy systems such as cooling system for nuclear reactors, 

buoyant flow in the furnaces, perfonnance of solar collectors and energy storage 

system. Material processing is another area in which buoyant flow plays a dominant 

role. Solidification of alloys as in casting is affected strongly by natural convection. 

The purity of crystals in crystal growing will be reduced by natural convection if 

impurity is present. In the cooling of microelectronics components, natural 

convection again decides the physical mechanism. In addition, other examples can be 
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found in environmental processes such as cryogenic system including insulation and 

low-temperature energy transfer; thermosyphons and gravity-assisted heat pumps. 

Therefore, the study of natural convection has become very important area of 

research in heat transfer. Spangenberg and Rowland (1961) have observed the 

plunging plume produced by top cooling. This was confirmed experimentally by 

Foster (l965b) using amplification theory, but he calculated extremely large 

Rayleigh number exceeding 108. Rayleigh numbers for the onset of convection based 

on the total fluid depth are clearly unrealistic. Tan and Thorpe (1995) have defined a 

new transient Rayleigh number that incorporated the mode of heat transport and the 

critical time can be used to predict the onset of convection. The mode of heat 

transport is characterized by a thermal boundary condition that determines the Biot 

number and its corresponding critical Rayleigh number. When transient Rayleigh 

number exceeding certain critical Rayleigh number, convection will occur. 

The simulations using numerical techniques now far outweigh in detail those 

obtained from direct laboratory experiments. With the advent of the high-speed 

computer, the mechanism of the convection caused by buoyancy effect can be 

observed from the simulation results. The difficulties of measuring small temperature 

change of ±O.Ol °C in the laboratory experiments can be avoided. Very expensive 

laboratory equipment like infrared radiometer is no longer required in the simulation. 

Therefore, the experiment to study the onset of convection is carried out by using 

FLUENT computer simulation program. There will be more than 2000 nodes in the 
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simulation experiments to measure temperature, velocity, and physical properties of 

the fluids. Hence, the critical time and sizes of plume at the onset of convection can 

be verified. Both two-dimensional and three-dimensional simulation of heat transfer 

at the thermal layer will be carried out by the software. The onset of convection will 

be demonstrated for various boundary conditions, modes and rates of heat transfer. 

Objectives 

The objectives of this project include: 

• To use a newly derived transient Rayleigh number to predict the onset of 

convection in water and glycerin. 

• To use a CFD (Computational Fluid Dynamic) package to simulate the steady 

state and the unsteady state heat transfer in the thermal boundary layer. 

• To study flow pattern during the onset of convection. 

• To estimate the rate of heat transfer, velocity of the liquid, critical time and the 

plume sizes at the onset of convection. 



CHAPTERll 

LITERATURE REVIEW 

Introduction 

Convection induced by buoyancy forces has widespread application in many 

branches of physics and engineering recently. The occurrence of convection in a thin 

layer of fluid confined between two surfaces can be predicted by linear stability 

analysis (LSA) for steady-state heat conduction. The literature review will study the 

stability criterion in order to predict the onset of convection. Its results are 

summarised in terms of critical Rayleigh number. There is a new feature of stability 

to be discussed here. The point of instability in transient heat conduction will be 

examined in which the onset of convection can be predicted from transient Rayleigh 

number that incorporates the mode of heat transport and critical time, te. Analytical 

study of the boundary conditions and the critical time can thus be understood from 

the discussion. The related laboratory and numerical experiments will be presented to 

study the buoyancy effects explicitly. 

Natural Convection Driven by Buoyancy 

Natural convection is observed when the adverse density gradient in a fluid

phase heat or mass transfer process produces an unstable hydrodynamic situation. 

The stabilising effect of viscosity will dissipate the energy and thereby stabilise a 
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flow. Viscosity has also the more complicated effect of diffusing momentum. 

Thermal conductivity or molecular diffusion of heat has some effects similar to those 

of viscosity, which tends to smooth out the temperature differences of an unstable 

temperature gradient. When the temperature difference across the layer is great 

enough, the stabilising effects of viscosity and thermal conductivity are overcome by 

destabilising buoyancy, and overturning instability ensues as thermal convection. 

This natural convection may be distinguished from free convection, such as due to a 

hot vertical plate, for which hydrostatic equilibrium is impossible. A basic flow of 

free convection may itself be unstable. Our concern here is with convection driven 

by buoyancy effect. 

Natural convection seems to have been first described by Thomson (1882), 

but the first quantitative experiments were made by Benard (1900). Stimulated by 

Benard's experiments, Rayleigh (1916) formulated the theory of convective 

instability of a layer of fluid between horizontal planes and solved the idealised case 

when the top and bottom layers are free surface with a linear temperature gradient. 

He used a perturbation expansion of linearized Boussinesq approximation. The basis 

of this approximation is that there is a flow in which the temperature varies little, and 

therefore the density varies little, yet in which the buoyancy drives the motion. Then 

the variation of density is neglected everywhere except in the buoyancy. He assumed 

a convection pattern which varies sinusoidally in the horizontal (x and y) directions 

and showed that there is a critical value of Rayleigh number (Ra = 657) for free 

boundary condition at the top and bottom surfaces of the fluid. At the value above 
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the critical number, cells will fill the gap between the boundaries and hence become 

unstable. Convection will begin when Ra > Rac. Its results are put in terms of the 

critical Rayleigh number, Rad, 

[2. 1] 

where g is gravity, d is depth of fluid layer, a is thermal expansion, v is kinematics 

viscosity, K is thermal diffusivity and .t1T is drop of temperature. His linear stability 

analysis for steady-state heat conduction has been extended to other boundary 

conditions. Jeffreys ( 1928), Low ( 1929) and Nield ( 1964) obtained the critical 

Rayleigh number (Rad) of 1709, 1 108 and 669 respectively in various boundary 

conditions. Later, Sparrow ( 1964) solved for a wide range of critical Rayleigh 

numbers, which are dependent on the Biot number (=hllk), as shown in Table 1 .  Biot 

number is a dimensionless parameter, which provides a measure of the temperature 

difference between the convecting phase and the fluid. In a cooling process at a gas-

liquid interface, high conducting gas at the interface will render the Biot number 

high, whereas insulating gas leads to low Biot number. 

Block (1956) showed physically and Pearson ( 1958) analytically that most of 

the motions observed by Benard, being in very thin layers with a free surface, were 

driven by the variation of surface tension with temperature, not by buoyancy effect. 

However, Rayleigh's linear stability analysis is in accord with experiments in the 

deep fluid. The importance of the variation of surface tension relative to that of 

buoyancy diminishes as the thickness of the layer increases. Tan and Thorpe ( 1999) 
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found that for thin liquid layers of thickness less than transient depth dm, about 4 mm 

for many liquids, the convection is induced by surface tension. When fluids deeper 

than 10  mm, buoyancy-driven convection dominates. 

Table 1: The Critical Rayleigh Numbers and Wave 
Numbers for Various Boundary Conditions 
(From Sparrow et at., 1964) 

Bi 
Top surface free 

a Rae 
c 

Top surface solid 
a Rae c 

Bottom surface at fixed temperature 
0* 2.09 669.0 2.55 1295.8 

(Nield's) 
0. 1 2.115 682.4 2.58 1309.5 
0.3 2.17 706.4 2.64 1334.1 
1 2.30 770.6 22.75 1398.5 
3 2.46 872.5 2.9 1497.6 
10 2.59 989.5 3 .03 1607.1 
30 2.65 1055.3 3.08 1 667. 1 
100 2.67 1085.9 3 . 1 1  1694.6 
00** 2.68 1100.7 3 . 12 1707.8 

(Low's) (Jeffrey's) 

Bottom surface at constant heat flux 
0* 0 320.0 0 720.0 
0. 1 1.0 15  381 .7 1 .23 807.7 
0.3 1 .3 428.3 1 . 57 869.2 
1 1.64 5 13 .8 1 .94 974.2 
3 1 .92 619.7 2.24 1093.7 
10 2. 1 1  725.2 2.44 1204.6 
30 2. 1 8  780.2 2 .51  1259.9 
1 00 2.20 805.0 2 .53 1284.3 
00** 2.2 1 816.7 2.55 1295.8 

* Corresponds to constant heat flux 
* * Corresponds to fixed surface temperature 
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Steady State Convection 

The occurrence of cellular convection in a fluid with an adverse linear density 

gradient has been studied theoretically and experimentally. Schmidt and Milverton 

(1935), Schmidt and Saunders (1937) performed the heating experiments in the layer 

of water between two horizontal plates. They found that the occurrence of the 

convection agreed and conformed to the theoretical value of Jeffreys (1928) when 

Rad = 1709. Silverstone (1958) also showed experimentally that the convection occur 

at the critical Rayleigh number of 1700-1800 in many liquids. 

Koschmieder (1967) repeated Benard's experiments in silicone oil, using 

various shapes of convection chamber with free and solid top boundaries. He 

showed that the initial cellular pattern to form when the bottom is gradually and 

uniformly heated is the two-dimensional roll. A series of concentric annular rings 

was appeared in a circular chamber, as shown in Figure 1. 

Steady-state convection that spans the whole depth of the fluid is difficult to 

be observed in experiments. It is shown i,n the previous literature that the 

experiments have to be manipulated artificially with slow heating at the initial 

heating stage in order to obtain linear temperature gradient in the liquid, It is 

unrealistic because in nature, heat transport commences with a non-linear 

temperature gradient, which is responsible for the onset of convection. It is also 

impossible to obtain a situation when the heat flux and the surface temperature are 
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constant at the same time. The surface temperature or heat flux will change with time 

as any of the parameters is fixed. Therefore, the study of unsteady state convection is 

much more important in this literature review. 

Figure 1: Convection Rolls Forming in a Layer of Silicone Oil with a Free 
Surface. The Concentric Ring Pattern Shows the Strong Influence 
of the Circular Boundary. (From Koschmieder 1967) 

Unsteady State Convection 

Many geophysical phenomena, such as convection in the atmosphere induced 

by heating from below or in the ocean induced by cooling from above, are time-

dependent processes. Townsend's (1959) detailed observations, as well as common 

experience in the lower atmosphere, make it clear that the flux from a heated 

boundary is intermittent rather than steady. Buoyant fluid slowly accumulates and 

then breaks away, either as a thermal, or as an unsteady plume. Thermals are masses 

of relatively hot fluid, which ascend through the environment above a heated 
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horizontal surface. Likewise, falling thermal plumes are masses of relatively cold 

fluid, which descend below a cooled horizontal surface. The generation of thermals 

is thought to be the result of instability in the conduction layer adjacent to the heated 

or cooled surface. Thermals are believed to play an important role in certain thermal 

convection phenomena, such as evaporative cooled layer at a liquid surface and the 

heated unstable layer of the atmosphere near the earth's surface that rises as thermal 

move through the troposphere. 

When Spangenberg and Rowland (1961) conducted experiments to study 

convection induced by evaporative cooling in a deep tank of water, they observed 

plunging sheets and columns that later would develop into inverted expanding 

mushrooms, as shown in Figure 2. Streamers of liquid then plunged precipitously 

from the cooled layer. These plunging sheets grow and fade and are of continuously 

changing form until the circulation reaches a steady state. 

They found that nonlinear temperature profile was responsible for the onset 

of convection. Therefore, conventional steady-state stability analysis cannot be 

applied. The total fluid depth of the water is no longer relevant in the analysis. They 

found that the convection occurred at 70 sec when the surface temperature has 

dropped about 0.36 °c. 

All the early theories presented fail to bring out this feature, but Howard 

(1964) has proposed a model which predict a mean temperature profile and heat flux 
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by averaging the error function profile over the period. He defined a Rayleigh 

number based on thickness of boundary layer 8 when it become unstable, but he 

simply determined critical time by Rae = 1000 without considering its corresponding 

Biot number. 

a) 

b) 

Figure 2: Front View of Photograph of Water Showing Surface Layer Cooled 
by Natural Evaporative Cooling, and Simultaneous Sheet and 
Columnar Plunging during the Onset of Convection. [Photo from 
Spangenberg and Rowland (1961)] 

The time-dependent stability problem has been studied by Foster (1965a). He 

developed a simplified mathematical model in which the velocity and temperature 

perturbations vanish at the top and bottom boundaries but which takes into account 

nonlinear, time-dependent temperature profiles. Foster applied his velocity 


