

UNIVERSITI PUTRA MALAYSIA

EFFECT OF AVAILABLE SOIL MOISTURE ON THE GROWTH AND YIELD OF GROUDNUT (ARACHIS HYPOGAEA L.)

MD. ABDUR RAHMAN SARKAR

FP 1987 7

EFFECT OF AVAILABLE SOIL MOISTURE ON THE GROWTH AND

YIELD OF GROUNDNUT (Arachis hypogaea L.)

Ву

MD. ABDUR RAHMAN SARKAR

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in the Faculty of Agriculture, University of Agriculture Malaysia

June 1987

DEDICATION

Dedicated to the memory of my departed father

ACKNOWLEDGEMENTS

The author expresses his deep sense of gratitude and indebtedness to his supervisors Dr. Lim Eng Siong and Dr. Mok Chak Kim for their painstaking and scholastic guidance, advice, and constant encouragement during the entire period of this study and for their invaluable constructive criticisms during the preparation of the thesis.

Ihe author owes a debt of gratitude to the Govt. of Malaysia for financing the study through Commonwealth Scholarship.

(iii)

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
LABLE OF CONTENTS	iv
1151 OF FABLES	viii
LI51 OF FIGURES	х
1151 OF PLATES	xi
LIST OF APPENDICES	xii
ABOLPACI	хív
ABSTRAK	xvi
CHAPIER 1. INTRODUCTION	1
CHAPTER II. REVIEW OF LITERATURE	4
Development of Plant Water Deficit	4
Water Stress and the Physiological Processes in Plants	5
Protoplasmic Dehydration	5
Effects on Photosynthesis	6
Effects of Respiration	7
Effects on Transpiration	7
Effects on Translocation	8
Water Stress and the Vegetative Growth of Crop Plants	8
Growth of Leaves	9
Growth of Stems	10

Page

Growth of Roots and Top-root Ratio	11
Dry Matter Production	12
Recovery of Growth Upon the Alleviation of Stress	13
Effect of Moisture Stress on the Yield of Crops	14
Moisture Stress at the Vegetative Stage and Yield of Crops	15
Moisture Stress at the Reproductive Phase and Yield of Crops	16
Moisture Stress at the Flower Initiation and Flowering Stage and Yield of Crop Plants	16
Moisture Stress and the Stage of Fruit Enlargement	19
Moisture Stress and the Stage of Ripening or Crop Maturity	21
Moisture Stress and Maturity of Crops	22
CHAPIER III. MATERIALS AND METHODS	23
Plant Material	23
Soil	23
Experimental Details	24
Experiment I	26
Experiment IJ	32
Experiment III	35

CHAPIER	IV.	RESULTS	39
		Experiment I	39
		Vegetative Characters	39
		Dry Weight of Haulms	39
		Dry Weight of Root	41
		Reproductive Characters	41
		Production of Flowers	41
		Number of Pegs	44
		Yield and Yield Component	44
		Pod Yield	44
		Experiment II	51
		Vegetative Growth	51
		Length of Stem	51
		Dry Weight of Stem	53
		Number of Leaves per Plant	53
		Leaf Area per Plant	53
		Dry Weight of Roots	59
		Dry Matter Production (Excluding pods)	59
		Reproductive Characters	63
		Number of Flowers, Pegs and Pods Produced	63
		Pod Development and Yield	65
		Quality of Produce	68
		Correlation Between Pod Yield and Total Dry Matter Yield	71

Page

Page

	Lxperiment III	74
	Vegetative Growth	74
	Dry Weight of Leaves	74
	Dry Weight of Stems	74
	Number of Branches Produced per Plant	74
	Dry Weight of Root	77
	Reproductive Characters	77
	Production of Flowers	77
	Production of Pegs	79
	Production of Pods	79
	Pod and Seed Size	88
	Correlation Between Pod Yield and Total Dry Matter Yield	88
CHAPIER	V. DISCUSSION	90
	Effect of Available Soil Moisture on Vegetative Growth	90
	Lffect of Available Soil Moisture on the Reproductive Growth and Yield	93
	Important Levels of Available Soil Moisture and Duration of the Moisture Treatment	96
	Critical Growth Stage	97
	The Limitations and Applicability of Pot Studies to Field Conditions	97
	(onclusion	99
CHAPIIR	VI. SUMMARY AND CONCLUSION	100
BIBI IOGRA	арну	104
APPINDIQ	5	113

LIST OF TABLES

17.811		PAGE
Ι.	Lffect of the Duration of Moisture Treatment, Growth Stage Treated and Available Soil Moisture on the Dry Weight of Haulm (g/pot)	40
11.	Effect of Available Soil Moisture on Root Dry Weight	42
111.	Effect of Growth Stage at the Time of Treatment on Root Dry Weight	42
IV.	Effect of Moisture Treatment Duration, Growth Stage and Available Soil Moisture on the Mean Number of Flowers Produced per Pot	43
۷.	Effect of Available Soil Moisture on the Mean Number of Pegs Produced per Pot	46
VI.	Effect of Moisture Treatment Duration, Growth Stage and Available Soil Moisture on the Dry Weight of Pods (g/pot)	46
VII.	Effect of Moisture Treatment Duration, Growth Stage and Available Soil Moisture on the Number of Mature Pods Produced per Pot	49
· 11].	Effect of Moisture Treatment Duration, Growth Stage and Available Soil Moisture on the Dry Weight of Seeds (g/pot)	50
17.	Effect of Available Soil Moisture on Pod Production per Plant	66
λ.	affect of Available Soil Moisture on Mature Pod and Seed Yield	69
<i>.</i>	Effect of Available Soil Moisture on the Number of One, Two and Three-seeded Pods	70
<i>x</i> 11.	lffect of Growth Stage on Dry Weight of leaves (g/plant)	75
ZIII.	Iffect of Growth Stage at Treatment and Available Soul Monsture on the Dry Weight of Stems (g/plant)	7 5

215.	Effect of Growth Stage and Available Soil Moisture on the Fotal Number of Branches Produced per Plant	76
ΤΥ.	<pre>!ffect of Growth Stage at Treatment on Dry Weight of Roots (g/plant)</pre>	78
ZVI.	Lifect of Growth Stage at Treatment and Available Soil Moisture on the Total Number of Flowers Produced per Plant	78
7/11.	lffect of Growth Stage at Treatment and Available Soil Moisture on the Number of Pegs Produced per Plant	81
20111.	Effect of Growth Stage at Treatment and Available Soil Moisture on the Total Number of Pods per Plant	81
X1X.	Effect of Growth Stage at Treatment and Available Soil Moisture on the Number of Undeveloped Pods per Plant	82
XX.	Lffect of Available Soil Moisture on the Yield and Yield Components	82
XX1.	Lffect of Growth Stage at Treatment on the Yield and Yield Components	84
XX11.	Lffect of Growth Stage at Treatment and Available Soil Moisture on the Number of Iwo-seeded Pods per Plant	86
ΧХПП.	Iffect of Growth Stage at Treatment and Available Soil Moisture on the Number of One-seeded Pods per Plant	87

7811

(ix)

LIST OF FIGURES

r IGURI		PAGE
1.	Soil Moisture Characteristic Curve for Serdang Colluvium Soil	25
2	Planting and Harvesting Dates and Moisture Treatment Period in Experiment I	30
3.	Planting and Harvesting Dates and Moisture Treatment Period in Experiment III	37
4.	Effect of Available Soil Moisture on Main Stem Length	52
).	Lffect of Available Soil Moisture on Dry Weight of Stems	54
6.	Effect of Available Soil Moisture on the Length of First Pair of n + 1 Branches	55
7.	Lffect of Available Soil Moisture on the Length of Second Pair of n + 1 Branches	56
8.	Effect of Available Soil Moisture on Number of Leaves	5 7
9.	Effect of Available Soil Moisture on Leaf Area	58
10.	Effect of Available Soil Moisture on Dry Weight of Leaves	60
11.	Effect of Available Soil Moisture on Dry Weight of Roots	61
12.	Effect of Available Soil Moisture on Dry Matter Production	62
13.	Effect of Available Soil Moisture on the Number of Flowers, Pegs and Pods	64
14.	Effect of Available Soil Moisture on the Rate of Pod Development	67
15.	Relationship Between Pod Yield and Total Dry Matter (Experiment II.)	72
16.	Relationship Between Pod Yield and Total Dry Matter (Experiment III).	89

LIST OF PLATES

PALTE		PAGE
I.	Method of Weighing the Pots for Watering	29
11.	Plants Grown at Different Available Soil Moisture Regimes (Experiment II.)	73

LIST OF APPENDICES

D	A	C	Г
r	А	G	L

1.	Mean monthly minimum and maximum air temperature (°C) and relative humidity (%) recorded in the glasshouse during the experiments	113
11.	Experiment I: Mean square values for the dry weight of haulm and roots	114
111.	Experiment I : Mean square values for the number of flowers and pegs produced per pot	115
IV.	Experiment I: Mean square values for the yield and its components	116
۷.	Experiment II: Mean square values for the length of the main stem (cm) measured every 7 days beginning 25 days after planting	117
VI.	experiment 11: Mean square values for the dry weight of stems (g/plant) sampled at different days after planting	118
VIJ.	Experiment II: Mean square values for the length of the first pair of n + 1 branches (cm) measured every 7 days beginning 25 days after planting	119
VIII.	Lxperiment II : Mean square values for the length of the second pair of n + 1 branches (cm) measured every 7 days beginning 25 days after planting	120
1X.	Experiment II: Mean square values for total number of branches per plant at harvest	121
Χ.	Lxperiment II: Mean square values for the number of leaves per plant measured at different days after planting	122
XI.	Experiment II: Mean square values for the leaf area per plant (cm ²) sampled at different days after planting	123
уII.	Experiment 11: Mean square values for the dry weight of leaves (g/plant) sampled at different days after planting	124

XIII.	Experiment II: Mean square values for the dry weight of root (g/plant) sampled at different days after planting	125
XIV.	Experiment II: Mean square values for the total dry matter (g/plant) sampled at different days after planting	126
XV.	Experiment II: Mean square values for the numbers of flowers, pegs and total pods per plant	127
XVI.	Experiment II: Mean square values for the dry weight of developing pods (g/plant) sampled at different days after planting	128
XVII.	Experiment II: Mean square values for the yield and its components	129
XVIII.	Experiment II: Mean square values for the number of pods per plant (transformed) in various pod categories	130
X1X.	Experiment III: Mean square values for the dry weight of leaves, dry weight of stems, total number of branches and dry weight of root per plant	131
xx.	Experiment III: Mean square values for the number of flowers, pegs and total pods per plant	132
XXI.	Experiment III: Mean square values for the number of pods per plant in various pod categories	133
XX11.	Experiment III: Mean square values for the yield and its components	134

An abstract of the thesis presented to the Senate of universiti Pertanian Malaysia in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

EFFECT OF AVAILABLE SOIL MOISTURE ON THE GROWIH AND YIELD OF GROUNDNUT (Arachis hypogaea L.)

Βv

Md. Abdur Rahman Sarkar

'nief Supervisor	: /	Associate	Professor	Dr.	Lim	Eng	Siong
mpervisor	: A	Associate	Professor	Dr.	Mok	Chak	Kim
Faculty	: A	Agricultur	e				

Experiments were carried out under glasshouse conditions with a locally grown Spanish type groundnut variety V 13 to determine the effect of available soil moisture on the growth and yield.

The vegetative growth was found to be depressed by the prolonged deficit of available soil moisture at early flowering. The pod yield was found to be reduced by moisture deficits of both short and prolonged duration occurring at early flowering and pegging stages in comparison to podding stage. However, the reduction in pod yield was more severe due to the prolonged deficit of available soil moisture at early flowering. Twenty percent available soil moisture reduced pod yield more severely during the prolonged druation treatment.

The vegetative growth (particularly in terms of dry matter) was adversely affected when irrigation was scheduled at or below 70 percent available soil moisture. As a consequence of the adverse effect of low levels of available soil moisture on the vegetative growth, the pod and seed yields were also arredly reduced.

The flowering and podding were found to be more sensitive to low levels of available soil moisture in respect of yield.

With a view to maximizing yield, the groundnut crop should preferably be irrigated to maintain the level of available soil moisture at field capacity especially during the stage of flowering and podding.

(xv)

Abstrak tesis yang dikemukakan kepada Senat Universiti Fertanian Malaysia sebagai memenuhi sebahagian dari syarat-Ayarat untuk memperolehi Ijazah Doktor Falsafah.

KESAN KELEMBAPAN TANAH YANG SEDIA ADA KE ATAS TUMBESARAN DAN PENGHASILAN KACANG TANAH (<u>Arachis</u> hypogaea L.)

01eh

Md. Abdur Rahman Sarkar

Ketua Penyelia	:	Profesor	Madya	Dr.	Lim	Eng	Siong
Penyelia	:	Profesor	Madya	Dr.	Mok	Chak	: Kim
Fakulti	:	Pertania	n				

Eksperimen telah dijalankan di bawah keadaan rumahkaca ke atas satu varieti kacang tanah Spanish tempatan, varieti V 13, untuk mementukan kesan Kelembapan tanah yang sedia ada terhadap tumbesaran dan penghasilannya.

Tumbesaran tampang pada peringkat pembungaan awal telah didapati dirosotkan oleh kekurangan kelembapan tanah yang sedia ada yang berpanjangan. Hasil lenggai juga didapati telah dikurangkan oleh kekurangan kelembapan yang berlaku pada tempoh jargra bendek dan panjang pada peringkat pembungaan awal dan benugatan berbanding dengan peringkat pelenggaian. Walau baganmanapun, pengurangan hasil lenggai berlaku dengan lebih teruk akibat daripada kekurangan air tanah yang sedia ada yang berpanjangan pada peringkat pembungaan awal. Kelembapan tanah yang sedia ada pada paras 20 peratus sangat menjejaskan hasil lenggal.

umbesaran tampang (Khasnya dari segi bahan kering) telah terjejas apabila bekalan air diadakan pada paras kelembapan tanah yang sedia ada pada atau di bawah 70 peratus. Kesan buruk ke atas tumbesaran tampang yang disebabkan oleh kelembapan tanah rang rendah ialah hasil lenggai dan biji benih menjadi kurang dengan teruk.

Dari segi penghasilan, peringkat pembungaan dan pelenggaian telah didapati lebih sensitif kepada paras rendah kelembapan tinah yang sedia ada.

Untuk mendapatkan hasil yang maksimum, tanaman kacang tanah perlu diberikan bekalan air supaya paras kelembapan tanah yang sedia ada dikekalkan pada had basah (field capacity),istimewa sekali pada masa peringkat pembungaan dan pelenggaian.

x**v**11

CHAPTER I

INTRODUCTION

Groundnut (<u>Arachis hypogaea</u> L.) which belongs to the family Papilionaceae in the Order Leguminosae, is regarded as one of the leading crops in the world for the production of oil and plant protein. It is extensively cultivated in the tropical and subtropical countries for direct use as food, for the oil, and for the protein rich meal produced after oil extraction.

Erratic rainfall, in the tropical and sub-tropical countries is one of the important causes responsible for the low yield in groundnut as it is usually grown there as a rainfed crop. The crop generally requires an evenly distributed rainfall of at least 550 mm (Sellschop, 1966) during the growing season when grown as a rainfed crop. Soil moisture deficits frequently occur under rainfed condition when anticipated rain does not occur in time or when rainfall is scanty. Under such conditions, the crop has to depend upon the stored soil moisture which is soon depleted through evapotranspiration. Consequently the growth and yield of the crop is severely depressed. Prolonged and severe moisture deticits can result in complete crop failure unless the soil woisture is replenished in time. Natural rainfall supplemented with irrigation can ensure favourable soil moisture regimes

1

conducive to optimum yield. However, irrigation is costly and the quantity of water is usually limited. Therefore, judicious use of irrigation is desirable.

Plants are not equally sensitive to soil moisture deficits at different stages of growth in terms of growth and yield reduction. Rather, there are some specific stages of growth during which soil moisture deficits are more proned to reduce the growth and yield. Scanty rainfall during the moisture sensitive growth stages, can result in severe yield reduction unless depleted available soil moisture is replenished with supplemental irrigation. The irrigation cost may be minimized by supplying adequate water at the moisture-sensitive stage and less water at other stages of growth.

The determination of the level of available soil moisture upto which irrigation can be delayed, is an important cost reducing aspect in groundnut irrigation. The interval between Irrightions should be as large as possible without appreciable reduction in crop yield. This will also ensure the application of the right amount of water. Over-irrigation, which is costly and detrimental to the crop, can thus be avoided.

Groundnut is one of the promising short-term cash crops in Welaysia included in the crop diversification programme. It is generally grown here as a rainfed crop. It is, therefore, probable that the groundnut yield can be reduced in times of

2

unadequate rainfall. There is limited and sporadic information on the growth and yield of groundnut in relation to soil moisture deficits under local condition. Research work in this field thus warrants due attention.

The present study was, therefore, carried out with the following objectives :

- I. To determine the growth and yield response of groundnut at different growth stages to short and prolonged duration at various levels of available soil moisture.
- 2. To determine the optimum level of available soil moisture for the growth and production of groundnut, and to determine the moisture sensitive growth stage.

CHAPTER II

REVIEW OF LITERATURE

This review of literature covers the development of plant water deficit and its effects on physiological processes as well as on the growth, development and yield of crop plants in general and groundnut in particular.

Development of Plant Water Deficit

Plant water deficits generally occur when water loss through transpiration is more than water absorption. According to Framer (1963), water deficits in plants can be caused either by excessive loss of water or by inadequate absorption, or by a combination of the two. The water potential in a non-transpiring plant approaches the water potential in the soil, but with the commencement of transpiration, a gradient in water potential develops from the soil, to and through the plant; thus water coves from the soil, through the plant, and out to the atmosphere (rischer and Hagan, 1965). Temporary midday deficits occur in rapidly transpiring plants because the resistance to water movement through roots causes absorption to lag behind transpiration even in moist soil. Longer-term and more severe water deficits develop when decreas

4

cause decreased absorption of water. Thus, daily cycles in water stress are controlled chiefly by transpiration, but long term, severe water deficits develop chiefly because of decreasing availability of soil water (Kramer, 1969). The decreasing availability of soil water causes an increase in the water potential gradient between the soil and the root. As a result, a greater soil—root water potential difference is required to move water from soil to roots to replace the loss by transpiration. At this stage the rate of water movement from the soil to the roots is so slow that recovery from wilting is not possible and permanent wilting occurs.

Water Stress and the Physiological Processes in Plants

Water stress affects physiological processes such as protoplasmic dehydration, photosynthesis, respiration, transpiration and translocation of photosynthates.

Protoplasmic Dehydration

The dehydration of the protoplasm has profound effect on the various physiological processes in plant life. According to Stocker (1960), the dehydration of the protoplasm occurs in two stages - the reaction phase, when plants are first subjected to water stress and the restitution and hardening phase, which occurs if water stress lasts for several days. The reaction phase is characterized by a decrease in viscosity of the protoplasm, increased permeability to water, urea and glycerine, increased proteolysis, and increased respiration. In the restitution phase,

