

UNIVERSITI PUTRA MALAYSIA

EFFECTS OF PALM OIL MILL EFFLUENT APPLICATION ON PHYSICAL AND PHYSICO-CHEMICAL PROPERTIES OF SOILS

MD. ABDUL HAI MAJUMDER

FP 1987 2

EFFECTS OF PALM OIL MILL EFFLUENT APPLICATION ON PHYSICAL AND PHYSICO-CHEMICAL PROPERTIES OF SOILS

by

Md. Abdul Hai Majumder

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in the Dept. of Scil Science, Faculty of Agriculture, Universiti Pertanian Malaysia, Serdang, Selangor.

December, 1987

DEDICATION

To my late parents and other close ones who could not wait to see my success

ACKNOWLEDGEMENTS

The contributions of various individuals and institutions towards the realization of this thesis are to be greatly acknowledged.

First and foremost, I wish to express my sincere appreciation and gratitude to my Chief Supervisor Dr. Haji Wan Sulaiman Wan Harun for his invaluable guidance and advice throughout the course of this study. My research projects which involved a lot of work outside the campus would have been impossible if not his personality, expertise and efforts.

I am also greatly indebted to my Supervisor Dr. Haji Mohd. Mokhtaruddin A. Manan for his constructive criticism, advice and help in both research and personal affairs.

Then, I am most grateful to:

Universiti Pertanian Malaysia (UPM) for accepting me as a student and providing me with the facilities to undertake the study.

The Chairman, Directors and Project Director (Rubber) of Bangladesh Forest Industries Development Corporation (BFIDC) for nominating we for this scholarship,

111

All officers, colleagues, staffs and workers of BFIDC Head Office and Rubber Planting Project for their unlimited help and enthusiasm which became a great source of inspiration for me,

The Ministry of Finance (External Education Planning Branch of External Resources Division), The Ministry of Agriculture and The Ministry of Education of Bangladesh for selecting me, and extending their kind help and co-operation in particular, Dr. Mohiuddin Khan Alamgir (Joint Secretary, Ministry of Finance) for generous assistance,

Commonwealth Fund For Technical Co-operation (CFTC) for the scholarship award that enabled me to undertake this study; Mr. J.T. Houston and others of CFTC for their kind help and understanding;

The Bangladesh High Commissioner, Counsellor, First Secretary and others for their immense help and encouragement,

The Head and other members of the Department of Soil Science (UPM) for a variety of help and advice from time to time,

The Head of the Department of Agriculture Engineering (UPM) for allowing me to use the Soil Mechanics Laboratory,

Former graduate studies Dean Prof. Dr. A. Manap, present graduate Dean Dr. Alang Perang, Assistant Registrar Mr. Abdul Aziz Bahsir and others for their unceasing help and cooperation.

11

Acknowledgement is also due to Palm Oil Research Institute of Malaysia and EBOR Research of Sime Darby Plantations Limited for allowing me to use their facilities.

I owe special thanks to Mr. Mohd. Tayeb bin Dolmat PORIM (Research Co-ordinator) and others of Research Station, Kluang, Johore for their kind help and co-operation, Dr. Peter Lim Kim Huan (Agronomist) of EBOR Research for kind help and valuable advice, Managers and staffs of Bukit Raja and CEP Rengam Estates for allowing me to work in their fields and various other help and Mr. Mohd. Mazalan Kamis, Assistant Manager who was then in charge of the "Effluent Trial Area" in CEP Rengam Estate for his interest friendly help and cooperation.

A note of thanks is also extended to Mr. Mokhtar of Soil Science Department (UPM) for helping me to take field samples, Mr. Ramli Yusof, Ibrahim Shamsudin and other technicians for various technical help, Miss Salmah, Mrs. Jalinah and Rabidah Ayob who have painstakingly typed this manuscript.

It would not have been possible to complete this work without my numerous friends from inside and outside the campus whose names I could not mention here. They had helped me in one way or another and I extend to them my heartfelt thanks.

My regards to my father-in-law Mr. Tofazzal Hossain who passed away on 27th January, 1986, and my mother-in-law Mrs. Kohinoor Begum for taking care of my family in my absence, My brothers, sisters and other relatives for their help, encouragement and blessings and all others who have blessed me with their teachings and preachings.

My fullest measure of love and gratitutde go to my wife Mrs. Nasreen Akhter and our son Mohd. Faisal Salauddin (Mahin) for depriving them of my love and affection and patiently sharing the noble cause of my undertaking here.

Finally, I tender my total submission to Almighty Allah Who is kind and merciful. All praises to Him Who has made this humble piece of work possible. Ameen.

Author

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	vii
LIST OF TABLES	xiv
LIST OF FIGURES	x vi i
LIST OF PLATES	xx
LIST OF APPENDICES	xxi
LIST OF ABBREVIATIONS	xxvi
ABSTRACT	xxvii
ABSTRAK	xxxi
CHAPTER 1 GENERAL INTRODUCTION	1
CHAPTER 2 LITERATURE REVIEW	8
Introduction	8
Effluent Problems in Malaysia	9
EFFECTS OF EFFLUENT AND SLUDGE ON PHYSICO-CHEMICAL PROPERTIES OF SOIL:	12
Soil Aggregation, Bulk Density, Porosity and Water Holding Capacity	12
Wettability of Soil	18
Flow Properties of Soil	25
Effects on Cation Exchange Capacity (CEC) and Exchangeable Bases of Soil	43
EFFECTS OF EFFLUENT AND SLUDGE APPLICATION ON CROP PERFORMANCE:	43
Perenial Crops	43
Annal Grops	51

	EFFECTS ON NUTRIENT MOVEMENT AND UNDERGROUND WATER QUALITY:	55
CUADEED 2	HYPOTHESES.	
		62
CHAPTER 4	MATERIALS AND METHODS	65
	MATERIALS	65
	Effluents	65
	Soil	76
	EXPERIMENTAL SITES AND METHODS:	80
	Project 1 (Bukit Raja Flatbed)	80
	Project 2 (CEP Rengam Project)	84
	Project 3 (Bukit Raja Longbed Project)	85
	Project 4 (Soil Column Studies)	90
	(i) Long Glass Column	90
	(ii) Short PVC Column	91
	SAMPLING METHODS:	92
	Undisturbed Soil Samples	93
	Disturbed Soil Samples	93
	Collection of Underground Water Samples (Project 3)	94
	Leachate Collection From Glass Columns (Project 4)	94
	Leachate Collection From PVC Columns (Project 4)	95
ANALYS	SIS AND CALCULATION:	95
	Saturated Hydraulic Conductivity (Ks)	95
	Root Density	98
	Bulk Density. Perosity and Soil Moisture Characteristics	ခန္

Horizontal Infiltration and Penetrability... 100 Contact Angle 100 Aggregate Stability..... 104 pH, N and P of Liquid Samples..... 106 Concentration of Cations in Liquid Samples..... 107 CEC and Exchangeable Bases. 107 Soil Organic Matter..... 110 Soil pH..... 111 Mechanical Analysis of Soil..... 111 Mineralogical Analyses of Soil..... 112 CHAPTER 5 RESULTS 113

PROJECT 1

EFFECT OF POME SUPERNATANT APPLICATION USING FLATBED SYSTEM ON SOME PHYSICAL AND CHEMICAL PROPERTIES OF SERDANG SERIES SOIL AND CROP	
YIELD	113
Introduction	113
Saturated Hydraulic Conductivity (Ks)	113
Penetrability	124
Total Porosity and Bulk Density	120
Soil Moisture Characteristics	123
Contact Angles	128
Aggregation and Aggregate Stability	131
Soil Organic Matter	135

Soil pH	137
Cation Exchange Capacity (CEC)	139
Exchangeable Bases	141
Crop Yield	141
PROJECT 2	
EFFECT OF DIGESTED AND RAW POME APPLICATION USING FLATBED SYSTEM ON SOME PHYSICAL AND CHEMICAL PROPERTIES OF RENGAM SERIES SOIL (TYPIC PALEUDULT) AND CROP PERFORMANCE	145
Introduction	145
Saturated Hydraulic Conductivity (Ks)	145
Penetrability of Soil	150
Total Porosity	155
Soil Moisture Characteristics	159
Contact Angle and Wettability	165
Aggregation and Aggregate Stability	170
Soil Organic Matter	175
Soil pH	180
Cation Exchange Capacity (CEC)	182

Exchangeable Bases	184
Root Density and Crop Yield	187
(i) Root Density	187
(ii) Crop Yield	191
PROJECT 3	
VERTICAL MOVEMENT OF NUTRIENTS AND CROP PERFORMANCE FOLLOWING POME SUPERNATANT APPLICATION IN THE LONGBEDS OF TONGKANG SERIS SOIL (SULFIC	
TROPAQUEPT)	195
Introduction	195
pH of the Underground Water	195
Movement of NH - N and NO + NO - N	197
Phosphorus	198
Potassium	198
Calcium	199
Magnesium	199
Crop Yield	200
PROJECT 4	
SOIL COLUMN STUDY ON MOVEMENT OF NUTRIENTS AND CHANGES IN PROPERTIES OF TONGKANG SERIES SOIL (SULFUC TROPAQUEPT) FOLLOWING POME SUPERNATANT	
APPLICATION	203
Introduction	203
рН	203
Concentration of NH - N and NO + NO - N in the 4 3 2	
Leachates	207
Phosphorus	212
Potassizm	212

Calcium	214
Magnesium	216
Aggregation and Aggregate Stability	218
Wettability	220
Organic Matter Content	222
Acidity	222
Cation Exchange Capacity (CEC) and Exchangeable Bases	223
CHAPTER 6 DISCUSSION	225
PROJECT 1	
Physical Properties of Soil	225
Chemical Properties of Soil	227
Crop Yield	228
Conclusion	228
PROJECT 2	
Physical Properties of Soil	229
Chemical Properties	232
Crop Performance	232
Conclusion	234
PROJECT 3	235
PROJECT 4	
Physico-chemical Properties of Soil	237
Nutrient Movement	238
Conclusion	240
DISCUSSION (GENERAL)	241

CHAPTER 7	SUMMARY AND CONCLUSION	253
	Summary	253
	Conclusion	260
	Recommendations for Further Studies	263
BIBLIOGRAP	НҮ	265
APPENDICES		283

LIST OF TABLES

Ta	b	le

4.1	POME and Water Analyses.	74
4.2	Chemical Analysis of the Three Soils.	78
4.3	Mechanical and Mineralogical Analyses of the Three Soils.	79
5.1	Average Saturated Hydraulic Conductivity in Serdang Series Soil After POME Supernatant Application.	114
5.2	Penetrability in Serdang Series Soil After POME Supernatant Application.	118
5.3	Average Total Porosity in Serdang Series Soil After POME Supernatant Application.	121
5.4	Distribution of Pores in Serdang Series Soil After POME Supernatant Application.	125
5.5	Contact Angle in First (1) and Second (2) Batch Samples of Serdang Series Soil After POME Supernatant Application.	129
5.6	Average Instability and Stability Indices of Serdang Series Soil After POME Supernatant Application.	132
5.7	Organic Carbon in Second Batch of Serdang Series Soil Samples After POME Supernatant Application.	136
5.8	Cation Exchange Capacity (CEC) of Second Batch of Serdang Series Soil Samples.	140
5.9	Mean Values for Exchangeable Bases of Serdang 5eries Soil.	142

Table

5.10	Average Saturated Hydraulic Conductivity (Ks) of Rengam Soil Samples (Project 2) After POME Application	146
5.11	Penetrability of Rengam Series Soil (Typic Paleudult) Following POME Application	152
5.12	Average Total Porosity of Rengam Series Soil After POME Application.	156
5.13	Distribution of Pores in Rengam Series Soil after POME Application.	163
5.14	Average Contact Angle of Rengam Series Soil After POME Application.	166
5.15	Average Aggregate Instability and Stability Indices of Rengam Series Soil Samples After POME Application.	171
5.16	Average % Organic Carbon in Rengam Series Soil After POME Application.	176
5.17	Organic Matter Content and Other Physical Properties of Important Treatments in Rengam Series Soil.	179
5.18	Average Cation Exchange Capacity (CEC) in Rengam Series Soil After POME Application.	183
5.19	Mean Exchangeable Bases of Rengam Series Soil and Digested Sludges.	186
5.20	Average Root Density in Rengam Series Soil After POME Application.	188
5.21	Mean Values of Field Leachates Analysis for Three Important Treatments.	196
5.22	Physical and Chemical Properties of Tongkang Series Soil Used for Laboratory Columns.	204
5.23	Mean Values of Leachate Analyses from Undisturbed Short Soil Column of Tongkang Series (Project 4).	208

Table

5.24	Aggregate Instability and Stability Indices of Laboratory Glass Column Soil After POME Supernatant Application.	219
5.25	Some Physical and Chemical Properties of Laboratory Glass Column Soil (Tongkang Series) After POME Supernatant Application.	221
5.26	Mean Values of Exchangeable Bases of Tongkang Series Soil.	224
6.1	Multi-linear Correlations (R) Among Different Parameters of Serdang Series Soil Following Digested POME Supernatant Application in Project 1.	243
6.2	Multi-linear Correlations (R) Among Different Parameters of Rengam Series Soil Following Digested POME Application in Project 2.	244
6.3	Multi-linear Correlations (R) Among Different Parameters of Rengam Series Soil Following Raw POME Application in Project 2.	245

LIST OF FIGURES

Figure		Page
4.1	Palm Oil Mill Effluent (POME) Production	68
5.1	Saturated Hydraulic Conductivity at Different Time Intervals after POME Supernatant Application to Flatbeds On Serdang Series Soil in Project 1.	115
5.2	Distance of Wetting front Against Square Root of Time for Horizontal Infiltration (Penetrability) in Serdang Series Soil.	119
5.3	Total Porosity at Different Time Intervals after POME Supernatant Application on Serdang Series Soil in Project 1.	122
5.4	Moisture Characteristics of Serdang Series Soil after POME Supernatant Application in Project 1.	124
5.5	Available Water at Different Times of Sampling after POME Supernatant Application in Rengam Series Soil.	127
5.6	Aggregate Instability Index at Different Time Intervals After POME Supernatant Application on Serdang Series Soil in Project 1.	133
5.7	Soil pH in distilled H O and 1N 2 KCl soln. Versus Rates of POME Supernatant Application on Serdang Series Soil in Project 1. -1	138
5.8	Annual FFB Yields (tons.ha) for Serdang Series Soil following POME Supermatant Application.	143
5.9	Saturated Hydraulic Conductivity at Different Time Intervals after POME Application on Rengam Series Soil in Project 2.	149

Figure

	1
age	
age	J

5.10	Distance of Wetting fronts Against Square Root of time for Horizontal Infiltration (Penetrability) in Rengam Series Soil.	151
5.11	Total Porosity at Different Time Intervals after POME Application on Rengam Series Soil in Project 2.	158
5.12	Moisture Characteristic Curves of Rengam Series Soil following Digested POME Application in Project 2.	160
5.13	Moisture Characteristic Curves of Rengam Series Soil following Raw POME Application in Project 2.	161
5.14	Percentage Available Water at Different Times after POME Application on Rengam Series Soil (Project 2).	164
5.15	Contact Angles after Different Time Intervals following POME Application on Rengam Series Soil in Project 2.	169
5.16	Aggregate Instability Index at Different Time Intervals after POME Application on Rengam Series Soil in Project 2.	174
5.17	pH in Water and 1N Solution for KC1 Different Rates of POME Application on Rengam Series Soil in Project 2.	181
5.18	Root Density at Different Times after POME Application on Rengam Series Soil in Project 2. -1	190
5.19	Annual FFB Yields (t.ha) on Rengam Series Soil between 1982-'85 Following POME Application.	192
5.20	Half Yearly FFB Yields (t.ha) On Tongkang Series Soil for 1984-'85 following POME Supernatant Application.	201

Fi	gu	ге

5.21	pH of the Leachates Collected from Glass Columns Packed with Tongkang Series Soil.	205
5.22	Ammonium - N Concentration of Leachates at Different Depths in Glass Columns Uniformly Packed with Tongkang Series Soil.	209
5.23	Nitrate + Nitrite - N Concentration of Leachates at different Depths in Glass Columns Uniformly Packed with Tongkang Series Soil.	210
5.24	Potassium Concentration of Leachates at Different Depths in Glass Columns Uniformly Packed with Tongkang Series Soil.	213
3.25	Calcium Concentration of Leachates at Different Depths in Glass Columns Uniformly Packed with Tongkang Series Soil.	215
5.26	Magnesium Concentration of Leachates at Different Depths in Glass Columns Uniformly Packed with Tongkang Series Soil.	217

LIST OF PLATES

Plate

Plate		Page
I	Palm Oil Mill Effluent (POME).	67
II	Accumulation of Raw Palm Oil Mill Effluent (POME).	69
III	Accumulation of Block Rubber Factory Effluent Before Discharging into Digestion Pond.	70
IV	Discharging Raw Effluent into Digestion Pond No. 1.	71
V	Application of Digested Effluent Supernatant to the Fields from the 7th Pond.	72
VI	Digested POME Supernatant was Applied to the Flatbeds of Serdang Series Soil (Project 1).	82
VII	Flatbeds which Received 20 cm rey of Supernatant in Project 1.	83
VIII	Application of Digested Supernatant to the Long Beds of Tongkang Series Soil (Project 3).	87
IX	Water Sampler(s) in the Long Beds of Tongkang Series Soil (Project 3).	89
Х	Determination of Saturated Hydraulic Conductivity (Ks) as per Constant Head Method of Klute (1965).	96
XI	Capillary Rise of Distilled Water and Ethyl Alcohol in Rengam Series Soil.	101
XII	Leaching of Rengam Series Soil (4th Batch Samples)for the Determination of Exchangeable Bases And Cation Exchange Capacity (CEC).	108
XIII	Scanning Electron Microscope (SEM) Micrographs of Soil Pores of Rengam Series.	157
XIV	Raw POME Accumulation Pit in CEP Rengam	198

LIST OF APPENDICES

Appendix		Page
1	Saturated Hydraulic Conductivity in lst (1) and 2nd (2) Batch Samples of Serdang Series Soil in Project 1.	283
2	Advancing Wetting Front (X) and Cumulative Volume of Water (Q) in Serdang Series Soil (Horizontal Infiltration).	285
3	Bulk Density in 1st (1) and 2nd (2) Batch of Serdang Series Soil Samples in Project 1.	286
4	Total Porosity in 1st (1) and 2nd (2) Batch of Serdang Series Soil Samples in Project 1.	288
5	Available Water in lst (1) and 2nd (2) Batch of Serdang Series Soil Samples in Project 1 after POME Supernatant Application.	290
6	Average Contact Angle of Serdang Series Soil in Project 1.	292
7	Aggregate Instability and Stability Indices in 1st (1) 2nd (2) Batch of Serdang Series Soil Samples in Project 1 after POME Supernatant Application.	294
8	pH (1) and pH (2) in 2nd Batch of KC1 H O 2	
	Serdang Series Soil Samples in Project 1 after POME Supernatant Application.	296
9	Saturated Hydraulic Conductivity in lst Batch of Rengam Soil Samples (Before POME Application) in Project 2.	298
10	Saturated Hydraulic Conductivity in 2nd Batch of Rengam Soil Samples (Project 2) after POME Application.	299

Appendix

11	Saturated Hydraulic Conductivity in 3rd Batch of Rengam Soil Samples (Project 2) after POME Application.	301
12	Saturated Hydraulic Conductivity in 4th Batch of Rengam Soil Samples (Project 2) after POME Application.	303
13	Saturated Hydraulic Conductivity in 5th Batch of Rengam Soil Samples (Project 2) after POME Application.	305
14	Advancing Wetting Front in Rengam Series Soil after POME Application (Horizontal Infliltration)	307
15	Bulk Density of 2nd Batch of Rengam Series Soil in Project 2 after POME Application.	308
16	Bulk Density of 3rd Batch of Rengam Series Soil in Project 2 after POME Application.	310
17	Bulk Density of 4th Batch of Rengam Series Soilin Project 2 after POME Application.	312
18	Bulk Density of 5th Batch of Rengam Series Soil in Project 2 after POME Application.	314
19	Total Porosity (%) of 2nd Batch of Rengam Soil in Project 2 after POME Application.	316
20	Total Porosity (%) of 3rd Batch of Rengam Series Soil in Project 2 after POME Application.	318
21	Total Porosity (%) of 4th Batch of Rengam Series Soil in Project 2 after POME Application.	32 0
22	Total Porosity (%) of 5th Batch of Rengam Series Soil in Project 2 after POME Application.	322

