

UNIVERSITI PUTRA MALAYSIA

DISTRIBUTION AND PATHOGENIC POTENTIAL OF SOIL FUSARIA FROM SELECTED OIL PALM HABITATS IN WEST MALAYSIA

HO YIN WAN

FP 1984 3

Distribution and pathogenic potential of soil fusaria from selected oil palm habitats in West Malaysia

by

HO YIN WAN

A thesis
submitted in partial fulfilment
of the requirement for the degree of
Doctor of Philosophy in the Dept. of Plant Protection,
Faculty of Agriculture, Universiti Pertanian Malaysia
(University of Agriculture Malaysia)

ACKNOWLED GEMENTS

I wish to express my appreciation and sincere gratitude to my supervisor, Professor G. Varghese of the Plant Protection Department, Faculty of Agriculture, University of Agriculture Malaysia, for initiating this research project and for his invaluable guidance and advice throughout the course of this study and in the preparation of this manuscript.

I am also much indebted to Dr. G.S. Taylor, Botany
Department, University of Manchester, England for
supervising the studies conducted in England and who has
offered many helpful comments and suggestions regarding
those studies and in the preparation of this manuscript
and to Professor J. Colhoun, Emeritus Professor,
University of Manchester for being a consultant to this
project, to Dr. D. Moore, Genetics Department, University
of Manchester and Dr. M. Emes, Physiology Department,
University of Manchester for their help and advice on the
electrophoretic studies.

I also wish to acknowledge with thanks Mr. A. Johnston,
Director of the Commonwealth Mycological Institute, Kew,
England for permission to use the Institute's facilities
and to Dr. C. Booth, of the Commonwealth Mycological
Institute who confirmed all my identifications of the

Fusarium species and who very kindly let me have access
to his excellent collection of publications on Fusarium

by workers all over the world.

The statistical advice and assistance of Dr. Yap Thoo
Chai of the Agronomy Department, University of Agriculture
Malaysia, Dr. D.K. Friesen of Soil Science Department,
University of Agriculture Malaysia, and Dr. Quah Soon
Cheang of Biology Department, University of Agriculture
Malaysia have been invaluable and are therefore gratefully
acknowledged.

Appreciation is extended to the technical staff of both University of Manchester and University of Agriculture Malaysia for their co-operation and assistance in the laboratory and field, to Socfin Company Limited, Malaysia and Binga Plantations, Unilever Limited, Zaire for supplying oil palm seeds and seedlings and to Kumpulan Guthrie Sendirian Berhad, United Plantations Berhad, Highland and Lowlands Berhad and Kumpulan Ladang-Ladang Trengganu for their assistance and permission to sample soil in their oil palm estates.

I am grateful to the Inter-University Council for Higher Education Overseas for the award of a fellowship which enables me to carry out part of the research in England.

Finally, I wish to thank my husband, Dr. Ong Seng Huat for his constant encouragement and support throughout this project especially during the period which I have to spent away from home in England.

CONTENTS

APPROVAL SHEET		
TITLE PAGE		i
ACKNOWLEDGEMENTS		ij
TABLE OF CONTENTS		iv
LIST OF TABLES		i
LIST OF FIGURES A	ND ILLUSTRATIONS	xii
ABSTRACT		xxi
CHAPTER I INTR	ODUCTION	1
1.1	The genus <u>Fusarium</u>	1
1.2	Taxonomy of Fusarium	2
1.3	Biochemical approaches to taxonomy of Fusarium	9
	Electrophoretic studies	10
	Serological studies	11
1.4	Distribution of soil fusaria	15
1.5	Pathogenic significance of soil fusaria	18
	Vascular wilt of cotton	18
	Vascular wilt of banana	20
	Vascular wilt of date palm	21
	Vascular wilt of oil palm	22
1.6	Oil palm (Elaeis guineensis Jacq.) as a plantation crop in Malaysia	26
1.7	Objectives of the present study	31

CHAPTER II	GENE	RAL MET	HODOLOGY AND TECHNIQUES	34
	2.1		ngus-culture techniques entification	34
		Sing	le spore isolation	34
		Deco	ntaminating cultures	34
		Grow fung	ing conditions for the us	35
		Stim	ulation of sporulation	36
		Pres	ervation of cultures	37
	2.2	The ho	st - oil palm seedlings	39
		Germ	ination of oil palm seeds	39
			ing conditions for the palm seedlings	40
	2.3	Prepar	ation of inoculum	41
	2.4	Inocul seedli	ation of the oil palm ngs	42
	2.5	Preven	tion of cross contamination	43
	2.6	Photog	raphy and drawings	44
	2.7	_	mental design and tical analysis	44
CHAPTER III		RIBUTIO HABITA	N OF SOIL FUSARIA IN OIL TS	46
		Materi	als and methods	46
		(i)	Habitats	46
		(ii)	Sampling method	48
		(iii)	Isolation and enumeration of <u>Fusarium</u> species	52
		(iv)	Isolation of <u>Fusarium</u> species from oil palm	53

	Results	54
	Discussion	71
CHAPTER IV	MORPHOLOGY AND IDENTIFICATION OF FUSARIUM ISOLATES	80
	Materials and methods	80
	Results	82
	Discussion	128
	Key to <u>Fusarium</u> species from oil palm soils in Malaysia	134
CHAPTER V	PATHOGENIC POTENTIAL OF SOIL FUSARIA FROM MALAYSIAN OIL PALM HABITATS	136
	Materials and methods	137
	Results	140
	Discussion	148
CHAPTER VI	PATHOGENICITY STUDIES OF MALAYSIAN F. OXYSPORUM AND AFRICAN F. OXYSPORUM f. sp. ELAEIDIS	151
	6.1 Cross inoculation studies	153
	Materials and methods	153
	Results	163
	Discussion	174
	6.2 Histopathology of Malaysian oil palm seedlings infected with pathogenic F. oxysporum isolates from Africa	177
	Materials and methods	178

	Resu	ılts	179
	(i)	Symptomology	180
	(ii)	Histology of uni- noculated palms	188
	(iii)	Histology of inoculated palms	194
	Disc	cussion	211
CHAPTER VII	MALAYSIAN F	E STUDIES BETWEEN F. OXYSPORUM ISOLATES ENIC ISOLATES OF F. FROM AFRICA	220
	7.1 Morpho	ological comparisons	221
	Mate	erials and methods	221
	(i)	Light microscope studies	221
	(ii)	Scanning electron microscope (SEM) studies	221
	Resu	ılts	222
	Disc	cussion	233
	7.2 Physic	ological comparisons	235
	Mate	erials and methods	235
	(i)	Effect of temperature	235
	(ii)	Effect of media	235
	(iii)	Effect of pH	236
	Resu	alts and Discussion	237
	7.3 Electr	ophoretic studies	246
	26 - 4 -	orials and mathads	247

	(i)	Culture methods and preparation of samples	247
(i	ii)	Preparation of extracts	247
(ii	ii}	Determination of protein content in the extract	248
(i	iv)	Vertical disc-elec- trophoresis	248
	(v)	Polyacrylamide iso - electric focusing	252
F	Resul	lts	257
	(i)	Vertical disc-electro- phoresis	257
(i	Li)	Polyacrylamide iso- electric focusing	260
D	Discu	ussion	270
CHAPTER VIII GENERAL	DI	SCUSSION	276
BIBLIOGRAPHY			285
APPENDIX			
1	CI	omposition of solid ulture media used in his thesis	307
2		omposition of liquid edia	309
3	0:	reparation of sections f palm materials for natomical studies	310
4	C	etermination of protein ontent in extract - owry's Folin Test	314

LIST OF TABLES

TABLE	1.	TOTAL PLANTED HECTARAGE UNDER OIL PALM IN WEST AND EAST MALAYSIA AS AT 31st DECEMBER, 1980 (DEPT. OF STATISTICS, MALAYSIA, 1982).	28
TABLE	2.	MAJOR CRITERIA USED IN ASSESSING SOIL SUITABILITY FOR OIL PALM (NG, 1967).	30
TABLE	3.	PHYSICAL PROPERTIES OF SOILS TAKEN AT THE SAMPLING LOCATIONS FOR SOIL FUSARIA.	56
TABLE	4.	MOISTURE, PH AND ORGANIC CONTENT OF SOIL TAKEN AT SAMPLING LOCATIONS FOR SOIL FUSARIA.	57
TABLE	5.	QUANTITATIVE ESTIMATION OF THE TOTAL POPULATION OF FUSARIUM SPECIES IN OIL PALM HABITATS.	59
TABLE	6.	A COMPARISON OF MEANS OF THE TOTAL POPULATION OF <u>FUSARIUM</u> SPECIES IN THE OIL PALM SOILS ACCORDING TO PALM AGE AND SAMPLE ORIGIN.	60
TABLE	7.	QUANTIATIVE ESTIMATION OF THE MOST COMMON FUSARIUM SPECIES IN OIL PALM SOILS.	62
TABLE	8.	A COMPARISON OF MEANS OF THE POPULATION OF THE MOST COMMON FUSARIUM SPECIES IN OIL PALM SOILS ACCORDING TO PALM AGE AND SAMPLE ORIGIN.	63
TABLE	9.	QUANTITATIVE ESTIMATION OF OCCA- SIONAL <u>FUSARIUM</u> SPECIES IN OIL PALM SOILS.	64
TABLE	10.	QUANTITATIVE ESTIMATION OF RARE FUSARIUM SPECIES IN OIL PALM SOILS.	65
TABLE	11.	ISOLATION OF FUSARIUM SPECIES FROM ROOTS OF YOUNG, MATURE AND OLD PALMS IN THE FOUR LOCATIONS.	70
TABLE	12.	NUMBER OF ISOLATES OF EACH FUSARIUM SPECIES CAUSING AN APPARENT REDUCTION IN GROWTH OF OIL PALM SEEDLINGS.	141

TABLE	13.	EFFECT OF INOCULATING MALAYSIAN OIL PALM SEEDLINGS WITH ISOLATES OF F. SOLANI, F. MONILIFORME AND F. MONILIFORME VAR. SUBGLUTINANS ON AERIAL PARAMETERS OF GROWTH.	144
TABLE	14.	EFFECT OF INOCULATING MALAYSIAN OIL PALM SEEDLINGS WITH ISOLATES OF F. SEMITECTUM, F. EQUISETI, F. OXYSPORUM var. REDOLENS, F. HETEROSPORUM, F. ACUMINATUM AND F. LATERITIUM ON AERIAL PARAMETERS OF GROWTH.	145
TABLE	15	EFFECT OF INOCULATING MALAYSIAN OIL PALM SEEDLINGS WITH ISOLATES OF F. OXYSPORUM ON AERIAL PARAMETERS OF GROWTH.	146
TABLE	16	ISOLATES OF F. OXYSPORUM f. sp. ELAEIDIS FROM AFRICA.	152
TABLE	17	EFFECT OF INOCULATING MALAYSIAN OIL PALM SEEDLINGS WITH AFRICAN ISOLATES ON DISEASE DEVELOPMENT AND ROOT INFECTION.	164
TABLE	18	EFFECT OF INOCULATING MALAYSIAN OIL PALM SEEDLINGS WITH AFRICAN ISOLATES ON AERIAL PARAMETERS OF GROWTH.	165
TABLE	19	EFFECT OF INOCULATING MALAYSIAN OIL PALM SEEDLINGS WITH AFRICAN ISOLATES, WITH OR WITHOUT AN INITIAL PERIOD OF WATER STRESS, ON AERIAL PARAMETERS OF GROWTH.	167
TABLE	20	EFFECT OF INOCULATING MALAYSIAN OIL PALM SEEDLINGS WITH AFRICAN ISOLATES, WITH OR WITHOUT AN INITIAL PERIOD OF WATER STRESS, ON DISEASE DEVELOPMENT AND ROOT INFECTION.	168
TABLE	21	EFFECT OF INOCULATING AFRICAN OIL PALM SEEDLINGS WITH MALAYSIAN ISOLATES ON AERIAL PARAMETERS OF GROWTH AND ROOT INFECTION.	169
TABLE		EFFECT OF INOCULATING AFRICAN OIL PALM SEEDLINGS WITH ISOLATES WITH AND WITHOUT AN INITIAL PERIOD OF WATER STRESS, ON AERIAL PARAMETERS OF GROWTH AND ROOT	170

TABLE	23	EFFECT OF INOCULATING MALAYSIAN OIL PALM SEEDLINGS WITH MALAYSIAN ISOLATES, WITH OR WITHOUT AN INI- TIAL PERIOD OF WATER STRESS, ON AERIAL PARAMETERS OF GROWTH AND ROOT INFECTION.	172
TABLE	24	CORRELATION COEFFICIENTS BETWEEN DRY WEIGHT AND VARIOUS AERIAL PARAMETERS OF LEAFINESS OF MALAYSIAN OIL PALM SEEDLINGS INOCULATED WITH THE AFRICAN ISOLATES.	173
TABLE	25	CULTURAL CHARACTERISTICS OF 13 ISOLATES OF F. OXYSPORUM f. sp. ELAEIDIS FROM AFRICA.	223
TABLE	26	CULTURAL CHARACTERISTICS OF F. OXYSPORUM FROM MALAYSIA.	
TABLE	27	EFFECT OF TEMPERATURE ON THE GROWTH OF THE MALAYSIAN F. OXYSPORUM ISO-LATES AND THE F. OXYSPORUM f. sp. ELAEIDIS ISOLATES FROM AFRICA.	238
TABLE	28	EFFECT OF SOLID AND LIQUID MEDIA ON THE GROWTH OF MALAYSIAN F. OXYSPORUM AND F. OXYSPORUM f. sp. ELAEIDIS ISOLATES FROM AFRICA.	239
TABLE	29	EFFECT OF pH ON GROWTH ON PSA OF THE MALAYSIAN F. OXYSPORUM ISOLATES AND THE F. OXYSPORUM f. sp. ELAEIDIS ISOLATES FROM AFRICA.	245
TABLE	30	ELECTRODE SOLUTIONS AND ELECTRIC CONDITIONS FOR ISOELECTRIC FOCUSING.	254
TABLE	31	COMPOSITION OF SOLUTIONS FOR FIXING, STAINING, DESTAINING AND PRESERVING GELS WITH PROTEINS SEPARATED BY ELECTROFOCUSING.	255
TABLE	32	INDEX OF SIMILARITY IN SOLUBLE PROTEIN BANDS WITHIN AND BETWEEN THE PATHOGENIC AFRICAN ISOLATES	259

AND THE MALAYSIAN ISOLATES.

LIST OF FIGURES AND ILLUSTRATIONS

FIGURE	1.	SPORODOCHIA PRODUCED ON CARNATION LEAF AGAR.	38
FIGURE	2.	OIL PALM SEEDLINGS OF TWO-LEAF STAGE GROWING IN A SAND BED.	41
FIGURE	3.	MAP OF PENINSULAR MALAYSIA SHOWING THE FOUR SAMPLING LOCATIONS.	47
FIGURE	4.	YOUNG OIL PALMS (1-2 YEARS OLD) WITH A MIXED LEGUMINOUS COVER.	49
FIGURE	5.	MATURE OIL PALMS (7 YEARS OLD) WITH NATURAL COVER OF GRASSES AND FERNS.	49
FIGURE	6.	OLD OIL PALMS (OVER 25 YEARS OLD) WITH NATURAL COVER OF GRASSES AND FERNS.	50
FIGURE	7.	DIAGRAMMATIC REPRESENTATION OF SAMPLING AREA IN OIL PALM HABITAT.	51
FIGURE	8.	FUSARIUM COLONIES ON PEPTONE-PCNB AGAR MEDIUM.	55
FIGURE	9.	HISTOGRAMS SHOWING MEAN NUMBERS OF FUSARIUM PROPAGULES ISOLATED FROM SOILS OF DIFFERENT LOCATIONS, SAMPLE ORIGIN (RHIZOSPHERE, AVENUE) AND PALM AGE AREAS.	66
FIGURE	10.	FREQUENCY OF ISOLATION OF VARIOUS FUSARIUM SPECIES FROM THE FOUR LOCATIONS.	67
FIGURE	11.	MICROCONIDIA OF \underline{F} . SOLANI.	83
FIGURE	12.	MACROCONIDIA OF F. SOLANI.	83
FIGURE	13.	CULTURES OF \underline{F} . SOLANI.	85
FIGURE	14.	CULTURES OF F. SOLANI.	88
FIGURE		LINE DRAWINGS OF THE CONIDIA OF THE VARIOUS MORPHOLOGICAL TYPES OF $\underline{\mathbf{F}}$. SOLANI.	92
FIGURE		MICROCONIDIOPHORES WITH MICROCONIDIA	93

FIGURE	17.	ELABORATELY BRANCHED MACROCONIDIO- PHORES PRODUCING MASSES OF MACRO CONIDIA OF <u>F</u> . <u>OXYSPORUM</u>	93
FIGURE	18.	MACROCONIDIA AND MICROCONIDIA OF F. OXYSPORUM.	94
FIGURE	19.	SCANNING ELECTRONMICROGRAPHS SHOWING ANASTOMOSES OF MACROCONIDIA IN F. OXYSPORUM.	95
FIGURE	20.	CHLAMYDOSPORES OF F. OXYSPORUM.	97
FIGURE	21.	CULTURE OF F. OXYSPORUM SHOWING SCLEROTIAL BODIES.	98
FIGURE	22.	MORPHOLOGICAL TYPE 1 (M1) OF F. OXYSPORUM.	98
FIGURE	23.	MORPHOLOGICAL TYPES 2 (M2) AND 3 (M3) OF F. OXYSPORUM.	101
FIGURE	24.	MORPHOLOGICAL TYPE 4 OF $\underline{\mathtt{F}}$. $\underline{\mathtt{OXYSPORUM}}$.	103
FIGURE		LINE DRAWINGS OF THE CONIDIA OF THE VARIOUS MORPHOLOGICAL TYPES IN \underline{F} . OXYSPORUM.	104
FIGURE	26.	TOP VIEW OF F. OXYSPORUM var. REDOLENS CULTURE.	106
FIGURE	27.	MACROCONIDIA OF F. OXYSPORUM var. REDOLENS.	106
FIGURE	28.	BRANCHED CONIDIOPHORES WITH POLY-BLASTIC CONIDIOGENOUS CELLS OF F. SEMITECTUM.	108
FIGURE	29.	MACROCONIDIA OF \underline{F} . SEMITECTUM.	108
FIGURE		BRANCHED SIMPLE PHIALIDES OF F. SEMITECTUM PRODUCING SECONDARY MACROCONIDIA	109
FIGURE	31.	MACROCONIDIA OF \underline{F} . SEMITECTUM PRODUCING SMALL MICROCONIDIUM-LIKE STRUCTURE.	109
FIGURE	32.	CULTURES OF F. SEMITECTUM.	111
FIGURE	33.	MICROCONIDIOPHORE WITH A MICRO-CONIDIUM OF \underline{F} . MONILIFORME.	112
FIGURE	34.	MICROCONIDIA OF F. MONILIFORME IN CHAINS.	112

FIGURE		MICROCONIDIA OF F. MONILIFORME IN CHAINS.	114
FIGURE	36.	MACROCONIDIA OF \underline{F} . MONILIFORME.	114
FIGURE	37.	CULTURES OF F. MONILIFORME.	115
FIGURE	38.	LINE DRAWINGS OF F. MONILIFORME.	116
FIGURE	39.	POLYPHIALIDES OF <u>F</u> . MONILIFORME var. <u>SUBGLUTINANS</u> .	120
FIGURE	40.	CULTURES OF \underline{F} . ACUMINATUM.	121
FIGURE	41.	MACROCONIDIA OF \underline{F} . ACUMINATUM.	122
FIGURE	42.	REVERSE SIDE OF F. EQUISETI (A) AND F. HETEROSPORUM (B) CULTURES.	124
FIGURE	43.	CONIDIA OF F. EQUISETI.	124
FIGURE	44.	CULTURE OF F. LATERITIUM.	126
FIGURE	45.	CONIDIA OF F. LATERITIUM.	126
FIGURE	46.	FUSARIUM HETEROSPORUM.	127
FIGURE	47.	CULTURAL VARIANTS (PATCHES AND SECTORS) IN F. SOLANI AND F. ACUMINATUM).	1 32
FIGURE	48.	REDUCTION OF GROWTH IN THE ABSENCE OF DISEASE SYMPTOMS FOLLOWING INOCULATION WITH F. SOLANI ISOLATE.	147
FIGURE	49.	REDUCTION OF ROOT DEVELOPMENT IN THE ABSENCE OF DISEASE SYMPTOMS FOLLOWING INOCULATION WITH \underline{F} . SOLANI ISOLATE.	147
FIGURE	50.	CALIBRATION CURVE OF SOIL MOISTURE CONTENT AND ITS EQUIVALENT WATER POTENTIAL.	156
FIGURE	51.	AN OIL PALM SEEDLING IN THE WATER STRESS EXPERIMENT.	157
FIGURE	52.	GRAPH OF CORRECTION FACTOR FOR GREEN LEAF AREA BY METER READING.	161
FIGURE	53.	YOUNG UNDERGROUND (a) AND OLD AERIAL (b) PNEUMATHODES (PURVIS, 1956).	181

FIGURE	54.	VARIOUS STAGES OF SYMPTOM DEVELOP- MENT OF VASCULAR WILT ON MALAYSIAN OIL PALM SEEDLINGS.	182
FIGURE	55.	INFECTED OIL PALM BULB CUT TRANS- VERSELY AND LONGITUDINALLY TO SHOW VASCULAR DISCOLOURATION.	182
FIGURE	56.	DISEASED OIL PALM BULBS CUT TRANS- VERSELY TO SHOW DISCOLOURATION OF VASCULAR SYSTEM.	183
FIGURE	57.	MALAYSIAN OIL PALM SEEDLING INFECTED WITH VASCULAR WILT DISEASE SHOWING WILTED LEAVES AND POORLY DEVELOPED NECROTIC PRIMARY ROOTS (DISEASE INDEX = 4).	185
FIGURE	58.	LEAVES FROM AN OIL PALM SEEDLING INITIALLY SHOWING SYMPTOMS OF VASCULAR WILT BUT LATER RECOVERED.	186
FIGURE	59.	ROOT SYSTEMS OF OIL PALM SEEDLINGS WITH INITIAL SYMPTOMS OF VASCULAR WILT BUT LATER RECOVERED.	187
FIGURE	60.	TRANSVERSE SECTIONS OF A HEALTY ROOT FROM A CONTROL PALM.	189
FIGURE	61.	TRANSVERSE SECTION OF A HEALTHY BULB FROM A CONTROL PALM SHOWING THE VASCULAR BUNDLES (v) SCATTERED IN THE GROUND PARENCHYMA.	192
FIGURE	62.	TRANSVERSE SECTIONS OF A HEALTHY LEAF FROM A CONTROL PALM.	193
FIGURE	63.	TRANSVERSE SECTION OF A SLIGHTLY INFECTED OIL PALM ROOT SHOWING STRONGLY LIGNIFIED CELLS IN THE HYPODERMIS (h), LIGHTLY STAINED PARENCHYMA CELLS IN THE CORTEX (c) AND INFECTED VASCULAR CYLINDER (v).	196
FIGURE	64.	TRANSVERSE SECTION OF AN INFECTED PRIMARY OIL PALM ROOT SHOWING CONTINUOUS VASCULAR CONNECTION BETWEEN PRIMARY ROOT (pr) AND INFECTED LATERAL ROOT (lr), MYCELIUM NOT DETECTED IN CORTICAL CELLS	196

FIGURE	65.	TRANSVERSE SECTIONS OF AN INFECTED OIL PALM ROOT SHOWING VESSEL WITH CONIDIA (c), HYPHAE (h), CHLAMY-DOSPORE (ch) AND TRACHEIDS (t) PLUGGED WITH CONIDIA AND HYPHAE.	197
FIGURE	66.	TRANSVERSE SECTION OF AN INFECTED OIL PALM ROOT SHOWING INFECTED XYLEM ELEMENTS (x) BUT UNAFFECTED PHLOEM CELLS (p).	198
FIGURE	67.	LONGITUDINAL SECTION OF AN INFECTED OIL PALM ROOT SHOWING XYLEM VESSEL (v) WITH HYPHAE, ADJACENT TRACHEIDS OCCLUDED WITH GUMS AND DEPOSITS (g) AND DISINTEGRATING CORTICAL CELL (c).	199
FIGURE	68.	LONGITUDINAL SECTION OF AN INFECTED OIL PALM ROOT SHOWING XYLEM ELEMENTS COMPLETELY OCCLUDED WITH GUMS AND OTHER MATERIALS (ARROWS).	199
FIGURE	69.	LONGITUDINAL SECTIONS OF AN INFECTED OIL PALM ROOT SHOWING TYLOSES IN XYLEM VESSELS.	200
FIGURE	70.	TRANSVERSE SECTION OF AN INFECTED OIL PALM ROOT SHOWING DEPOSITION OF ADDITIONAL WALL LAYER IN PHLOEM CELLS (p) AND CAVITIES IN PHLOEM BEING FILLED WITH DARK STAINING MATERIALS (s).	200
FIGURE	71.	TRANSVERSE SECTIONS OF AN INFECTED OIL PALM ROOT SHOWING DISINTEGRATION OF PHLOEM CELLS (p), VESSEL FILLED WITH CONIDIA (v) AND TRACHEIDS PLUGGED WITH GUM (g).	201
FIGURE	72.	LONGITUDINAL SECTION OF AN INFECTED OIL PALM ROOT SHOWING DISINTEGRATING XYLEM ELEMENTS (ARROWS) AND COMPLETELY DISINTEGRATED CORTICAL CELLS RESULTING IN CAVITIES (c) ON EITHER SIDE OF THE CENTRAL CYLINDER	203
FIGURE	73.	TRANSVERSE SECTION OF AN INFECTED OIL PALM ROOT SHOWING DEVELOPMENT OF CAVITIES AND GAPS (g) IN THE HYPODERMIS (h) AND CORTEX (c).	203

FIGURE	74.	LONGITUDINAL SECTION OF AN INFECTED OIL PALM ROOT SHOWING LUMEN OF HYPO-DERMAL CELL (h) PLUGGED WITH GUMS, AND DISINTEGRATING EPIDERMAL CELLS (e) AND CORTICAL CELLS (c).	204
FIGURE	75.	TRANSVERSE SECTION OF AN INFECTED OIL PALM ROOT SHOWING CAVITY (c) IN THE PITH FORMED BY DISINTEGRATING CELLS.	204
FIGURE	76.	TRANSVERSE SECTION OF AN INFECTED OIL PALM ROOT SHOWING THE DEVELOP-MENT OF LARGE CAVITIES (ARROWS) FORMED FROM THE DISINTEGRATION OF INNER CORTICAL CELLS BETWEEN THE LACUNAE.	205
FIGURE	77.	TRANSVERSE SECTION OF AN INFECTED OIL PALM ROOT DURING LATE PATHO-GENESIS SHOWING THE CENTRAL VASCULAR CYLINDER (cv) COMPLETELY DETACHED FROM THE OUTER CORTEX (oc).	205
FIGURE	78.	TRANSVERSE SECTION OF AN INFECTED OIL PALM ROOT SHOWING INTACT ENDODERMIS (e), DISINTEGRATING CORTICAL CELLS (c) AND EXTENSIVE HYPHAL DEVELOPMENT IN THE PHLOEM, XYLEM AND PITH CELLS (ARROWS).	206
FIGURE	79.	LONGITUDINAL SECTION OF AN INFECTED OIL PALM BULB SHOWING XYLEM VESSELS WITH HYPHAE (h) AND CHLAMYDOSPORES (ch) OR OCCLUDED WITH GUMS (g).	206
FIGURE	80.	TRANSVERSE SECTION OF AN INFECTED OIL PALM BULB SHOWING HYPHAE PASSING THROUGH THE WALLS OF CONTIGUOUS VESSEL ELEMENTS (ARROWS)	208
FIGURE	81.	TRANSVERSE SECTION OF AN INFECTED VASCULAR BUNDLE OF AN OIL PALM BULB SHOWING DISINTEGRATING PHLOEM CELLS (p) AND GROUND PARENCHYMA CELLS (gp) WITH CRUSHED OR DISTORTED CELL WALLS AND A BAND OF CELLS OCCLUDED WITH	208

FIGURE	82.	TRANSVERSE SECTION OF AN INFECTED OIL PALM BULB SHOWING SMALL CAVITIES OR GAPS (g) FORMED FROM THE DISINTEGRATION OF OCCLUDED XYLEM ELEMENTS AND LARGE CAVITIES (gp) FORMED FROM DISINTEGRATING GROUND PARENCHYMA CELLS.	209
FIGURE	83.	TRANSVERSE SECTION OF AN INFECTED OIL PALM BULB SHOWING OCCLUDED VASCULAR BUNDLES (v) AND LARGE CAVITIES (c) BETWEEN THE VASCULAR BUNDLES.	209
FIGURE	84.	LONGITUDINAL SECTION OF AN INFECTED OIL PALM LEAF PETIOLE SHOWING AN OCCLUDED VASCULAR BUNDLE.	212
FIGURE	85.	TRANSVERSE SECTION OF A WILTED LEAF FROM AN INFECTED OIL PALM SEEDLING SHOWING CRUSHED EPIDERMAL (e), HYPODERMAL (h) AND MESOPHYLL (m) CELLS.	212
FIGURE		CULTURES OF <u>F</u> . <u>OXYSPORUM</u> f. sp. <u>ELAEIDIS</u> .	224
FIGURE		CULTURES OF F. OXYSPORUM f. sp. ELAEIDIS WITH ABUNDANT MYCELIUM.	224
FIGURE	88.	MACROCONIDIA OF F. OXYSPORUM f. sp. ELAEIDIS (FROM LOBE 2 ISOLATE),	225
FIGURE		CULTURES OF F. OXYSPORUM f. sp. ELAEIDIS WITH A VIOLET TO PURPLISH PIGMENTATION.	226.
FIGURE	90.	CULTURE OF YALIGIMBA ISOLATE.	226
FIGURE	91.	SCANNING ELECTRONMICROGRAPHS OF MACROCONIDIA OF F. OXYSPORUM FROM MALAYSIA (A) AND F. OXYSPORUM f. sp. ELAEIDIS FROM AFRICA (B).	229
FIGURE	92.	SCANNING ELECTRONMICROGRAPHS OF APICAL AND FOOT CELLS OF MACRO-CONIDIA OF F. OXYSPORUM f. sp. ELAEIDIS FROM AFRICA (A) AND F. OXYSPORUM FROM MALAYSIA (B-C).	230
FIGURE	93	SCANNING ELECTRONMICROGRAPHS OF BRANCHED MACROCONIDIOPHORES OF F. OXYSPORUM FROM MALAYSIA (A) AND F. OXYSPORUM f. sp. ELAEIDIS FROM AFRICA (B).	231

FIGURE		SCANNING ELECTRONMICROGRAPHS OF MICROCONIDIA OF F. OXYSPORUM FROM MALAYSIA (A) AND F. OXYSPORUM f. sp. ELAEIDIS FROM AFRICA (B).	232
FIGURE	95.	ISOLATES OF F. OXYSPORUM f. sp. ELAEIDIS FROM AFRICA GROWN ON POTATO SUCROSE AGAR (PSA) AND KOMADA'S MEDIUM (KM).	241
FIGURE	96.	ISOLATES OF MALAYSIAN \underline{F} . OXYSPORUM ON KOMADA'S MEDIUM.	242
FIGURE	97.	ISOLATES OF MALAYSIAN F. OXYSPORUM ON KOMADA'S MEDIUM.	243
FIGURE	98.	DIAGRAMMATIC REPRESENTATION OF SOLUBLE PROTEIN OF AFRICAN F. OXYSPORUM f. sp. ELAEIDIS AND MALAYSIAN F. OXYSPORUM ISOLATES.	258
FIGURE	99.	DIAGRAMMATIC REPRESENTATION OF ESTERASE PATTERNS OF F. OXYSPORUM f. sp. ELAEIDIS ISOLATES FROM AFRICA AND F. OXYSPORUM ISOLATES FROM MALAYSIA.	261
FIGURE	100.	DENSITOMETRIC TRACING OF ESTERASE PATTERNS (SEPARATED BY VERTICAL DISC ELECTROPHORESIS) OF SOME MALAYSIAN F. OXYSPORUM ISOLATES and F. OXYSPORUM f. sp. ELAEIDIS ISOLATES FROM AFRICA.	262
FIGURE	101.	SOLUBLE PROTEINS OF SOME AFRICAN AND MALAYSIAN ISOLATES SEPARATED BY ISOELECTRIC FOCUSING ON POLYACRYLAMIDE GELS OF pH 3.5-9.5.	263
FIGURE	102.	DIAGRAMMATIC REPRESENTATION OF SOLUBLE PROTEIN PATTERNS OF AFRICAN F. OXYSPORUM f. sp. ELAEIDIS ISOLATES AND MALAYSIAN F. OXYSPORUM ISOLATES.	264
FIGURE	103.	SOLUBLE PROTEINS OF SOME AFRICAN AND MALAYSIAN ISOLATES SEPARATED BY ISOELECTRIC FOCUSING ON POLYACRYLAMIDE GEL OF pH 5.5-8.5.	266
FIGURE	104.	DIAGRAMMATIC REPRESENTATION OF SOLUBLE PROTEIN PATTERNS OF AFRICAN F. OXYSPORUM f. sp. ELAEIDIS AND MALAYSIAN F. OXYSPORUM ISOLATES.	267

FIGURE 105.	ESTERASES OF SOME AFRICAN AND MALAYSIAN ISOLATES SEPARATED BY ISOELECTRIC FOCUSING ON POLYACRYLAMIDE GELS OF pH 3.5-9.5.	268
FIGURE 106.	DIAGRAMMATIC REPRESENTATION OF ESTERASE ZYMOGRAMS OF AFRICAN F. OXYSPORUM f. sp. ELAEIDIS ISOLATES AND MALAYSIAN F. OXYSPORUM ISOLATES ON POLYACRY-LAMIDE GELS WITH A pH RANGE OF 3.5-9.5.	269

ABSTRACT

An Abstract of the thesis presented to the Senate of
Universiti Pertanian Malaysia in partial fulfilment of
the requirements for the Degree of Doctor of Philosophy

OF SOIL FUSARIA FROM SELECTED OIL PALM HABITATS IN WEST MALAYSIA

By

Ho Yin Wan March, 1984

Supervisor : George Varghese, Ph.D.

Faculty : Agriculture

A total of eight species and two varieties of Fusarium was isolated from the sampling sites in the oil
palm habitat. Fusarium solani and Fusarium oxysporum were
the most prevalent species followed by Fusarium semitectum.
The other species and varieties isolated showed a more

sporadic occurrence. Generally, soils from oil palm rhizospheres and young palm areas contained a larger number and greater variety of Fusarium species than soils from the avenues and older palm areas.

Pathogenicity tests of <u>Fusarium</u> species isolated showed that none were capable of producing vascular wilt or other diseases on oil palm seedlings. Some of the isolates, however, caused a reduction of growth in the test seedlings.

Comparative studies of <u>F. oxysporum</u> isolates from oil palm habitat in Malaysia with <u>F. oxysporum</u> f. sp. <u>elaeidis</u> isolates from Africa showed that the two groups of isolates were indistinguishable in their cultural, morphological and isozyme characteristics. Subsequent pathogenicity tests proved that the <u>F. oxysporum</u> isolates from Africa were pathogenic, causing vascular wilt on the Malaysian oil palm seedlings whilst the <u>F. oxysporum</u> isolates from Malaysia were non-pathogenic to the wilt-susceptible African oil palm seedlings and Malaysian oil palm seedlings. Inoculation of Malaysian <u>F. oxysporum</u> isolates on Malaysian oil palm seedlings and wilt-susceptible African oil palm seedlings, subjected to an initial period of water stress, also did not result in showing any disease symptoms.

Histopathological studies of Malaysian oil palm seedlings inoculated with pathogenic <u>F</u>. <u>oxysporum</u> f. sp. <u>elaeidis</u> indicated that resistance of the symptomless palms to the vascular wilt is probably biochemical in nature.

