

UNIVERSITI PUTRA MALAYSIA

STORAGE OF COCOA (THEOBROMA CACAO L.) SEEDS AND CHANGES ASSOCIATED WITH THEIR DETERIORATION

HOR YUE LUAN

FP 1984 2

STORAGE OF COCOA (THEOBROMA CACAO L.) SEEDS AND CHANGES ASSOCIATED WITH THEIR

DETERIORATION

HOR YUE LUAN

A thesis submitted to the

Faculty of Agriculture

in partial fulfilment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Universiti Pertanian Malaysia

ACKNOWLEDGEMENTS

Grateful acknowledgement is extended to Universiti Pertanian Malaysia for enabling this study to be carried out.

The author also wishes to express his appreciation to :

- Professor Chin Hoong Fong and Professor Mohd. Zain bin Haji Karim supervisor and co-supervisor (until 31st May, 1983) of the study, for their counsel and encouragement.
- Dr. M.J. Hill for his guidance during a period of study leave in Massey University, New Zealand, to acquire techniques in biochemical analysis and electron microscopy.
- Associate Professor Dr. Yap Thoo Chai for suggestions on statistical analysis of data.
- Associate Professors, Dr. Mok Chak Kim, Dr. Yap Thoo Chai and Dr. Wan Chee Keong for reading over the draft and suggesting useful improvements.
- The Commonwealth Mycological Institute (CMI) for identification of the isolated fungi.

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	ii
LIST OF TABLES	vi
LIST OF FIGURES	viii
LIST OF PLATES	x
LIST OF APPENDICES	xiii
LIST OF ABBREVIATIONS	xv
ABSTRACT	xvi
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	4
2.1 STORAGE OF COCOA SEEDS	4
2.2. CHANGES ASSOCIATED WITH SEED DETERIORATION	12
3. MATERIALS AND METHODS	35
3.1 SEED MATERIALS AND SAMPLING	36
3.2. EXPERIMENTAL PROCEDURES	36
3.2.1. Seed treatment	36
3.2.2. Packaging and storage	37
3.2.3. Regulation of seed moisture content	38
3.2.4. Preparation of axes for analysis	39
3.2.5. Preparation of sections for	
observation under the light microscope	39
3.2.6. Preparation of sections for examination	
microscope	41
3.3. MEASUREMENTS AND OBSERVATIONS	43
3.3.1. Moisture content	43

		3.3.2.	Germination	44
		3.3.3.	Seedling height and dry weight	46
		3.3.4.	Conductivity of seed leacheate	47
		3.3.5.	Incidence of storage fungi	47
		3.3.6.	Uptake of oxygen during respiration	47
		3.3.7.	Incorporation of ¹⁴ C-leucine into protein	48
	3.4.	EXPERIM	ENTS	49
		3.4.1.	Selected factors affecting cocoa seed storage	49
		3.4.2.	Changes associated with cocoa seed	
			deterioration	58
	3.5.	STATIST	ICAL ANALYSIS	60
4.	RESUL	TS		61
	4.1.	SELECT	ED FACTORS AFFECTING COCOA SEED	
		STORAGE	3	61
		<u>Experim</u> viabili	ent 1a. Effect of drying method on seed ty and storability	61
		Experim	ent 1b. Effect of high and low seed	
		moistur storabi	e and storage temperature on the lity of cocoa seeds	66
		Experimentary and mode	ent 1c. Effect of high seed moisture erate storage temperature on the	
		storabi	lity of cocoa seeds	69
		Experim	ent 1d. Effect of imbibed storage of	
		cocoa s	eeds in combination with germination	70
		inhibit	ors	د /
		Experime	ent le. Effect of biocides on the	77
		storadi	TILY OF COCOA Seeds	11

		Experiment 1f. Effect of benlate-thiram	
		applied as a dust and a soak on the	
		storability of cocoa seeds	81
		Experiment 1g. Effect of periodic	
		retreatment with benlate-thiram on the	
		storability of cocoa seeds	91
	4.2.	CHANGES ASSOCIATED WITH COCOA SEED DETERIORATION .	96
		Experiment 2a. Physiological, biochemical	
		and structural changes associated with	
		dehydration damage	96
		Experiment 2b. Physiological, biochemical	
		and structural changes associated with	
		chill injury	114
5.	DISCUS	SSION	129
	5.1.	SEED DRYING AND VIABILITY	129
	5.2.	SEED MOISTURE AND STORABILITY	131
	5.3.	TEMPERATURE AND STORABILITY	134
	5.4.	STORAGE FUNGI AND STORABILITY	137
	5.5.	DETERIORATION DUE TO DEHYDRATION INJURY	143
	5.6.	DETERIORATION DUE TO CHILL INJURY	147
	5.7.	DEATH OF COCOA SEEDS AND PROSPECTS FOR STORAGE	154
6.	SUMMAI	RY AND CONCLUSIONS	163 ·
7.	BIBLI	DGRAPHY	169
8.	APPENI	DICES	185

.

.

LIST OF TABLES

Table	I	Effect of drying methods on the rate	
		of moisture reduction and germination	
		of cocoa seeds	63
Table	II	Percentage germination of cocoa seeds	
		exposed to different drying methods	
		and subsequently stored for various	
		periods in the air-conditioned room	63
Table	III	Percentage germination of cocoa seeds	
		stored for different periods at 32%	
		and 27% moisture and 30 ⁰ C, 22 ⁰ C and	
		15 ⁰ C temperature	67
Table	IV	Percentage germination of cocoa seeds	
		stored for different periods at 35%,	
		33.5% and 32% moisture and 22°C, 17 [°] C,	
		15 [°] C and 13 [°] C temperature	71
Table	v	Percentage germination of cocoa seeds	
		treated with different biocides and	
		stored for various periods	78
Table	VI	Percentage moisture of cocoa seeds	
		treated with different biocides and	
		stored for various periods	80
Table	VII	Percentage germination of cocoa seeds	
		dusted or soaked with benlate-thiram	
		and stored for different periods	82
Table	VTTT	Percentage germination of cocoa seeds	
TADIC	* T T T	initially dusted on packed in boulsta	
		things and subsequently with an without	
		LILITAM AND SUDSEQUENTLY WITH OF WITHOUT	00
		retreatment at six weekly intervals	92

Table	IX	Moisture content of cocoa seeds	
		initially dusted or soaked in benlate-	
		thiram and subsequently with or without	
		retreatment at six weekly intervals	92
Table	х	Effect of dehydration on the physiological	
		indices of cocoa seeds	97
Table	XI	Effect of dehydration on the biochemical	
		indices of cocoa seeds	97
Table	XII	Effect of chilling on the physiological	
		indices of cocoa seeds	116
Table	XIII	Effect of chilling on the biochemical	
		indices of cocoa seeds	116

LIST OF FIGURES

Figure 1.	Effect of drying methods on the moisture	
	of cocoa seeds	62
Figure 2.	Effect of drying methods on the	
	germination of cocoa seeds	62
Figure 3.	Moisture content of cocoa seeds exposed	
	to different drying methods and	
	subsequently stored for various periods	
	in the air-conditioned room	65
Figure 4.	Effect of seed moisture reduction on	
	the germination of cocoa seeds	65
Figure 5.	Percentage germination of cocoa seeds	
	stored for various periods at 30 ⁰ C,	
	22 [°] C and 15 [°] C	68
Figure 6.	Moisture variation of cocoa seeds with	
	initial moisture content of 32% and 27%	
	after different storage periods	68
Figure 7.	Percentage germination of cocoa seeds	
	stored for various periods at 22 ⁰ C, 17 ⁰ C,	
	15°C and 13 [°] C	72
Figure 8.	Moisture variation of cocoa seeds with	
	initial moisture content of 32%, 33.5%	
	and 35% after different storage periods	72
Figure 9.	Percentage radicle emergence of cocoa	
	seeds stored unimbibed or imbibed in	
	various concentrations of abscisic acid,	
	sodium chloride and polyethylene glycol	
	1500	74

.

Figure	10.	Percentage germination of cocoa seeds	
		after different periods of storage as	
		unimbibed or imbibed seeds in 0.5 M	
		sodium chloride and 35% polyethylene	
		glycol 1500	76
Figure	11.	Moisture variation of cocoa seeds	
		soaked or dusted with benlate-thiram	
		and stored for different periods	82
Figure	12.	Percentage of untreated, benlate-	
		thiram dusted and benlate-thiram	
		soaked seeds infected with various	
		fungi after different periods of	
		storage	89
Figure	13.	Percentage of untreated, benlate-	
		thiram treated and benlate-thiram	
		retreated seeds infected with various	
		storage fungi after different periods	
		of storage	94
Figure	14.	Effect of hours of dehydration on the	
		time course of respiration of cocoa	
		seed axes	99

LIST OF PLATES

		Page
Plate 1.	Categories of seeds and seedlings identified in the germination test	45
Plate 2.	Infection of untreated, benlate-thiram dusted and benlate-thiram soaked cocoa seeds of storage fungi after four weeks storage	84
Plate 3.	Penicillium citrinum isolated from stored cocoa seeds	84
Plate 4.	Penicillium cyclopium isolated from stored cocoa seeds	85
Plate 5.	Aspergillus niger isolated from stored cocoa seeds	85
Plate 6.	Aspergillus flavus isolated from stored cocoa seeds	86
Plate 7.	Pycnidiospores of <i>Botryodiplodia theobromae</i> isolated from stored cocoa seeds	86
Plate 8.	Clamydospores of <i>Botryodiplodia theobromae</i> isolated from stored cocoa seeds	87
Plate 9.	Rhizopus arrhizus isolated from stored cocoa seeds	87
Plate 10.	Paecilomyces variotii isolated from stored cocoa seeds	88
Plate 11.	Changes in cocoa seed structures after different hours of dehydration in the air-conditioned room	102

Plate	12.	Structure of the embryonic axis of	
		cocoa seeds	102
Plate	13.	Cellular structure of epicotyl and	
		radicle from embryonic axis of fresh	
		cocoa seeds	104
Plate	14.	Cellular structure of epicotyl and	
		radicle seeds subjected to 16 hours of	
		dehydration in the air-conditioned room	105
Plate	15.	Cellular structure of epicotyl and	
		radicle of cocoa seeds subjected to	
		40 hours of dehydration in the air-	
		conditioned room	106
Plate	16.	Cellular structure of epicotyl and	
		radicle of cocoa seeds subjected to	
		64 hours of dehydration in the air-	
		conditioned room	107
Plate	17.	Ultrastructure of fresh radicle cells	109
Plate	18.	Ultrastructure of radicle cells	
		dehydrated for 16 hours in the air-	
		conditioned room	110
Plate	19.	Ultrastructure of radicle cells	
		dehydrated for 40 hours in the air-	
		conditioned room	111
Plate	20.	Ultrastructure of radicle cells	
		dehydrated for 64 hours in the air-	
		conditioned room	112
Plate	21.	Changes in cocoa seed structures after	
		different periods of chill treatment	
		at 10 ⁰ C	119

Plate 22.	Cellular structure of epicotyl and	
	radicle of cocoa seeds subjected to	
	10 minutes of chill treatment at 10 [°] C	120
Plate 23.	Cellular structure of epicotyl and	
	radicle of cocoa seeds subjected to	
	40 minures of chill treatment at 10 ⁰ C	121
Plate 24.	Cellular structure of epicotyl and	
	radicle of cocoa seeds subjected to	
	160 minutes of chill treatment at 10 ⁰ C	122
Plate 25.	Ultrastructure of radicle cells chilled	
	for 10 minutes at 10 [°] C	124
Plate 26.	Ultrastructure of radicle cells chilled	
	for 40 minutes at 10 [°] C	125
Plate 27.	Ultrastructure of radicle cells chilled	
	for 160 minutes at 10 [°] C	126

LIST OF APPENDICES

		Page
Appendix 1.	Preparation of chemicals	185
Appendix 2.	Mean square values of initial moisture,	
	initial germination, final germination	
	and duration of drying of cocoa seeds	
	as influenced by drying methods -	
	Experiment 1a	190
Appendix 3.	Mean square values of germination and	
	moisture of cocoa seeds as influenced	
	by storage after different methods of	
	drying - Experiment 1a	190
Appendix 4.	Mean square values of germination and	
	moisture of cocoa seeds as influenced	
	by storage at 32% and 27% seed moisture	
	and 30 ⁰ C, 22 ⁰ C and 15 ⁰ C storage	
	temperature - Experiment 1b	191
Appendix 5.	Mean square values of germination and	
	moisture of cocoa seeds as influenced	
	by storage at 35%, 33.5% and 32% seed	
	moisture and 22 ⁰ C, 17 ⁰ C, 15 ⁰ C and 13 ⁰ C,	
	storage temperature - Experiment 1c	192
Appendix 6.	Mean square values of cocoa seed	
	germination as influenced by imbibed	
	storage in various germination	
	inhibitors - Experiment 1d	193
Appendix 7.	Mean square values of germination and	
	moisture of cocoa seeds as influenced	
	by storage after different biocide	
	treatments - Experiment 1e	193

Appendix 8.	Mean square values of germination and	
	moisture of cocoa seeds as influenced	
	by storage after different applications	
	of benlate-thiram - Experiment 1f	194

LIST OF ABBREVIATIONS

The following abbreviations were used in the text :

ABA	=	Abscisic acid					
PEG	=	Polyethylene glycol					
LSD	=	Least significant difference					
DMRT	=	Duncan's multiple range test					
RH	=	Relative humidity					
ER	=	endoplasmic reticulum					
ETOH	=	ethyl alcohol					
TBA	=	tertiary butyl alcohol					
w/w	=	weight by weight					
v/v	=	volume by colume					
wb	=	fresh weight basis					
db	=	dry weight basis					
h	=	hour					
min	=	minute					
°C	=	degree centigrade					
cm	=	centimetre					
nm	=	millimeter					
u	=	micron, micrometre					
kg	=	kilogram					
g	=	gram					
mg	=	milligram					
ug	=	microgram					
1	=	litre					
m1	=	millilit re					
ul	=	microlitre					
М	=	molar					
mM	=	millimolar					
uCi	=	microcurie					

ABSTRACT

An abstract of the thesis presented to the Senate of Universiti Pertanian Malaysia in partial fulfilment of the requirements for the Degree of Doctor of Philisophy.

> STORAGE OF COCOA (THEOBROMA CACAO L.) SEEDS AND CHANGES ASSOCIATED WITH THEIR DETERIORATION

> > Hor Yue Luan February, 1984

by

Supervisor	:	Professor	Chin	Hoong	Fong
Co-supervisor	:	Professor	Mohd.	Zain	Karim
Faculty	:	Agricultu	re		

Cocoa (Theobroma cacao L.) seeds are recalcitrant and rapidly lose their viability during preparation and within two to three weeks of storage. To improve their storability, the responses of a cultivar of cocoa seeds (NA 33) to different drying methods and storage factors including seed moisture, storage temperature and fungi were investigated. Physiological, biochemical and structural changes associated with seed death caused by dehydration in the air-conditioned room ($22^{\circ}C$, 55% RH) and chilling at $10^{\circ}C$ were also monitored.

Freshly harvested seeds were best dried in the airconditioned room. The critical seed moisture content was 26% to 27%, but for storage a moisture content of 33.5% to 35% was optimal. Temperatures below 15°C were lethal and storage in the air-conditioned room at 22°C is recommended. Seed dusting with 0.2% w/w of an equal benlate-thiram mixture was essential since untreated seeds were rapidly killed by storage fungi such as Penicillium spp., Aspergillus spp. and Botryodiplodia theobromae. Treated seeds maintained germination for at least six weeks and retreatment with fresh fungicides either as a dust or a soak did not prevent rapid seed death after this period. For optimal storage, cocoa seeds at 33.5% to 35% moisture and dusted with 0.2% w/w of an equal benlate-thiram mixture should be stored in thin perforated polythene bags in loosely closed plastic boxes in the air-conditioned room. Germination of at least 80% could be maintained for two to three months.

Changes associated with dehydration damage and chill injury of cocoa seeds were different. Although germination and seedling growth were rapidly decreased in both cases, axial respiration and protein synthesis were unaffected by the chill treatment, but were reduced significantly in axes moderately damaged by dehydration. Loss of membrane integrity as evidenced by increased leacheate conductivity also occurred in seeds moderately damaged by dehydration, but was not detected in chilled seeds until they were totally killed. Progressive damages to cell organelles including cell membranes, mitochondria,

xvii

ribosomes and nucleii were observed with increasing dehydration damage. Conversely, organelles were essentially unchanged in chilled seeds except for severe derangement of the plasmalemma and tonoplast. The data suggest that death caused by dehydration is progressive and involves damage to many biological processes including respiration, protein synthesis and function of cell organelles; culminating finally in total cell collapse. Death caused by low temperature is more abrupt and may be triggered by only a few vital processes resulting mainly in severe degeneration of cell membranes and their related functions. Respiration, protein synthesis and other cell organelles were essentially unaffected.

1. INTRODUCTION

Cocoa, *Theobroma cacao*, is one of several species belonging to the family *Sterculiaceae*. It originates from the tropical rain forest of Central America where its seeds were used for concocting a drink popular with the Mayas and Aztecs. Today the seed is used for manufacturing a wide range of beverages and confectioneries. This was supported by a world production of 1.67 million tonnes of cocoa beans in 1981 (FAO, 1982).

The main producers of cocoa are localised in the tropical Americas and Africas. These include Brazil, Ghana, Nigeria and the Ivory Coast. There is less emphasis on the crop in tropical Asia, probably because of the pre-eminence of other plantation crops such as rubber (*Hevea brasiliensis*) and oil palm (*Elaeis guineensis*). In Malaysia, small areas of the crop were grown, but owing to disease, poor management and lower profitability, it did not expand as rapidly as rubber and oil palm. However, in the early 1970's crop diversification was emphasised and this together with higher price for cocoa resulted in an expansion of the crop. This is evident from the increased area from which the crop is harvested, from 9,000 hectares in 1970 to 72,000 hectares in 1981 (FAO, 1982).

With the expansion of the crop, the demand for planting materials has also increased. In Malaysia, the crop is largely propagated by seed although vegetative propagation is possible. The demand for planting materials exists throughout the year, but seed production is bimodal and generally peaks during the months of February to March and October to November. Such seasonal supply in the face of continual demand emphasises the need for a suitable method of seed conservation during the peak seasons.

However, cocoa seeds are recalcitrant in that they do not withstand dehydration and low temperature (Swarbrick 1965, Barton, 1965). They deteriorate rapidly when exposed to humid tropical conditions. The maximum period of storage reported is only approximately three to four weeks. Even under such short storage period, a high percentage of the seeds was already pregerminated (Evans, 1950; Swarbrick, 1965). If handled like orthodox seeds, they lose their viability even faster in a matter of two to three days. Because of this, much planting materials have been lost as a result of poor handling and storage before the seeds were planted.

The recalcitrant nature of the seed has also made it difficult to conserve the genetic resources of cocoa. As very short term storage is only currently available, the main method for conserving cocoa germplasm is by the planting out method. With the current rate of depletion of our world natural reserves, the loss of germplasm materials of cocoa and other recalcitrant seeds is very real.

The need to improve the storability of cocoa seeds has prompted the first objective of this study, which is to investigate the effects of various seed and environmental factors on the storability of cocoa. It is hoped that with a clearer

understanding of the behaviour of cocoa seeds under various conditions, an improved method of storage may be devised to prolong their viability.

The second objective of the study is a follow up of the first, and involves investigations into the physiological, biochemical and structural changes associated with the deterioration of cocoa seeds. It is aimed at elucidating the changes involved as seed viability decreases during storage. It is hoped that these studies will provide a better understanding of seed deterioration and point out venues for improving further the storability of cocoa seeds.

2. REVIEW OF LITERATURE

2.1. STORAGE OF COCOA SEEDS

Based on the behaviour of seeds during storage, Roberts (1973 a) categorised them as orthodox or recalcitrant. Orthodox seeds are those which can be dried to a relatively low moisture of 4% (Harrington, 1970) without loss of viability. On the other hand, recalcitrant seeds are unable to withstand excessive dehydration and rapidly lose their viability at relatively high moisture levels of 12% - 31% (Roberts, 1973 a). Many recalcitrant seeds also do not tolerate low temperature and are often injured at temperatures of less than $10^{\circ}C - 15^{\circ}C$. Because of their susceptibility to drying and low temperature, cocoa seeds are also considered to be recalcitrant.

Maintenance of the viability of recalcitrant seeds is more difficult since they have no inherent quiescent stage and are not storable at low moisture and temperature (Tang and Tamari, 1973; Chacko and Singh, 1971; Chin 1975; Teng 1977 b; Ang, 1976; and Chin *et al*, 1983). A review of the literature on the storage of cocoa seeds illustrates clearly the problems involved in storing these seeds, especially when they are unable to withstand cold conditions. Such studies began in the 1930's, but initial works were concentrated mainly on pod storage. Subsequent studies shifted the emphasis to the storage of the extracted seeds.

