BAGWORM (PTEROMA PENDULA JOANNIS) AND ITS CONTROL BY ENTOMOPATHOGENIC FUNGI, (METARHIZIUM ANISOPLIAE METCHNIKOFF AND PAECILOMYCES FUMOSOROSEUS WIZE)

CHEONG YEW LOONG
FH 2009 12
BAGWORM (PTEROMA PENDULA JOANNIS) AND ITS CONTROL BY ENTOMOPATHOGENIC FUNGI, (METARHIZIUM ANISOPLIAE METCHNIKOFF AND PAECILOMYCES FUMOSOROSEUS WIZE)

CHEONG YEW LOONG

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in fulfilment of the Requirement for the Degree of Master Of Science

September 2009
DEDICATION

Specially dedicated to my family members,
My dad, **Cheong Kok Seng** and mom, **Lai Soon Lan** for your patient and courage given. Also not forgotten my brothers, **Cheong Yew Hoong** and **Cheong Yew Ken** and sister, **Cheong Wei Pin**.
Thanks for your support and I love you all.

Also,
Specially thanks to the person that always support and advice me during the progress of this project and thesis,
Tan Hui Sin.
Thank You to believe in me.

“Do not think too highly of yourself, and yet, never underestimate your ability”.

“Still Thoughts” by Master Cheng Yen
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science

BAGWORM (*PTEROMA PENDULA JOANNIS*)
AND ITS CONTROL BY ENTOMOPATHOGENIC FUNGI,
(*METARHIZIUM ANISOPLIAE* METCHNIKOFF AND
PAECILOMYCES FUMOSOROSEUS WIZE)

By

CHEONG YEW LOONG

September 2009

Chairman : Professor Dr. Ahmad Said Bin Sajap

Faculty : Forestry

Pteroma pendula (Joannis) was the dominant bagworm species infesting oil palm plantation, Hutan Melintang, Lower Perak. This species had six instar stages when reared in the laboratory condition. The ratio of molting for late instar did not follow Dyar’s rule. Dimorphism was observed in pupa and imago stages. Female emerged as apterous and vermiform-like, and male emerged as moth. *Pteroma pendula* had a lifespan of 50.4 ± 1.8 days in laboratory condition. Length of the cases were significantly correlated with head capsules for both male ($R^2= 0.97$) and female ($R^2= 0.92$) and might be useful in estimation of the instar stage in field.

Rainfall frequencies were found not significantly correlated with the outbreak of the bagworms in the study site, thus the outbreak did not influenced by rainfall. Field observation recorded the natural populations of bagworms were being controlled by predators, parasitoids and pathogenic fungi. Through systematic sampling of bagworms from the study site, the natural enemies had caused mortality to 4.85% of
the bagworm population, and this was ineffective in keeping the bagworm populations below the economic threshold level (five to ten bagworms per frond).

Two species of entomopathogenic fungi, *Metarhizium anisopliae* and *Paecilomyces fumosoroseus* had been isolated from field infected *P. pendula*. Pathogenicity tests revealed the lowest LT$_{50}$ value at 5.72 days for *P. fumosoroseus* and 5.40 days for *M. anisopliae* at the concentration of 2×10^9 conidia ml$^{-1}$. The median effective concentrations (EC$_{50}$) were $2 \times 10^{5.10}$ conidia ml$^{-1}$ for *P. fumosoroseus* and $2 \times 10^{5.17}$ conidia ml$^{-1}$ for *M. anisopliae*. Conidia were prepared in Kaolinite-containing wettable powder with and without the addition of Tinopal LPW. Both substances are known to give protection against sunlight and help to prolong conidia viability. There was no differences at improving conidia viability when these formulations were tested with UVB light in the laboratory and natural sunlight at outdoor. Wettable powder formulation recorded 12-30% higher mortality on *P. pendula* when compared to the oil formulations for both fungi species.

Wettable powder formulations using both entomopathogenic fungi were applied in the field using hand sprayer and were compared to Dipel®. The results showed the wettable powder had no significant differences at causing mortality on bagworms, 5 days after treatment (DAT). Though, differences were observed on the 3rd and 7th DAT. These results suggested that the wettable powder formulation is a potential mycoinsecticide for controlling the bagworms especially at the early stages of infestation in the field.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan ijazah Master Sains

BAGWORM (PTEROMA PENDULA JOANNIS) AND ITS CONTROL BY ENTOMOPATHOGENIC FUNGI, (METARHIZIUM ANISOPLIAE METCHNIKOFF AND PAECILOMYCES FUMOSOROSEUS WIZE)

Oleh

CHEONG YEW LOONG

September 2009

Pengerusi : Profesor Dr. Ahmad Said Bin Sajap

Fakulti : Perhutanan

Pteroma pendula (Joannis) merupakan spesis ulat bungkus dominan yang menyerang ladang kelapa sawit di Hutan Melintang, Perak. Spesis ini mempunyai enam peringkat larva apabila diperihara di dalam makmal. Nisbah penyalinan kulit bagi larva peringkat akhir tidak mematuhi peraturan Dyar’s. Dwi-morfologi diperhatikan pada peringkat kepompong dan serangga dewasa. Serangga betina menjelma dalam bentuk apterius dan vermiform, manakala serangga jantan menjelma sebagai rama-rama. *Pteroma pendula* mempunyai peringkat hidup selama 50.4 ± 1.8 hari dalam keadaan makmal. Panjang bekasnya menunjukkan hubungkait yang nyata dengan lebar kepala larva bagi kedua-dua jantan (*R*² = 0.97) dan betina (*R*² = 0.92) dan ini kemungkinan berguna dalam menjangkaan peringkat larva di lapangan.

Kekerapan hujan tidak menunjukkan hubungkait yang nyata dengan infestasi ulat bungkus di kawasan kajian, memberikan keputusan bahawa hujan tidak memberikan pengaruh terhadap infestasi ulat bungkus. Permerhatian di lapangan merekodkan...
populasi ulat bungkus dikawal oleh musuh semulajadi iaitu pemangsa, parasitoids dan kulat pathogenik. Melalui persampelan sistemai, musuh semulajadi menyebabkan 4.85% kematian terhadap populasi ulat bungkus di ladang kelapa sawit di kawasan kajian dan ini tidak memberikan kawalan semulajadi yang efektif terhadap ulat bungkus, iaitu lima sehingga sepuluh ekor ulat per daun perepah.

Dua spesis kulat entomopathogenik, *Metarhizium anisopliae* dan *Paecilomyces fumosoroseus* diasingkan dari *P. pendula* yang dijangkiti kulat di lapangan. Kajian kepathogenan menunjukkan nilai LT$_{50}$ terendah direkodkan 5.72 hari untuk *P. fumosoroseus* dan 5.40 hari untuk *M. anisopliae* pada kepekatan of 2×10^9 conidia ml$^{-1}$. Median Kepekan efektif (EC$_{50}$) adalah $2 \times 10^{5.10}$ conidia ml$^{-1}$ untuk *P. fumosoroseus* dan $2 \times 10^{5.17}$ conidia ml$^{-1}$ untuk *M. anisopliae*. Konidia telah disediakan dalam bentuk serbuk mudah basah yang mempunyai kandungan Kaolinite dengan menambahkan atau tanpa menambahkan Tinopal LPW. Kedua-dua kandungan ini dikenali memberikan perlindungan daripada cahaya matahari dan membantu melanjutkan kemandirian konidia. Formulasi telah dikaji dengan sinaran UVB dalam makmal dan sinar cahaya matahari di luar bilik, menunjukkan kedua-dua formulsi tidak memberikan perbezaan yang nyata atas kemandirian konidia. Serbuk mudah basah merekodkan 12-30% lebih tinggi kematian terhadap ulat bungkus jika dibandingkan dengan formulasi bentuk minyak dalam ujikaji makmal.

Formulasi serbuk mudah basah menggunakan kedua-dua spesis kulat entomopathogenik telah diaplikasi di lapangan dengan menggunakan penyembur tangan dan dibandingkan dengan Dipel®. Keputusan menunjukkan serbuk mudah basah tidak mempunyai perbezaan yang nyata dalam menyebabkan kematian pada
ulat bungkus pada hari ke-5 selepas rawatan jika dibandingkan dengan Dipel®, tetapi menunjukkan perbezaan pada hari ke-3 dan ke-7 selepas rawatan dibandingkan dengan Dipel®. Keputusan ini mencadangkan bahawa serbuk mudah basah merupakan mycoinsectik yang berpotensi untuk mengawal ulat bungkus terutamanya pada awal infeksi di lapangan.
ACKNOWLEDGEMENTS

The author would like to express his deepest appreciation and sincere gratitude to his supervisor, Professor Dr. Ahmad Said bin Sajap for valuable advice, suggestions, guidance, confidence and interest on entomology he built in me.

The author was also fortunate to have Professor Dr. Dzolkhifli Omar, Assoc. Professor Dr. Hafidzi Mohd. Noor and Associate Professor Dr. Faizah Abood as their co-supervisors for their valuable comments in the preparation of this project. Special thanks to Dr. Nor Azura binti Adam for identify the species of parasitoids.

The author was indebted to En. Mohd. Kamil Ismail, Jessica, Saldiah, Venite and others who had in assisted in this study. The author also wish to thank the MHC plantations berhad for providing the permission to conduct the study, field assistants, transportation, lodging and necessary information needed in this study.

Lastly, the author’s deepest gratitude and love was dedicated to his parents for their love, understanding, encouragement and moral support.
I certify that a Thesis Examination Committee has met on 1st September 2009 to conduct the final examination of Cheong Yew Loong on his thesis entitled “Bagworm, *Pteroma Pendula* Joannis (Lepidoptera: Psychidae) and its control by Entomopathogenic Fungi, *Metarhizium Anisopliae* Metchnikoff and *Paecilomyces Fumosoroseus* Wize” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Examination Committee are as follows:

AHMAD AINUDDIN NURUDDIN, Ph.D.
Associate Professor
Faculty of Forestry
Universiti Putra Malaysia
(Chairman)

ROZI MOHAMED, Ph.D.
Faculty of Forestry
Universiti Putra Malaysia
(Internal Examiner)

ROHANI IBRAHIM, Ph.D.
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

IDRIS ABDUL GHANI, Ph.D.
Professor
Centre for Insect Systematics,
School of Environmental and Natural Resource Sciences,
Faculty of Science and Technology,
Universiti Kebangsaan Malaysia.
(External Examiner)

BUJANG KIM HUAT, Ph.D.
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia.

Date: 15 February 2010
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

AHMAD SAID SAJAP, Ph.D.
Professor
Faculty of Forestry
Universiti Putra Malaysia
(Chairman)

HAFIDZI MOHD NOOR, Ph.D.
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

DZOLKHIFLI OMAR, Ph.D.
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

FAIZAH ABOOD, Ph.D.
Associate Professor Faculty of Forestry
Universiti Putra Malaysia
(Member)

HASSANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia.

Date: 11th February 2010
DECLARATION

I hereby declare that the thesis is based on my original work except for the quotations and citations which has been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

CHEONG YEW LOONG

Date: 4th January 2010
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xx</td>
</tr>
<tr>
<td>GLOSSARY OF TERMS</td>
<td>xxi</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION
1.1 Pteroma pendula as pest 1
1.2 History of management on bagworms using chemical applications 2
1.3 Environmental friendly methods on bagworms management and its problems 4
1.4 Problem statement 8
1.5 Objective of study 9

2 LITERATURE REVIEW
2.1 Biology of bagworms 10
2.2 Distribution of bagworms 12
2.3 Pteroma pendula Joannis 14
2.4 Biology of Pteroma pendula 16
2.5 Nature enemies of Pteroma pendula and its relatives 18
 2.5.1 Predators 19
 2.5.2 Parasitoids 20
 2.5.3 Pathogens 24

3 MATERIALS AND METHODS
3.1 Part 1: Life history and development of Pteroma pendula 28
 3.1.1 Insect rearing 28
 3.1.2 Bagworm’s case sizes length and head capsule width 30
 3.1.3 Statistical analysis 30
3.2 Part 2: Field Sampling 31
 3.2.1 Site description 31
 3.2.2 Sampling plot establishment 31
 3.2.3 Bagworm sampling 34
 3.2.4 Climatic data and yield production 35
 3.2.5 Statistical analysis 35
3.3 Part 3: Laboratory and field trial 36
 3.3.1 Microbial examination 36
3.4 Conidia Formulation
 3.4.1 Conidia viability under Ultraviolet-B exposure 43
 3.4.2 Conidia viability under sunlight 44
 3.4.3 Conidia germination rate 46
 3.4.4 Radial growth of fungi 46
 3.4.5 Statistical analysis 47

3.5 Laboratory trial
 3.5.1 Bagworms rearing 48
 3.5.2 Preparation of conidial suspensions 48
 3.5.3 Laboratory trial experimental design 48
 3.5.4 Statistical analysis 49

3.6 Field trial
 3.6.1 Preparation of conidial suspensions 50
 3.6.2 Conidia application and experimental design 50
 3.6.3 Statistical analysis 51

4 RESULTS
 4.1 Part 1: Life table of Pteroma pendula’s larvae
 4.1.1 Demography of P. pendula 53
 4.1.2 Morphological development of Pteroma pendula’s larvae 56
 4.1.3 Sexes of Pteroma pendula based on its morphology 61
 4.1.4 Duration between molt and ranges of instar stages of Pteroma pendula 64
 4.2 Part 2: Field sampling data
 4.2.1 Outbreak patterns of bagworm, P. pendula and its relationship with yield production and rainfall volume 66
 4.2.2 Rates of infestation on oil palms 71
 4.2.3 Bagworms associated with oil palms in Langkap Plantation 71
 4.2.4 Status of bagworms from study site 72
 4.2.5 Mortality factors affecting bagworms 75
 4.2.6 Mortality of bagworms caused by predation 78
 4.2.7 Mortality of bagworms caused by parasitoids 82
 4.2.8 Mortality of bagworms caused by fungal infection 88
 4.3 Status of Pteroma pendula
 4.3.1 Mortality of Pteroma pendula caused by predation 93
 4.3.2 Mortality of P. pendula larvae and pupae caused by parasitoid 96
 4.3.3 Mortality of Pteroma pendula caused by fungal infection 99
 4.4 Part 3: Pathogenicity test
 4.4.1 Infection of Paecilomyces fumosoroseus to Pteroma pendula 104
 4.4.2 Infection of Metarhizium anisopliae to Pteroma pendula 104
 4.5 Part 4: Viability test of formulated conidial suspensions
 4.5.1 The conidia germination rate of Metarhizium anisopliae on ultraviolet-B test 109
4.5.2 The *Metarhizium anisopliae* germination rate under sunlight
4.5.3 UV intensity, temperature and relative humidity during sunlight test
4.5.4 Radial growth of fungi
4.6 Part 5: Efficacy of formulated conidia for controlling *Pteroma pendula*
 4.6.1 Laboratory trial
 4.6.2 Field trial

5 DISCUSSION
5.1 Life History and development of *Pteroma pendula*
5.2 Yield reduction, rainfall and outbreak of *Pteroma pendula*
5.3 Mortality factors and the infestation pattern of *Pteroma pendula*
5.4 Effect of UVB on viability of *Metarhizium anisopliae* and *Paecilomyces fumosoroseus*
5.5 The efficiency of formulated *Metarhizium anisopliae* and *Paecilomyces fumosoroseus*

6 CONCLUSION

REFERENCES
APPENDICES
BIODATA OF STUDENT
LIST OF PUBLICATION
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Head capsule width (µm) and cases length (mm) of male and female</td>
<td>58</td>
</tr>
<tr>
<td>(P.) pendula</td>
<td></td>
</tr>
<tr>
<td>2. Development duration (day) of male and female (P.) pendula.</td>
<td>65</td>
</tr>
<tr>
<td>3. Median Lethal Time (LT(_{50})) at different concentration of</td>
<td>107</td>
</tr>
<tr>
<td>(P.) fumosoroseus on (P.) pendula</td>
<td></td>
</tr>
<tr>
<td>4. Median Lethal Time (LT(_{50})) at different concentration of</td>
<td>107</td>
</tr>
<tr>
<td>(M.) anisopliae on (P.) pendula</td>
<td></td>
</tr>
<tr>
<td>5. Median effective concentration (EC(_{50})) at different</td>
<td>108</td>
</tr>
<tr>
<td>concentrations of (P.) fumosoroseus and (M.) anisopliae</td>
<td></td>
</tr>
<tr>
<td>6. Three way ANOVA analysis of the two fungi with different</td>
<td>109</td>
</tr>
<tr>
<td>formulation after exposure to UVB for different duration.</td>
<td></td>
</tr>
<tr>
<td>7. Mean conidia germination rate (%) (\pm) SE of (M.)</td>
<td>111</td>
</tr>
<tr>
<td>anisopliae after exposure to UVB.</td>
<td></td>
</tr>
<tr>
<td>8. Mean conidia germination rate (%) (\pm) SE of (P.)</td>
<td>111</td>
</tr>
<tr>
<td>fumosoroseus after exposure to UVB.</td>
<td></td>
</tr>
<tr>
<td>9. Three way ANOVA analysis of the two fungi with different</td>
<td>113</td>
</tr>
<tr>
<td>formulation after exposure to sunlight for different duration.</td>
<td></td>
</tr>
<tr>
<td>10. Mean conidia germination rate (%) (\pm) SE of (M.)</td>
<td>113</td>
</tr>
<tr>
<td>anisopliae after exposure to sunlight.</td>
<td></td>
</tr>
<tr>
<td>11. Mean conidia germination rate (%) (\pm) SE of (P.)</td>
<td>113</td>
</tr>
<tr>
<td>fumosoroseus after exposure to sunlight.</td>
<td></td>
</tr>
<tr>
<td>12. UV intensity, temperature and relative humidity during</td>
<td>116</td>
</tr>
<tr>
<td>sunlight exposure periods</td>
<td></td>
</tr>
<tr>
<td>13. Mean conidia radial growth (\pm) SE (mm) of (M.)</td>
<td>116</td>
</tr>
<tr>
<td>anisopliae and (P.) fumosoroseus</td>
<td></td>
</tr>
<tr>
<td>14. Adjusted mean mortality rate (%) (\pm) SE of (P.) pendula</td>
<td>118</td>
</tr>
<tr>
<td>treated with oil and wettable powder formulation of (M.)</td>
<td></td>
</tr>
<tr>
<td>anisopliae and (P.) fumosoroseus</td>
<td></td>
</tr>
<tr>
<td>15. Adjusted mean mortality rate (%) (\pm) SE of (P.) pendula</td>
<td>119</td>
</tr>
<tr>
<td>treated with (P.) fumosoroseus, (M.) anisopliae and Dipel®</td>
<td></td>
</tr>
<tr>
<td>on days after treatment.</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Plastic cup containing leaf.</td>
<td>29</td>
</tr>
<tr>
<td>2. The study site of bagworm sampling, Langkap Plantation (in Ladang Sungai Samak).</td>
<td>32</td>
</tr>
<tr>
<td>3. Sampling method in 1B area, Langkap Plantation.</td>
<td>33</td>
</tr>
<tr>
<td>4. Experimental setup for laboratory bioassay.</td>
<td>40</td>
</tr>
<tr>
<td>5. Formulated wettable powder: M. anisopliae (left) and P. fumosoroseus (Right).</td>
<td>42</td>
</tr>
<tr>
<td>6. Field treatment.</td>
<td>52</td>
</tr>
<tr>
<td>7. Newly hatched first instar larvae of P. pendula.</td>
<td>55</td>
</tr>
<tr>
<td>8. (a) The survivorship, pupation and mortality of P. pendula under laboratory condition; (b) Log l, versus age; (c) Expectation of life, e_x, versus age; (d) K-value versus age.</td>
<td>55</td>
</tr>
<tr>
<td>9. Head capsule collected from larvae of P. pendula after molting.</td>
<td>57</td>
</tr>
<tr>
<td>10. Histogram of the P. pendula larvae head capsule, the arrows indicated the presence of the larvae’s stage.</td>
<td>57</td>
</tr>
<tr>
<td>11. First instar larvae of P. pendula, construct it’s case with leaves surface’s materials and cover it’s abdominal part.</td>
<td>58</td>
</tr>
<tr>
<td>12. Correlation of head capsule width with case size of bagworms.</td>
<td>60</td>
</tr>
<tr>
<td>13. The of pupa case male (left) and female (right) P. pendula.</td>
<td>60</td>
</tr>
<tr>
<td>14. The dimorphism of male (left) and female (right) P. pendula pupa.</td>
<td>62</td>
</tr>
<tr>
<td>15. The imago stage of female P. pendula, normal (left) and with eggs (right).</td>
<td>63</td>
</tr>
<tr>
<td>16. The imago stage of male P. pendula.</td>
<td>63</td>
</tr>
<tr>
<td>17. Rainfall volume and frequencies per month, 2002 to 2005.</td>
<td>68</td>
</tr>
<tr>
<td>18. Infested palms and yield production, 2002 to 2005.</td>
<td>68</td>
</tr>
<tr>
<td>19. Yield production and bagworm outbreak, 2002 to 2005.</td>
<td>69</td>
</tr>
<tr>
<td>20. Yield product and bagworm outbreak, 2002 to 2005.</td>
<td>69</td>
</tr>
</tbody>
</table>
21. Correlation between rainfall and palm infested by bagworm: (a) Year 2002; (b) Year 2003; (c) Year 2004; (d) Year 2005.

22. Correlation between yield production and palm infested by bagworm: (a) Year 2002; (b) Year 2003; (c) Year 2004; (d) Year 2005.

27. Small opening observed from pupa case of *P. pendula*, suspected being preyed by hemipterans predator.

28. An adult *Callimerus arcufer*.

29. Larvae of *Callimerus arcufer*.

30. Larva of *Callimerus arcufer* in male pupa of *P. pendula*.

32. *Aphanogmus thylax* (Ceraphronidae).

33. *Eupelmus catoxanthae* (Eupelmidae).

34. *Eurytoma* sp. (Eurytomidae).

35. *Aulosaphes psychidivorus*, (Braconidae).

37. *Goryphus* sp (Ichneumonidae).

38. *Friona* sp. (Ichneumonidae).

39. Percentage of hyperparasitoids and parasitoids collected
from parasitized bagworm.

41. Percentage of fungi isolated from infected bagworms.

43. *Pteroma pendula* pupae, male (right) and female (left) hanging on palm frond.

44. A comparison of *P. pendula* collected in Plot 1B, Langkap plantation between two phases of bagworm sampling during the month of Oct-Nov 2005 and Mar-April 2006.

47. Mortality rate of *P. pendula* caused by *C. arcufer* and hemipteran predators during the month of Oct-Nov 2005 and Mar-April 2006.

51. Comparison of fungal infection rate on *P. pendula* larvae and pupae between the interior and exterior subpart during the month of Oct-Nov 2005 and Mar-April 2006.

53. Percentages of *Paecilomyces fumosoroseus* and *Metarhizium anisopliae* isolated from fungal infected *P. pendula* larvae and pupae from the interior and exterior part during the month of Oct-Nov 2005 and Mar-April 2006.

54. Cumulative percentage of adjusted mortality of *P. pendula* treated with *P. fumosoroseus*.

55. Cumulative percentage of adjusted mortality of *P. pendula* treated with *M. anisopliae*.

56. Linear mycelial growth rates (velocity in mm/day from $y=vt + b$) established from each replicate. Raw data are means of five replicates.

57. First instar larvae of *P. pendula* infected by *M. anisopliae*. Day 3 (Left), day 5 (Middle) and day 10 (Right).

58. First instar larvae of *P. pendula* infected by *M. anisopliae*.

59. Third instar larva of *P. pendula* in the case infected by *M. anisopliae*.

60. Third instar larva of *P. pendula* infected by *M. anisopliae*, day 10.

61. First instar larvae of *P. pendula* infected by *P. fumosoroseus*, Day 3 (Left), day 5 (Middle) and day 10 (Right).

62. Instar larvae of *P. pendula* infected by *P. fumosoroseus*.

63. Instar larva of *P. pendula* covered by mycelium of *P. fumosoroseus*.

64. Third instar larva of *P. pendula* infected by *P. fumosoroseus*.

65. Fifth instar larva of *P. pendula* in the case infected by *P. fumosoroseus*.

66. The male pupa of *P. pendula* in the case infected by *P. fumosoroseus*.
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The life table of P. pendula larvae</td>
<td>146</td>
</tr>
<tr>
<td>2. Head capsule width of male, female and overall larvae of P. pendula larvae.</td>
<td>147</td>
</tr>
<tr>
<td>3. Case length of male, female and overall larvae of P. pendula larvae and pupae</td>
<td>147</td>
</tr>
<tr>
<td>4. Correlation of case length and head capsule width of overall (male and female) larvae of P. pendula.</td>
<td>148</td>
</tr>
<tr>
<td>5. Correlation of infested palm and rainfall volume (mm³) during year 2002 to 2005 in Langkap plantation.</td>
<td>148</td>
</tr>
<tr>
<td>6. Field records of bagworm outbreak, with total palm infested, chemical used and yield production in Langkap Plantation</td>
<td>149</td>
</tr>
<tr>
<td>7. Bagworms species and number collected at Langkap Plantation.</td>
<td>150</td>
</tr>
<tr>
<td>8. Categories of all bagworm species in Plot 1B, Langkap plantation, during the month of Oct-Nov 2005 and Mac-April 2006</td>
<td>150</td>
</tr>
<tr>
<td>9. Bagworms species and number of preyed individual at Langkap Plantation.</td>
<td>150</td>
</tr>
<tr>
<td>10. Bagworms species and number of parasitized individual at Langkap Plantation.</td>
<td>151</td>
</tr>
<tr>
<td>11. Bagworms species and number of fungal infected individual at Langkap Plantation.</td>
<td>152</td>
</tr>
<tr>
<td>12. Percentage of adjusted mortality of P. pendula treated with P. fumosoroseus.</td>
<td>152</td>
</tr>
<tr>
<td>13. Percentage of adjusted mortality of P. pendula treated with M. anisopliae</td>
<td>152</td>
</tr>
<tr>
<td>14. Linear mycelial growth rates of M. anisopliae and P. fumosoroseus</td>
<td>152</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>3A</td>
<td>Third anal vein of insect wing</td>
</tr>
<tr>
<td>BAL</td>
<td>Oil palm plantation in Sabah, sold to Golden Hope in 1996</td>
</tr>
<tr>
<td>Bt</td>
<td>Bacillus thuringiensis</td>
</tr>
<tr>
<td>CABI</td>
<td>Commonwealth Agriculture Bureaux International</td>
</tr>
<tr>
<td>CIBC</td>
<td>Commonwealth Institute of Biological Control (Now CABI)</td>
</tr>
<tr>
<td>CuP</td>
<td>Cubitus vein of insect wing</td>
</tr>
<tr>
<td>DAT</td>
<td>Day after treatment</td>
</tr>
<tr>
<td>HSD</td>
<td>Honestly Significant Difference</td>
</tr>
<tr>
<td>L:D</td>
<td>Light : Dark</td>
</tr>
<tr>
<td>MHC</td>
<td>Mah Hock Cheong</td>
</tr>
<tr>
<td>MPOB</td>
<td>Malaysia Palm Oil Board</td>
</tr>
<tr>
<td>PDA</td>
<td>Potato Dextrose Agar</td>
</tr>
<tr>
<td>RH</td>
<td>Relative Humidity</td>
</tr>
<tr>
<td>UPM</td>
<td>Universiti Putra Malaysia</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>UVB</td>
<td>Ultraviolet-B</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

1.1 Pteroma pendula as pest

Pteroma pendula (Joannis), like most bagworms is polyphagous insect and indicated by the high record of potential hosts (Khoo *et al.* 1991). Norman *et al.* (1994) state that about 31 species of shade trees and agricultural crops have been reported to be infested by *P. pendula* in Malaysia. According to Kalshoven (1981), *P. pendula* was responsible for the initial attacks but the outbreaks were restricted and usually declined due to the natural factors. This species has been reported to occur in small population with moderate damages in small areas, while *Metisa plana* was never found before 1956 (Corley and Tinker, 2003). In 1956, outbreak of *P. pendula* together with *M. plana* in certain regions in Perak State caused serious defoliation of oil palm (Wood, 1968). However, the status of *P. pendula* as major bagworm pest has been taken over by *M. plana* since 1955, after the broad spectrum persistent pesticides were applied widely in oil palm plantation (Wood, 2002). Chemical insecticide treatments might cause the resurgences of the new pest, *M. plana* (Ho, 2002). This species soon become the most economical important bagworm species in Malaysia (Kalshoven, 1981). The outbreak of *M. plana* as major pest in oil palm plantation probably due to the affect of pesticide on non target arthropods and other natural enemies, which have higher chances to contact with the pesticide due to their mobility. Since then, *P. pendula* has been recognized as the second most economical important bagworm on oil palm in Malaysia (Basri *et al.*, 1988). *Pteroma pendula* has been estimated for its threshold level on oil palm with 5 to 10 larvae per frond (Wood, 1971; Hoong and Hoh, 1992; Norman *et al*., 1994).
A survey of the occurrence of bagworm species in Malaysia was conducted between 2000 and 2005 with total of 3880 survey forms distributed to major oil palm agencies and some independent estate, with only 44% responded (Norman and Basri, 2007). Norman and Basri (2007) also stated 49151.63ha of oil palm plantation were infested by bagworm, 67% of survey area of respondents, with *M. plana* still reported as wide distributed species in oil palm plantation follow by *P. pendula* in Peninsular Malaysia. However, this result does not indicate the dominance bagworm species as the survey was done in a limited area, representing only 9% of total distributed estate, with 5% of total oil palm plantation area in Malaysia reported to be attacked by bagworms.

1.2 History of management on bagworms using chemical applications

Chemical insecticides are one of the methods of controlling bagworms. The chemical controls of bagworms have been reported by many workers (Conway, 1966; Wood and Nesnit, 1969; Young, 1971; Hutauruk and Situmorang, 1971; Mackenzie, 1977) and they generally agreed trichlorfon was the most effective chemical insecticides against bagworm. Trichlorfon is an organophosphate insecticide and has been widely used to control cockroaches, crickets, silverfish, bedbugs, fleas, cattle grubs, flies, ticks, leafminers and leaf-hoppers (Thomas, 1986). It is a selective insecticide that it kills selected insects, but spares many or most other organisms. Trichlorfon is toxic to target insects through direct applications and by ingestion. It works both by contact and stomach poison action.
Before trichlorfon, others chemical pesticide such as endrin and dieldrin were widely used to control bagworms during 1960’s in oil palm plantation (Wood, 2002). Yunus (1966) (Cited by Chung and Sim, 1991) stated that aerial spraying or ground spraying of chemical pesticide with endrin successfully controlled some early outbreaks of bagworm in Malaysia. However, spraying of a broad spectrum chemical pesticide such as dieldrin was seen to cause an increase in population of pests in oil palm plantation. This was apparently due to preferential elimination of insect natural enemies that usually keep the pests under control (Wood, 1964) (Cited by Chung and Sim, 1991). Wood (1971) showed that indiscriminate spraying of broad spectrum long residual contact insecticides, discriminating could adversely affect the agro-ecosystem that could lead recurrent expense and catastrophic pest attacks. These organochlorines or organophosphates such as Dieldrin and Endrin kill insects, but also have high risk of killing insect natural enemies more thoroughly than the target pest (Wood, 2002). These applications effectively eliminate the pest, but it also set the scene for reoutbreak, often more intensive and widespread than that treated (Wood, 2002). Thus, integrated control programmes using selective stomach poisons (lead arsenate, trichlorfon) and trunk injection (monocrotophos, methamidophos and acephate) have been adapted and used in large scale bagworm control (Wood, 1968; Arulandi, 1971; Hutauruk and Situmorang, 1971; Wood et al., 1974; Surinder, 1976; Sarjit, 1986; Nasir et al., 1989; Chung, 1989; Chung, 1990).

Synthetic chemical pesticides were used widely because they often work very well for controlling pests (Hajek, 2004). However, over dependence on chemical pesticides for pest control may lead to negative effects on environment and health, and to pest resistance and resurgence. These problems may be solved through