GROWTH HABIT AND PERFORMANCE OF ACACIA MANGIUM AND ACACIA AURICULIFORMIS GENOTYPES

AHMED MOHAMED ADAM ELDOMA

FH 2003 21
GROWTH HABIT AND PERFORMANCE OF *ACACIA MANGIUM* AND *ACACIA AURICULIFORMIS* GENOTYPES

By

AHMED MOHAMED ADAM ELDOMA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in fulfilment of the requirement for the degree of Doctor of Philosophy

January 2003
This work is dedicated to the resting souls of my late beloved father and mother who showed me the way to life in its best.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

GROWTH HABIT AND PERFORMANCE OF ACACIA MANGIUM AND ACACIA AURICULIFORMIS GENOTYPES

By

AHMED MOHAMED ADAM ELDOMA

January 2003

Chairperson: Associate Professor Nor Aini Ab Shukor, Ph.D.

Faculty: Forestry

Acacia mangium Willd. and Acacia auriculiformis A. Cunn. ex. Benth. are two of the four fast-growing tropical acacias which have received the highest priority for genetic assessment and improvement. Even though A. mangium was proposed for timber production in a short rotation but experience has shown that it is impeded by its susceptibility to heart rot, the multiple leaders (ML) formation, and the tendency of growth to break off just short of the target of the desired size for sawn timber production. However, the present work investigated the ML formation, its causes and variation and concurrently assessed growth performance and examined the patterns of shoot growth and some physiological traits of eight selected A. mangium and A. auriculiformis genotypes through establishment of a field trial and three related glasshouse experiments.
The field trial was a randomized complete block design with four replications utilizing eight genotypes four each of the two species at two sites (burnt and unburned). Results at 23 months showed significant differences ($P<0.001$) between sites for the number of ML trees/plot, basal diameter, and survival but not for height and between genotypes for ML trees/plot, basal diameter ($P<0.001$), height ($P<0.01$) and survival ($P<0.05$). The site x genotype interaction was significant ($P<0.001$) only for ML trees/plot.

At the burnt site the number of ML trees/plot was significantly bigger than the unburned and *A. mangium* provenances were found to be more responsive to burning than *A. auriculiformis*. At the unburned site the variation between them was not significant. Height and basal diameter ranking of the genotypes tend to change drastically with time. Initially *A. auriculiformis* out-performed but with time, *A. mangium* superceded the former for both traits. The study of shoot growth patterns and form further confirmed the effect of site preparation on tree form. There was a significant difference between sites for the number of branches, crown diameter, crown length, stem form and clear bole length. The genotypes also showed significant differences in number of branches, crown length and stem form but not for crown diameter or clear bole length.

ML formation could not be induced using different ash and NPK treatments in combination with drought in the glasshouse. However, the effect of the various treatments varied between the genotypes. NPK resulted in the best growth for all traits examined than ash. *A. auriculiformis* provenances survived well while *A. mangium* failed to survive in the ash. Watering to field capacity (FC) enhanced growth while drought (30-
60%) FC affected growth of all genotypes adversely. The use of different levels of P and K did not induce ML but the genotypes showed considerable variation between them in some of the growth characteristics studied. However, growth increased with increasing level of fertilization.

The use of 6-benzylaminopurine (BAP) as a foliar spray and decapitation could not stimulate ML formation. However, both treatments significantly reduced height, clear bole length, leaf area and total dry weight and increased the number of branches. However basal diameter was significantly reduced by BAP but not affected by decapitation.

The effects of BAP increased consistently with increasing level of application. BAP at 1500 mg/L resulted in mortality of *A. mangium* provenances while *A. auriculiformis* provenances survived and grew normally. Some of the BAP treated plants developed juvenile pinnate leaves while the decapitated and the untreated controls did not. BAP also caused clustering of branches at the middle nodes with mainly narrow angles. Decapitation of the apical bud resulted in the activation of the lateral bud immediately below the point of decapitation that assumed dominance over the rest of the lateral branches by substituting the decapitated apical leader. The results were discussed on the basis of ML formation in relation to apical dominance as affected by site preparation method by burning and its implications on policy formulations and plantation management strategies for these two acacia species.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

TABIAT DAN PERTUMBUHAN DALAM GENOTIP ACACIA MANGIUM DAN ACACIA AURICULIFORMIS

Oleh

AHMED MOHAMED ADAM ELDOMA

Januari 2003

Pengerusi : Professor Madya Dr. Nor Aini Ab Shukor

Fakulti : Perhutanan

Acacia mangium Willd. dan Acacia auriculiformis A. Cunn. ex. Benth. merupakan dua daripada empat spesis akasia tropika yang cepat tumbesaran dan telah mendapat tumpuan utama dalam kerja penambahbahanan dan penilaian genetik. Walaupun A. mangium telah dicadangkan untuk penghasilan kayu balak dalam jangkamasa tebangan yang singkat tetapi pengalaman pengurusan menunjukkan bahawa pembangunan spesis ini terbantut untuk tujuan tersebut. Ini disebabkan oleh jangkitan reput teras, pembentukan pelbagai cabangan utama (ML) dan tidak berkeupayaan mencapai saiz sasaran untuk kayu bergergaji. Jentera itu, penyelidikan ini mengkaji pembentukan, punca dan variasi ML di samping menilai prestasi tumbesaran dan meneliti corak pertumbuhan pucuk serta sifat fisiologi ke atas lapan genotip A. mangium dan A. auriculiformis melalui penubuhan ujian lapangan dan tiga uji kaji rumah kaca.

Satu ujian lapangan telah ditubuhkan menggunakan rekabentuk blok rawak penuh dengan empat replikasi menggunakan lapan genotip setiap spesis di dua keadaan kawasan (tidak dibakar dan dibakar). Keputusan kajian berumur 23 bulan untuk bilangan
pokok pelbagai cabangan utama (ML)/plot, diameter pada dasar dan kemandirian kecuali ketinggian telah menunjukkan perbezaan bererti \((p<0.001)\) di antara keadaan kawasan. Keputusan kajian antara genotip pula menunjukkan perbezaan bererti bagi pokok ML/plot, diameter pada dasar \((p<0.001)\), ketinggian \((p<0.01)\) dan kemandirian \((p<0.05)\). Interaksi di antara kawasan dan genotip juga adalah bererti pada \(p<0.001\) bagi pokok ML/plot sahaja. Perbezaan yang bererti bagi bilangan pokok ML/plot adalah lebih besar di kawasan dibakar berbanding kawasan tidak dibakar dan provenan \(A.\ mangium\) didapati lebih cenderung terhadap pembakaran berbanding \(A.\ auriculiformis\). Variasi di antara kedua-dua spesis ini tidak begitu di kawasan yang tidak dibakar. Kedudukan (rank) ketinggian dan diameter pada dasar berubah secara drastik dengan perubahan masa bagi genotip tersebut. Pada awalnya, \(A.\ auriculiformis\) menunjukkan prestasi yang lebih baik bagi kedua-dua ciri tersebut tetapi dengan perubahan masa, prestasi yang lebih baik ditunjukkan oleh \(A.\ mangium\). Kesana penyediaan kawasan ke atas bentuk pokok telah dipastikan melalui kajian corak pertumbuhan pucuk dan bentuk batang. Terdapat perbezaan bererti di antara kawasan bagi bilangan dahan, diameter silara, panjang silara, bentuk batang dan panjang batang nyata. Genotip juga menunjukkan variasi yang bermakna dalam bilangan dahan, panjang silara dan bentuk batang tetapi tidak pada diameter silara dan panjang batang nyata.

Rawatan abu, rawatan NPK serta kesan kemarau dalam ujikaji rumah kaca didapati tidak merangsangkan pembentukan ML. Bagaimanapun, pelbagai rawatan didapati memberi kesan yang berbeza-beza di antara genotip. Rawatan NPK menghasilkan keputusan pertumbuhan yang baik bagi semua ciri yang dikaji berbanding rawatan abu. Penyiraman ke tahap kapasiti lapangan (FC) telah dapat meningkatkan tumbesaran manakala kemarau (30 – 60%) FC menunjukkan kesan sebaliknya bagi semua genotip.
Penggunaan kepekatan P dan K yang berbeza tidak menggalakan pembentukan ML tetapi memberi kesan yang berbeza untuk ciri tumbesaran yang dikaji. Walau bagaimanapun, tumbesaran meningkat dengan peningkatan paras pembajakan.

ACKNOWLEDGMENTS

This study was accomplished at the Faculty of Forestry Universiti Putra Malaysia under the supervision of a Supervisory Committee chaired first by Associate Professor Dr. Kamis Awang and supplanted later on by Associate Professor Dr. Nor Aini Ab Shukor. Their unlimited guidance and valuable advice is greatly appreciated and dully acknowledged. I am greatly indebted to the chairman of the Supervisory committee Associate professor Nor Aini Ab Shukor who provided the necessary help without which many things would have been much more difficult.

Special gratitude and thanks are again due to Dr. Kamis Awang who initiated the idea at a preliminary stage of this work and helped me to secure a fellowship within the framework of the Acacia Project of Trop Bio Research Sdn. Bhd. in Kuala Lumpur. He helped me with suggestions of the greatest value together with many constructive criticisms through out the course of the work. I still recall with greatest sincerity his words of wisdom and advice for me: “be faithful and work hard” at the starting point and "Keep It Simple and Straight" during the writing up phase. These words have in fact created the greatest enthusiasms, inspiration and impetus to steer up the hill. However, to say the truth, I did not find any difficulty in pushing myself to work hard and keep faith but however, I came to realize that simplicity is the most burdensome thing to consummate.
My indebtedness and gratitude extends to the members of the Supervisory Committee: Dr. Francis Ng and Dr. Siti Aishah Hassan. Dr. Francis Ng aroused and awakened my interest in many aspects of forestry research through the valuable discussions, comments, constructive criticism and professional counseling that sometimes extends further to discuss some of his own illuminating ideas and arguments about the methods of discovery and research. I wish to express my sincere appreciation and profound gratitude to him. My thanks also go to the staff of the faculty of Forestry who has assisted me in one way or another. Dr. Lim Meng Tsai who is always ready to help contributed significantly through fruitful discussions and useful comments at some stages of this work. His assistance is gratefully acknowledged.

My research and studies in Malaysia were made possible by the scholarship grant from the Acacia project of Trop Bio Research. I take this opportunity to express my profound gratitude to Dato' Dr. Salleh Mohd Nor the executive director of Trop Bio Research and to Dr. Francis Ng the former research manager, Dr. Kodi Kaswaran and Dr. Jennifer for their generosity and assistance. The substantial financial support from Trop Bio is fully acknowledged. Financial support was also provided by Sudan University for Science and technology and Universiti Putra Malaysia through the IRPA grant to Dr. Kamis Awang and Dr. Nor Aini Ab Shukor respectively. I am greatly thankful to Sudan University for Science and Technology for granting my study leave.

The work's ubiety owes much to many and I would like to specially thank Mr. Khongsak Pinyopusarerk of CSIRO Forestry and Forest Products, Australia for providing the seeds
lots and to Mr. How Swee the owner of the Dunbar Estate, Aur Gading, Kuala Lipis who kindly allowed the use of his Estate for the establishment of the field trial.

During various stages of this work I have had many fruitful discussions, shared ideas and problems with friends and colleagues. Special vote of thanks goes to my peer group in the physiology laboratory Mr. Ong Kiat Huat who wholeheartedly helped me overcome many obstacles in various respects and to my old friend Mohamed Hamad Awad with whom I shared many ideas, fruitful discussions and problem solving as well.

Many colleagues and friends contributed to various degrees to the completion of this work. I am grateful to Abdul Latib Senin chief technician of the physiology and genetics laboratory who made life easier for me. His assistance and professionalism is highly valued. I fully appreciate the unlimited helping hands in field data collection from Latib, Hazandi, Salim, Ong, Razag, Zakaria and Mohamed Yousif. Azizi the superintendent of the Dunbar Estate is greatly praised for his impressive generosity and hospitality. To him and all the people in Kampung Aur Gading I express my sincere thanks and profound gratitude and appreciation for their unlimited assistance and hospitality.

Finally I greatly appreciate the tolerance, never-ending patience, sacrifice and understanding of my wife and kids. My wife Samira has been cumbersome with the fatiguing task of looking after the children and other family matters especially during my long absence either in the glasshouse and the laboratory or the field that extends sometimes to several days.
I certify that an Examination Committee met on 17th January 2003 to conduct the final examination of Ahmed Mohamed Adam Eldoma on his Doctor of Philosophy thesis entitled "Growth Habit and Performance of Acacia mangium and Acacia auriculiformis Genotypes" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

MOHD ZAKI HAMZAH, Ph.D.
Faculty of Forestry
Universiti Putra Malaysia
(Chairman)

NOR AINI AB SHUKOR, Ph.D.
Associate Professor
Faculty of Forestry
Universiti Putra Malaysia
(Member)

KAMIS AWANG, Ph.D.
Associate Professor
Faculty of Forestry
Universiti Putra Malaysia
(Member)

FRANCIS S. P. NG, Ph.D.
Research Manager
Trop Bio Research
(Member)

SITI AISHAH HASAN, Ph.D.
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

MIKE SLEE, Ph.D.
Australian National University
(Independent Examiner)

SHAMSHER MOHAMAD RAMADILI, Ph.D.
Professor / Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 7 FEB 2003
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

NOR AINI AB SHUKOR, Ph.D.
Associate Professor
Faculty of Forestry
Universiti Putra Malaysia
(Chairperson)

KAMIS AWANG, Ph.D.
Associate Professor
Faculty of Forestry
Universiti Putra Malaysia
(Member)

FRANCIS S. P. NG, Ph.D.
Research Manager
Trop bio Research
(Member)

SITI AISAH HASAN, Ph.D.
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

AINI IDRIS, Ph.D.
Professor / Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been dully acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

AHMED MOHAMED ADAM ELDOMA

Date: 17th Feb. 2003
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>2</td>
</tr>
<tr>
<td>ABRSTRACT</td>
<td>3</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>6</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>9</td>
</tr>
<tr>
<td>APPROVAL SHEETS</td>
<td>12</td>
</tr>
<tr>
<td>DECLARATION FORM</td>
<td>14</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>15</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>19</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>22</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>25</td>
</tr>
</tbody>
</table>

CHAPTER

I INTRODUCTION | 27

II LITERATURE REVIEW | 33
 - Introduction | 33
 - Taxonomy and Botanical Description
 - Acacia mangium | 36
 - Acacia auriculiformis | 37
 - Natural Distribution and Habitat
 - Acacia mangium | 38
 - Acacia auriculiformis | 40
 - Adaptability and Performance | 41
 - The Concept of the Multiple Leader Growth Habit | 44
 - The Multiple Stem Formation Mechanism | 46
 - Apical Dominance | 47
 - Correlative Inhibition and Apical Dominance | 50
 - Nature of Apical Dominance | 52
 - Theories of Apical Dominance | 53
 - Influence of Environmental Factors on Correlative Inhibition
 - Inorganic Nutrients and Water | 57
 - Light and Temperature | 59
 - Plant Growth Regulators and Apical Dominance
 - Auxins | 60
 - Cytokinins | 61
 - Cytokinins and Apical Dominance | 62
 - Gibberellins | 65
 - Abscissic Acid | 66
V EFFECT OF ASH, NPK AND DROUGHT ON GROWTH HABIT AND PERFORMANCE OF A. MANGIUM AND A. AURICULIFORMIS GENOTYPES ... 159
 Introduction ... 159
 Materials and Methods .. 161
 Plant Materials and Potting Media ... 161
 Experimental Design and Treatments 164
 Growth Parameters and Data Analysis 164
 Results .. 165
 Height Growth ... 166
 Basal Diameter Growth ... 172
 Leaf Dry Weight ... 173
 Shoot Dry Weight ... 176
 Root Dry Weight .. 177
 Total Dry Weight .. 180
 Leaf Area .. 182
 Root: Shoot Ratio .. 185
 Discussion ... 186

VI EFFECT OF PHOSPHOROUS AND POTASSIUM ON GROWTH HABIT AND PERFORMANCE OF A. MANGIUM AND A. AURICULIFORMIS GENOTYPES ... 194
 Introduction ... 194
 Materials and Methods .. 195
 Plant Material .. 195
 Potting Media and Fertilization ... 196
 Experimental Design and Treatments 196
 Growth Parameters and Data Analysis 197
 Results .. 198
 Height Growth ... 199
 Basal Diameter Growth ... 202
 Clear Bole Length ... 205
 Number of Branches .. 206
 Number of Leaves ... 208
 Leaf Area .. 209
 Leaf Dry Weight ... 211
 Shoot Dry Weight ... 213
 Discussion ... 215

VII EFFECT OF 6-BENZYLAMINOPURINE (BAP) ON GROWTH HABIT AND PERFORMANCE OF A. MANGIUM AND A. AURICULIFORMIS GENOTYPES) ... 222
 Introduction ... 222
Materials and Method .. 225
 Plant Material .. 225
Experimental Design and Treatments 226
Chemical Preparation and Mode of Application 226
Growth Parameters and Data Analysis 227

Results .. 228
 Height Growth .. 234
 Basal Diameter Growth 238
 Number of Branches ... 239
 Clear Bole Length ... 241
 Leaf Area .. 242
 Total Dry Weight .. 244
 Discussion .. 245

VIII GENERAL DISCUSSION, CONCLUSIONS AND
RECOMMENDATIONS .. 252
 General Discussion ... 252
 Conclusions ... 269
 Recommendations .. 271
REFERENCES .. 273
APPENDICES .. 300
 A1. Summary of growth characteristics of A. mangium
 and A. auriculiformis genotypes at the burnt and
 unburned sites at the age of 23 months. Means ± SD
 for height, diameter, number of ML trees/plot and
 survival % are given .. 300
 A2. Temporal development of growth characteristics of A.
 mangium and A. auriculiformis genotypes by site
 preparation method. Means± SD for height, diameter,
 and number of ML trees per plot and
 survival percentage are given 301
 A3. The proportions of ML stem-categories by genotype
 and site ... 302

BIODATA OF THE AUTHOR .. 303
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1. Details of origin, number of parents and geographic locations of the eight genotypes of Acacia mangium and Acacia auriculiformis</td>
<td>87</td>
</tr>
<tr>
<td>3.2. ANOVA summary on 23-month growth characteristics of A. mangium and A. auriculiformis genotype over the burnt and unburned sites</td>
<td>92</td>
</tr>
<tr>
<td>3.3. Effect of site preparation methods on mean growth characteristics of A. mangium and A. auriculiformis genotypes</td>
<td>92</td>
</tr>
<tr>
<td>3.4. Mean of height, basal diameter, ML trees per plot and survival percentage for the burnt, unburned and both sites combined at 23 months</td>
<td>94</td>
</tr>
<tr>
<td>3.5. Comparison of ML % occurrence between the burnt and unburned sites by genotype</td>
<td>95</td>
</tr>
<tr>
<td>4.1. ANOVA summary on crown and stem growth characteristics of A. mangium and A. auriculiformis genotypes at 23 months showing the mean square values and the associated level of significance</td>
<td>123</td>
</tr>
<tr>
<td>4.2. ANOVA summary on bottom, middle and top branch growth characteristics of A. mangium and A. auriculiformis genotypes at 8 months showing the mean square values and the associated level of significance</td>
<td>124</td>
</tr>
<tr>
<td>4.3. Mean crown and stem growth characteristics of A. mangium and A. auriculiformis (average of genotypes) by site preparation method at 8 and 23 months. (Mean ± standard deviation in parenthesis)</td>
<td>125</td>
</tr>
<tr>
<td>4.4. Mean crown and stem growth characteristics of A. mangium and A. auriculiformis genotypes at 8 and 23 months (both sites)</td>
<td>126</td>
</tr>
<tr>
<td>4.5. Mean crown and stem growth characteristics of A. mangium and A. auriculiformis genotypes by site preparation method</td>
<td>126</td>
</tr>
<tr>
<td>4.6. Mean crown and stem growth characteristics at the burnt site by genotype at 8 and 23 months</td>
<td>127</td>
</tr>
<tr>
<td>4.7. Mean crown and stem growth characteristics of the unburned site by genotype at 8 and 23 months</td>
<td>128</td>
</tr>
</tbody>
</table>
4.8. Mean crown and stem growth characteristics of A. mangium and A. auriculiformis by site and genotype .. 130

4.9. Mean crown and stem growth characteristics by genotype (both sites) 132

4.10. Mean effect of site preparation method on branch growth characteristics of A. mangium and A. auriculiformis genotypes at 8 months 145

4.11. Variation in mean branch length (m) between genotypes of A. mangium and A. auriculiformis at the burnt and unburned sites at different parts of the tree .. 146

4.12. Variation in mean bottom-branch growth characteristics of A. mangium and A. auriculiformis by genotype (both sites combined) 147

4.13. Variation in mean branch diameter (cm) between genotypes of A. mangium and A. auriculiformis at the burnt and unburned sites at different parts of the tree .. 148

4.14. Variation in mean branch angle between genotypes of A. mangium and A. auriculiformis at the burnt and unburned sites at different parts of the tree .. 148

4.15. Mean middle-branch growth characteristics of A. mangium and A. auriculiformis genotypes (both sites combined) ... 150

4.16. Mean top-branch growth characteristics values of 8-months old A. mangium and A. auriculiformis by genotype ... 152

5.1. Potting media types and mix preparations .. 163

5.2. Treatments used in the experiment .. 163

5.3. ANOVA summary on growth characteristics of A. mangium and A. auriculiformis genotypes .. 166

5.4. Mean effect of fertilization on growth characteristics of A. mangium and A. auriculiformis genotypes .. 167

5.5. Mean effect of watering regime on growth characteristics of A. mangium and A. auriculiformis genotypes .. 167

5.6. Mean effect of the genotype on growth characteristics of A. mangium and A. auriculiformis genotypes .. 168
5.7. Mean growth characteristics of A. mangium and A. auriculiformis genotypes as a response to NPK, ash and watering regime treatments and their combinations ... 170

6.1. Treatments and their abbreviations as used in the experiment 197

6.2. ANOVA summary on growth characteristics of A. mangium and A. auriculiformis genotypes .. 198

6.3. Mean effect of different levels of phosphorous and potassium fertilization on growth characteristics of A. mangium and A. auriculiformi genotypes 200

6.4. Mean effect of the genotype on growth characteristics 200

6.5. Mean effects of potassium and phosphorous treatment levels on growth characteristics of A. mangium and A. auriculiformis genotypes 201

7.1. ANOVA summary on growth characteristics of A. mangium and A. auriculiformis genotypes (mean squares and associated level of significance) .. 228

7.2. Effect of different levels of BAP and decapitation on mean growth characteristics of A. mangium and A. auriculiformis genotypes 234

7.3. Effect of the genotype on mean growth characteristics 235

7.4 Effect of different levels of BAP applications and decapitation on growth characteristics of A. mangium and A. auriculiformis genotypes (mean ± standard deviation) ... 236

A1. Summary of growth characteristics of A. mangium and A. auriculiformis genotypes at the burnt and unburned sites at the age of 23 months. (Means ± SD) for height, diameter, number of ML trees/plot and survival % are given ... 300

A2. Temporal development of growth characteristics of A. mangium and A. auriculiformis genotypes by site preparation method. (Means± SD) for height, diameter, and number of ML trees per plot and survival % are given ... 301

A3. The proportions of ML stem categories by genotype and site.................. 302
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.</td>
<td>Natural Distribution of Acacia mangium</td>
<td>39</td>
</tr>
<tr>
<td>2.2.</td>
<td>Natural distribution of Acacia auriculiformis</td>
<td>41</td>
</tr>
<tr>
<td>3.1.</td>
<td>Location of the trial site at Aur Gading, Kuala Lipis, Pahang, Malaysia</td>
<td>89</td>
</tr>
<tr>
<td>3.2.</td>
<td>The trend and variation of ML with time of A. mangium and A. auriculiformis genotypes at (a) burnt and (b) unburned sites</td>
<td>96</td>
</tr>
<tr>
<td>3.3.</td>
<td>The proportion of ML trees in the four stem-categories by genotype</td>
<td>97</td>
</tr>
<tr>
<td>3.4.</td>
<td>18-month-old A. mangium tree growing at the burnt site showing three multiple leaders from the base (a) while (b) and (c) compare a group of three-year-old trees of the same species growing at the burnt and the unburned sites respectively</td>
<td>98</td>
</tr>
<tr>
<td>3.5.</td>
<td>18-month-old A. auriculiformis tree growing at the burnt site (a) showing five multiple leaders from the base (a) while (b) and (c) compare a group of three-year-old trees of the same species growing at the burnt and the unburned sites respectively</td>
<td>99</td>
</tr>
<tr>
<td>3.6.</td>
<td>The trend and variation of height growth with time of A. mangium and A. auriculiformis genotypes (a) at the burnt and (b) unburned sites</td>
<td>104</td>
</tr>
<tr>
<td>3.7.</td>
<td>Height ranking of (a) A. mangium and (b) A. auriculiformis genotypes at different ages for 23 months period</td>
<td>105</td>
</tr>
<tr>
<td>3.8.</td>
<td>The trend and variation of basal diameter growth with time of A. mangium and A. auriculiformis genotypes at (a) burnt and (b) the unburned sites</td>
<td>109</td>
</tr>
<tr>
<td>3.9.</td>
<td>Diameter ranking of (a) A. mangium and (b) A. auriculiformis genotypes at different ages for 23 months period</td>
<td>110</td>
</tr>
<tr>
<td>4.1.</td>
<td>Variation in the number of branches between A. mangium and A. auriculiformis genotypes at the burnt and unburned sites at 8 and 23 months</td>
<td>132</td>
</tr>
</tbody>
</table>
4.2. Variation in crown diameter between *A. mangium* and *A. auriculiformis* genotypes at the burnt and unburned sites at 8 and 23 months 135

4.3. Variation in crown length between *A. mangium* and *A. auriculiformis* genotypes at the burnt and unburned sites at 8 and 23 months 138

4.4. Variation in stem form between *A. mangium* and *A. auriculiformis* genotypes at the burnt and unburned sites at 8 and 23 months 141

4.5. Variation in clear bole length between *A. mangium* and *A. auriculiformis* genotypes at the burnt and unburned sites at 8 and 23 months 144

5.1. Height and diameter responses of *A. mangium* and *A. auriculiformis* genotypes to drought, NPK and ash treatment combinations 171

5.2. Leaf and shoot dry weight responses of *A. mangium* and *A. auriculiformis* genotypes to drought, NPK and ash treatment combinations 175

5.3. Total and root dry weight responses of *A. mangium* and *A. auriculiformis* genotypes to drought, NPK and ash treatment combinations 179

5.4. Leaf area and root:shoot ratio responses of *A. mangium* and *A. auriculiformis* genotypes to drought, NPK and ash treatment combinations 184

6.1. Height (a), basal diameter (b), clear bole length (c), and number of branches (d) response of *A. mangium* and *A. auriculiformis* genotypes to different levels of potassium and phosphorous fertilizations 203

6.2. Number of leaves (a), leaf area (b), leaf dry weight (c) and shoot dry weight (d) responses of *A. mangium* and *A. auriculiformis* genotypes to different levels of potassium and phosphorous fertilizations 210

7.1. *A. auriculiformis* (a) and *A. mangium* (b) seedlings displaying the pinnate juvenile leaves as an after effect of 6-benzylaminopurine 230

7.2. *A. mangium* seedlings showing branch clustering at one node with small angle as a result of the use of 6-benzylaminopurine 231

7.3 *A. auriculiformis* seedlings showing branching at the lower part (a) and clustering at two nodes (b) as a result of the use of 6-benzylaminopurine 232

7.4. (a) *A. mangium* seedling showing leader shoot restoration after decapitation and *A. auriculiformis* seedling (b) showing shoots coming from lower parts with narrow angles after treatment with 1000 mg/L 6-benzylaminopurine 233
7.5. Growth responses of *A. mangium* and *A. auriculiformis* genotypes to varied BAP levels and decapitation treatments: (a) height (b) diameter (c) clear bole length (d) number of branches (e) leaf area and (f) total dry weight.