UNIVERSITI PUTRA MALAYSIA

PHENOLOGY AND AVAILABILITY OF FRUIT TREES AND THEIR INFLUENCE ON THE ABUNDANCE OF SELECTED ANIMALS IN LOGGED AND PRIMARY FOREST OF SUNGAI LALANG FOREST RESERVE, SELANGOR

ROMEO M. LOMOLJO

FH 2003 18
PHENOLOGY AND AVAILABILITY OF FRUIT TREES AND THEIR INFLUENCE ON THE ABUNDANCE OF SELECTED ANIMALS IN LOGGED AND PRIMARY FOREST OF SUNGAI LALANG FOREST RESERVE, SELANGOR

By

ROMEO M. LOMOLJO

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of Requirements for the Degree of Master Science

October 2003
DEDICATION

This Piece of Work is dedicated to; my late father Jorge C. Lomoljo

And Mother Anicita M. Lomoljo and to my Dearest

Wife Eva and Children Maruxa Linda

And Marcella MIA
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in
Fulfilment of the requirements for the degree of Master of Science

PHENOLOGY AND AVAILABILITY OF FRUIT TREES AND THEIR
INFLUENCE ON THE ABUNDANCE OF SELECTED ANIMALS
IN LOGGED AND PRIMARY FOREST OF SUNGAI LALANG
FOREST RESERVE, SELANGOR

By

ROMEO M. LOMOLJO

October 2003

Chairman: Associate Professor Mohamed Zakaria Hussin, Ph.D.

Faculty: Forestry

The abundance of fruit tree species as food source for wildlife in logged
and primary forest was evaluated. The phenological data collection was
carried out from September 1999 to October 2000 in Sungai Lalang Forest
Reserve, Semenyih, Selangor, Malaysia. The general objective of this
study is to determine the fruit tree species that serves as food source for
wildlife in logged and primary forest. The specific objectives are: to
compare the availability of fruits to animals in three different
compartments. To compare fruit trees distribution in three compartments
within block. And to correlates the abundance of animals in relation to
food availability. Three different Compartments were selected namely:
Compartment 24 (VJR), Compartment 33 (10-year-old logged forest) and
Compartment 18 (5-year-old logged forest). Within each Compartment,
three blocks were established in different location (e.g. ridge top, mid-slope and valley bottom). All trees bigger than 10 cm dbh were tagged and identified and monitored every month for leafing, flowering and fruiting activities. The Duncan's test indicated that the leafing pattern in Compartment 24 (VJR) was significantly different ($P < 0.05$) from Compartment 33 (10-year-old logged forest) and Compartment 18 (5-year-old logged forest) ($P < 0.05$). The flowering pattern however, showed no significant difference among the three different Compartment. The percentage of fruiting was significantly lower in Compartment 18 (5-year-old logged forest) than in the primary forest (VJR) ($P < 0.05$).

In general, the availability of the food sources such as leaves, flowers and fruits was almost similar in primary and the two-logged forest, however only the primary forest (VJR) tends to provide more food to wildlife. This study showed that less trees or fruit trees meant less food; likewise more fruit trees meant more food. This indicated that the survival of the animals in the forest especially the logged forest fully depended on the fruit trees left after the logging activities. Logging activity influenced the distribution and availability of food sources and it is frequently correlated with the behaviour pattern of animal species.
Abstrak thesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

FENOLOGI DAN KEDAPATAN POKOK BERBUAH DAN PENGARUH KEATAS LIMPAN HAWAN TERPILIH DALAM HUTAN SELEPAS PEMBALAKAN DAN HUTAN ASLI HUTAN SIMPAN SUNGAI LALANG, SELANGOR

Oleh

ROMEO M. LOMOLJO

October 2003

Pengerusi: Professor Madya Mohamed Zakaria Hussin, Ph.D.

Fakulti: Perhutanan

Sejumlah spesis pokok berbuah sebagai sumber makanan untuk hidupan liar di hutan selepas dibalam dan hutan asli telah dinilai. Pengumpulan data fenologi telah dijalankan daripada September 1999 hingga Oktober 2000 di Hutan Simpan Sungai Lalang, Semenyih, Selangor, Malaysia. Oleh yang demikian objektif umum kajian ini adalah untuk mengenal spesis pokok berbuah yang merupakan sumber makanan untuk hidupan liar di hutan selepas dibalam dan di hutan asli. Objektif utama adalah untuk membuat perbandingan jumlah buah yang terdapat dengan kehadiran haiwan di tiga kompatmen yang berbeza, yang dinamakan, Kompatmen 24 (VJR), Kompatmen 33 (10 tahun selepas pembalakan) dan Kompatmen 18 (5 tahun selepas pembalakan). Pada setiap kompatmen, tiga blok telah dibuat di lokasi yang berbeza (cth: Cerun atas, Lereng tengah dan Lembah). Kesemua pokok lebih besar daripada 5 cm dbh
akan dikenalpasti, ditag, dicamkan dan dinilai setiap bulan samada dari segi jumlah daun, pembungaan dan pengeluaran buah. Keputusan menunjukan bahawa corak pengeluaran daun di dalam Kompatmen 24 (VJR) perbezaan bererti (P < 0,05) berbanding dengan Kompatmen 33 (hutan 10-tahun selepas pembalakan) dan Kompatmen 18 (hutan 5-tahun selepas penbalakan) (P < 0,05). Walaubagaimanapun, corak pembungaan tidak menunjukkan perbezaan yang ketara di antara ketiga – tiga Kompatmen. Peratusan pengeluaran buah meneunjukan perbezaan bererti di Kompatmen 18 (hutan 5- tahun selepas pembalakan) berbanding dengan hutan primer (VJR) (P < 0.05). Secara amnya, kehadiran sumber – sumber makanan seperti daun, bunga dan buah adalah hampir sama dengan hutan primer dan kedua – dua hutan yang telah dibalak, walaubagaimanapun hanya hutan primer (VJR) yang menyumbankan lebih makanan kepada hidupan liar.

ACKNOWLEDGEMENTS

My sincere appreciation is expressed to my supervisor Assoc. Prof. Dr. Mohamed Zakaria Hussin for the knowledge and insights he generously gave during the entire course of the study. My deepest gratitude is also to Assoc. Prof. Dr. Faridah Hanum Ibrahim for her invaluable encouragement and support. My special thanks also goes to Dr. Abdullah Mohd. and Pn. Khamzia Abdul Kudus for their useful comments, encouragements and suggestions.

Special gratitude is also due to Intensified Research Priority Areas (IRPA) through Associate Professor Mohamed Zakaria Hussin for providing research grant during my study. To SEAMEO SEARCA for giving me support to complete my thesis writing. Sincere appreciation is due to the botanist from FRIM Mr. Kamarudin Salleh for helping me in identifying the fruit trees in the three compartments, to our project coordinator En. Abdul Rahim who help me with my data collection, to En. Mohammad Yusoph Yaakob for his invaluable help as research assistant during my data collection, to Zamri Rosli for helping me preparing the draft of thesis, to Norfarikah Haneda for invaluable help in doing my analysis, to Evelyn Bigcas for editing my thesis and to all wilder members during our happy moments in the jungle, friends and kababayans whom in their own special ways had greatly helped me finished this research study.
Finally, to my loving wife Eva and my two daughters En-En and Barbie for the love and support they unselfishly give to me. And above all, praise and glory to the heavenly father “Jehovah”.
I certify that an Examination Committee met on October 28, 2003 to conduct the final examination of Romeo M. Lomoljo on his Master of Science thesis entitled "Phenology and Availability of Fruit Trees and Their Influence on the Abundance of Selected Animals in Logged and Primary Forest of Sungai Lalong Forest Reserve, Selangor" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

AHMAD SAID SAJAP, Ph.D.
Professor
Faculty of Forestry
Universiti Putra Malaysia
(Chairman)

MOHAMED ZAKARIA HUSSIN, Ph.D.
Associate Professor
Faculty of Forestry
Universiti Putra Malaysia
(Member)

FARIDAH HANUM BT. IBRAHIM, Ph.D.
Associate Professor
Faculty of Forestry
Universiti Putra Malaysia
(Member)

ABDULLAH MOHD, Ph.D.
Faculty of Forestry
Universiti Putra Malaysia
(Member)

GULAM RUSUL RAHMAT ALI, Ph.D.
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 05 MAR 2004
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

MOHAMED ZAKARIA HUSSIN, Ph.D.
Associate Professor
Faculty of Forestry
Universiti Putra Malaysia
(Chairman)

FARIDAH HANUM BT. IBRAHIM, Ph. D.
Associate Professor
Faculty of Forestry
Universiti Putra Malaysia
(Members)

ABDULLAH MOHD, Ph. D.
Faculty of Forestry
Universiti Putra Malaysia
(Members)

\[signature\]

AINI IDERIS, Ph.D.
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 12 MAR 2004
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledge. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Putra Malaysia or other institution.

ROMEO M. LOMOLJO

Date: 03 MAR 2004
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL SHEETS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATION</td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Problem Statement 2
1.2 Justification 4
1.3 General Objective 5
1.4 Specific Objective 6

2 LITERATURE REVIEW

2.1 Tropical Rainforest 6
2.2 Characteristics of the Tropical Rainforest 7
2.3 Habitat 7
2.4 Phenology Patterns of Plant in Tropical forest 8
2.5 Flowering and Fruiting 9
2.6 Plant as Food 12
2.7 Dispersal, Fruit Utilization and Seed Predation 13
2.8 Effects of Logging on Plants 15
2.9 Effects of Logging on Animals 17
2.10 Effects of Logging on Food Resources 19
2.11 Effects Of Logging on Microclimate 20

3 MATERIALS AND METHODS

3.1 Site Description 22
3.2 Sampling Procedure 25
3.3 Phenological Study 25
3.3.1 Data Collection 26
3.4 Data Analysis 27
3.5 Selectively Logged Forest 28
3.5.1 Compartment 18 (5-year-old logged forest) 28
3.5.2 Compartment 33 (10-year-old logged forest) 31
3.6 Primary Forest 33
3.7 Climate 34
3.8 Topography 36
4 RESULTS

4.1 Plant Composition in the Three Compartments 37
4.1.1 Comparison of Plant and Stand Density Among Three Compartments 38
4.2 Fruit Tree Composition in the Three Compartments 39
4.2.1 Compartment 24 (VJR) 39
4.2.2 Compartment 18 (5-year-old logged forest) 40
4.2.3 Compartment 33 (10-year-old logged forest) 42
4.3 Phenological Results in the Three Compartments 43
4.3.1 Leafing Pattern 43
4.3.2 Flowering Pattern 47
4.3.3 Fruiting Pattern 50
4.4 Species Distribution of Fruit Trees in the Three Compartments 53
4.4.1 Compartment 24 (VJR-ridgetop) 56
4.4.2 Compartment 24 (VJR-midslope) 54
4.4.3 Compartment 24 (VJR-valley bottom) 55
4.4.4 Compartment 33 (10-year-old logged forest - ridgetop) 62
4.4.5 Compartment 33 (10-year-old logged forest – midslope) 64
4.4.6 Compartment 33 (10-year-old logged forest – valley bottom) 66
4.4.7 Compartment 18 (5-year-old logged forest – ridgetop) 68
4.4.8 Compartment 18 (5-year-old logged forest – midslope) 70
4.4.9 Compartment 18 (5-year-old logged forest – valley bottom) 72
4.5 Diversity of Fruit Trees in the Three Different Study Sites 74
4.5.1 Species Diversity 74
4.5.2 Species Richness 74
4.5.3 Species Evenness 75
4.6 Frequency of Flushing 77
4.7 Types of Fruits Available to birds, Primates and Small Mammals Among the Three Compartments 87
4.8 Correlation Between Phenological Activities, Frugivorous and Insectivorous Birds and the Pheasants 89
4.10 Correlation between Phenological activities, primates and small mammals 92

5 DISCUSSION

5.1 Plant Composition in the Three Compartments 106
5.1.1 Comparison of Plant and Stand Density Among the Three Compartments 107
5.2 Fruit Tree Composition in the Three Compartments 107
5.3 Phenological Results in the Three Compartments 108
5.3.1 Leafing 108
5.3.2 Flowering 109
5.3.3 Fruiting 110
5.4 Species Distribution of Fruit Trees in the Three Compartments 112
5.5 Diversity of Fruit Trees in the Three Compartments 113
 5.5.1 Species Diversity 113
 5.5.2 Species Richness 114
 5.5.3 Species Evenness 114
5.6 Fruits Available to birds, Primates and Small Mammals in the Three Compartments 112
 5.7 Correlation Between Phenological Activities, Frugivorous, Insectivorous Birds and Pheasants 116
 5.8 Correlation Between Phenological Activities, Primates and Small Mammals 117
 5.12 Distribution of Wildlife Based on the Fruit tree Species 119

6 CONCLUSION AND RECOMMENDATION 120
REFERENCES 123
APPENDICES 132
BIODATA OF THE AUTHOR 154
LIST OF TABLES

<table>
<thead>
<tr>
<th>Tables</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Total Number of Trees, Families, Genera, and Fruit Trees in Three Study Sites</td>
<td>37</td>
</tr>
<tr>
<td>4.2 Forest Composition and Stand Density (tree/ha) Among Plot Elevation Within a Compartment</td>
<td>38</td>
</tr>
<tr>
<td>4.3 List of fruit trees and Number of Individual Fruit Trees in C24 (VJR)</td>
<td>40</td>
</tr>
<tr>
<td>4.4 List of Fruit Tree Species in C18 (5-year-old logged forest)</td>
<td>41</td>
</tr>
<tr>
<td>4.5 List of Fruit Trees and Number of Individual Fruit Trees in C33 (10-year-old logged forest)</td>
<td>43</td>
</tr>
<tr>
<td>4.6 Monthly Leafing Pattern of Fruit Trees in the Three Compartments</td>
<td>44</td>
</tr>
<tr>
<td>4.7 Monthly Flowering Pattern of Fruit Trees in All Study Sites</td>
<td>47</td>
</tr>
<tr>
<td>4.8 Monthly Comparison Fruiting Pattern of Fruit Trees in All Study Sites</td>
<td>50</td>
</tr>
<tr>
<td>4.9 Distribution of Species in the Three Plots in Compartment 24 (VJR)</td>
<td>53</td>
</tr>
<tr>
<td>4.10 Distribution of Species in the Three Plot in Compartment 33 (10-year-old logged forest)</td>
<td>54</td>
</tr>
<tr>
<td>4.11 Comparison of Fruit Tree Diversity in Three Study Sites</td>
<td>76</td>
</tr>
<tr>
<td>4.12 Comparison of Shannon’s Index Values by Plot in Three Different Study Sites</td>
<td>77</td>
</tr>
<tr>
<td>4.13 Ranking of Species Based on the Total Frequency of Leafing in C24 (VJR)</td>
<td>67</td>
</tr>
<tr>
<td>4.14 Ranking of Species Based on the Total Frequency of Flowering in C24 (VJR)</td>
<td>68</td>
</tr>
<tr>
<td>4.15 Ranking of Species Based on the Total Frequency of Fruiting in C24 (VJR)</td>
<td>80</td>
</tr>
<tr>
<td>4.16 Ranking of Species Based on the Total Frequency of Leafing in C33 (10-year-old logged forest)</td>
<td>81</td>
</tr>
<tr>
<td>4.17 Ranking of Species Based on the Total Frequency of Flowering in C33 (10-year-old logged forest)</td>
<td>82</td>
</tr>
<tr>
<td>4.18 Ranking of Species Based on the Total Frequency of Fruiting in C33 (10-year-old logged forest)</td>
<td>83</td>
</tr>
<tr>
<td>4.19 Ranking of Species Based on the Total Frequency of Leafing in C18 (5-year-old logged forest)</td>
<td>84</td>
</tr>
<tr>
<td>4.20 Ranking of Species Based on the Total Frequency of Flowering in C18 (5-year-old logged forest)</td>
<td>85</td>
</tr>
<tr>
<td>4.21 Ranking of Species Based on the Total Frequency of Fruiting in C18 (5-year-old-logged forest)</td>
<td>86</td>
</tr>
<tr>
<td>4.22 Fruit Availability in C24 (VJR) in Sg. Lalang According to Fruit Type</td>
<td>87</td>
</tr>
</tbody>
</table>
4.23 Fruit Availability in C33 (10-year-old logged forest) in Sg. Lalang According to Fruit Type
4.28 Fruit Availability in C18 (5-year-old logged forest) in Sg. Lalang According to Fruit Type
4.29 Simple Correlation Between Phenological Activities, Frugivorous and Insectivorous Birds and Pheasants
4.30 Simple Correlation Between Phenological Activities, Primates and Small Mammals
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figures</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Location of Study Sites (C18), (C33) and (C24) of Sungai Lalang forest Reserve Semenyih, Selangor, Malaysia.</td>
<td>23</td>
</tr>
<tr>
<td>3.2</td>
<td>Map Showing in Full Scale the Study Plot in Compartment 18 of Sungai Lalang Forest Reserve.</td>
<td>29</td>
</tr>
<tr>
<td>3.3</td>
<td>Map Showing in Full Scale the Study Plot in Compartment 33 of Sungai Lalang Forest Reserve.</td>
<td>32</td>
</tr>
<tr>
<td>3.4</td>
<td>Map Showing in Full Scale the Study Plot in Compartment 24 in Compartment 24 (VJR) of Sungai Lalang Forest Reserve.</td>
<td>35</td>
</tr>
<tr>
<td>3.5</td>
<td>Monthly Rainfall of Sungai Lalang Forest Reserve Semenyih, Selangor.</td>
<td>36</td>
</tr>
<tr>
<td>4.1</td>
<td>Number of Fruit Trees Leafing in the Three Different Study Sites of Sungai Lalang Forest Reserve.</td>
<td>46</td>
</tr>
<tr>
<td>4.2</td>
<td>Percentage of Fruit Trees Leafing in Three Different Study Sites of Sungai Lalang Forest Reserve.</td>
<td>46</td>
</tr>
<tr>
<td>4.3</td>
<td>Number of Fruit Trees Flowering in Three Different Study Sites of Sungai Lalang Forest Reserve.</td>
<td>49</td>
</tr>
<tr>
<td>4.4</td>
<td>Percentage of Fruit Trees Flowering in Three Different Study Sites of Sungai Lalang Forest Reserve.</td>
<td>49</td>
</tr>
<tr>
<td>4.5</td>
<td>Number of Fruit Trees Fruiting in Three Different Study Sites of Sungai Lalang Forest Reserve.</td>
<td>52</td>
</tr>
<tr>
<td>4.6</td>
<td>Percentage of Fruit Trees Fruiting in Three Different Study Sites of Sungai Lalang Forest Reserve.</td>
<td>52</td>
</tr>
<tr>
<td>4.7</td>
<td>Species Distribution of Fruit Trees in C24 (VJR) Ridgetop of Sungai Lalang Forest Reserve.</td>
<td>57</td>
</tr>
<tr>
<td>4.8</td>
<td>Species Distribution of Fruit Trees in C24 (VJR) Midslope of Sungai Lalang Forest Reserve.</td>
<td>59</td>
</tr>
<tr>
<td>4.9</td>
<td>Species Distribution of Fruit Trees in C24 (VJR) Valley Bottom of Sungai Lalang Forest Reserve.</td>
<td>61</td>
</tr>
<tr>
<td>4.10</td>
<td>Species Distribution of Fruit Trees in C33 (10-year-old logged forest) Ridgetop of Sungai Lalang Forest Reserve.</td>
<td>63</td>
</tr>
<tr>
<td>4.11</td>
<td>Species Distribution of Fruit Trees in C33 (10-year-old logged forest) Midslope of Sungai Lalang Forest Reserve.</td>
<td>65</td>
</tr>
<tr>
<td>4.12</td>
<td>Species Distribution of Fruit Trees in C33 (10-year-old logged forest) Valley Bottom of Sungai Lalang Forest Reserve.</td>
<td>67</td>
</tr>
<tr>
<td>4.13</td>
<td>Species Distribution of Fruit Trees in C18 (5-year-old logged forest) Ridge Top of Sungai Lalang Forest Reserve.</td>
<td>69</td>
</tr>
<tr>
<td>4.14</td>
<td>Species Distribution of Fruit Trees in C18 (5-year-old logged forest) Midslope of Sungai Lalang Forest Reserve.</td>
<td>71</td>
</tr>
<tr>
<td>4.15</td>
<td>Species Distribution of Fruit Trees in C18 (5-year-old logged forest) Valley Bottom of Sungai Lalang Forest Reserve.</td>
<td>73</td>
</tr>
</tbody>
</table>
logged forest) Valley Bottom of Sungai Lalong Forest Reserve. 73
4.16 Leafing Pattern in the Study Sites 93
4.17 Flowering Activities in the study Sites 93
4.18 Flowering Activities in the Study Sites 94
4.19 Durio sp. Fruiting in the Study Sites 94
4.20 Artocarpus sp. Fruiting in the Study Sites 95
4.21 Artocarpus sp. Fruiting the Study Sites 95
4.22 Artocarpus sp. Fruiting in the Study Site 96
4.23 Macaranga sp. Fruiting in the study Sites 96
4.24 Aporusa sp. Fruiting in the Study Sites 97
4.25 Streblus elongates Fruits Eaten by Squirrels in Study Sites 97
4.26 Nephelium intermedium Fruits Eaten by Small Mammals and Primates 98
4.27 Nephelium intermedium Fruits Eaten by Small Mammals and Primates 98
4.28 Parkia speciosa fruits eaten by Primates and Squirrels in the Study Site 99
4.29 Calamus sp. Eaten by Small Mammals in the Study Sites 99
4.30 Adenanthera bicolour Fruiting in the Study Sites 100
4.31 Baccaurea minor Eaten by Primates and Small Mammals in the study sites 100
4.32 Thaipingensis sp. Fruits Eaten by Obscura Monkey in the Study Sites 101
4.33 Artocarpus sp. Fruits Eaten by Primates and Squirrels in the Study Site 101
4.34 Baccaurea sp. Fruits in the study sites 102
4.35 Baccaurea sp. Fruits Eaten by Primates in the Study Sites 102
4.36 Parkia speciosa Fruiting in the Study Site 103
4.37 Canarium sp. Fruiting in the Study Site 103
4.38 Baccaurea reticulata Fruits Eaten by Small Mammals and Primates in the Study Sites 104
4.39 Bouea oppositifolia Fruits in the Study Sites 104
4.30 Bouea oppositifolia Fruits Scattering in the Forest Floor 105
LIST OF ABBREVIATIONS

Archedendron bubalinum
Archedendron integer silvistries
Archedendron lanceifolius
Archedendron nitidus graffethii
Baccaurea minor
Baccaurea reticulata
Bouea oppositifolia
Canarium litorale purpureescence
Canarium litorale rufom
Canarium pilosum
Castanopsis schefferiana
Callerya atropurpurea
Dialium maingayi
Dialium platysepalum
Elateriospermum tapus
Garcinia mallaccensis
Garcinia scortechii
Garcinia pyrifera
Mangifera grasiipes
Mangifera quadrifed
Nephelium Cuspidatum
Nephelium maingayi
Parkia speciosa
Sapium bacatum
Santeria laevigata
Dacryodes rostata
Xerospermum noronhianum
Compartment 24
Compartment 33
Compartment 18
Virgin Jungle Reserve
CHAPTER ONE

INTRODUCTION

The tropical rainforest is one of the most complex ecosystems in the world. The forest plays an important role not only in the production of timber but most importantly in providing environmental services, which include the maintenance of biological diversity, soil and watershed protection, regulation of climate and nutrients cycle. However, for development purposes many forested areas in the tropical region are cleared and used for agricultural production, industrial estate and human settlements.

Many tropical countries especially in Southeast Asia are concerned with the effects of selective logging on fauna and flora. The issue is important because there is a decreased in forested areas and there is a need for greater public awareness. There are a few major problems facing wildlife conservation at a global level today, and among them is the increasing rate of habitat loss due to human pressure on the environment especially the core wildlife habitat such as tropical forest. The tropical hardwood for example, is an extremely valuable economic resource for the Southeast Asian countries. However, the increasing rate of forest exploitation will cause extensive tropical forest of the region to become secondary forest by the beginning of the twenty-first century (Myers 1980).
In Malaysia alone, it is extremely rich in both plants and animal species (Tho 1993). Its high diversity offers a wide variety of natural habitats for flora and fauna. It is estimated that Malaysia has ca. 8000 flowering plant of which ca. 2,650 are tree species. There are also over 800 species of non-flowering plants that have been recorded. The animal is equally diverse with ca. 1000 species of vertebrates and an estimated 20-80 thousand invertebrate's species. Many of these species are indigenous and can be found only in peninsular Malaysia. The destruction of wildlife habitats especially forest areas has reduced the number of wildlife in the forest (John 1986). Many birds and other animals left the logging area as soon as the logging activities begin. Logging and other human activities have destroyed most of their feeding and breeding habits considering that their existence in the forest is highly governed by their food supply. Thus, any form of destruction to their habitat has decreased the food supply and eventually affected their existence in the forest.

Problem Statement

It is unlikely that any single factor limits the density of an animal population (Leighton 1983). Although food resources availability may be ultimately limiting. Distribution and abundance of food frequently correlated with the behaviour pattern of animal species (Dawson 1979). Changes in distribution of food types occurring as a result of selective logging will cause the changes
of feeding on a certain food. Animals feed more on leaf materials in logged
and primary forest like primate species, which may be correlated with a
reduced availability of flowers and fruits.

This study focused on the phenology and availability of fruit trees and their
influence on the abundance of selected animals in logged and primary forest
in three different compartments such as Virgin Jungle Reserve (VJR), ten-
year-old logged forest (C33) and five-year old logged forest (C18). The
reason of choosing this three study sites:

The Compartment 24 (VJR) and the two logged forest study were selected for
the following reasons: I) The compartment 24 (VJR) forest areas have been
established and is presently used by some researchers working in botany.
References to work in the area are readily available and the present work will
form part of an integrated research program. Ii) The study area are adjacent
to each other, increasing the likelihood that pre-logging conditions (diversity
and composition of flora and fauna) in the compartment 33 (10 year old
logged forest) and in the compartment 18 which is (5 year old logged forest)
were similar to those in the unlogged site. This similarity is crucial if
comparisons of phenology activities in relation to different animals of the
areas are to be made. Iii) Both areas were far from any human settlements
and hunting was almost unknown, increasing the possibility that changes to
the plant and animal populations were due only to logging activities.
Justification

Most of the forest areas in Peninsular Malaysia especially the lowland forest had been logged and become degraded and formed into secondary forest. This effect is very much dependent on the intensity of logging destruction and volume of timber extracted and this might be severed to certain species of animals or birds (especially understorey birds) but not the other animals. The indirect effects of logging towards animal’s population are the reduction of food and shelter (Johns 1986). For the primate’s species, the logging activities seemed to cause less impact on their populations (Sundai 2000). This is probably because, the removal of higher number of dipterocarp trees during logging had cause less impact to their population because dipterocarp are less preferred as food resources by the primates (Chivers 1977a, 1977b; Johns 1986). In addition, the removal of emergent trees and the opening of the canopy cover would increase the amount of sunlight reaching the forest floor. This will encourage the growth of smaller trees especially for non-dipterocarp species, which could provide a potential food sources (e.g. leaves flower and fruits) for the primates. Thus, there is an urgent need to determine the extent of this disturbance towards the fruit tree species that serves as food for animals in the forest. It is important to note that the information gained will become the basis or guide line in formulating the effective management plan on forest utilization and forest operation to ensure the survival and to see these animals in the future.
Objectives of the Study

General Objective

The main objectives of the study were to identify the fruit tree species and determine the food resources for selected animals in logged and primary forest.

Specific Objectives

The specific objectives of this study were

1. To study the phenology of fruit trees, which serve as food resources for selected animals in 10-year old logged forest, 5-year old logged forest and VJR (primary forest).

2. To compare the food resources for selected animals in 10-year old logged forest, 5-year old logged forest and VJR (primary forest).

3. To compare the fruit trees distribution in three compartments within plots.

4. To correlates the abundance of selected animals in relation to fruits available in three different study sites namely; 10-year-old logged forest, 5-year-old logged forest and VJR (primary forest).