

UNIVERSITI PUTRA MALAYSIA

POPULATION DYNAMICS AND LIFE CYCLE OF TEAK DEFOLIATOR HYBLAEA PUERA CRAMER., (LEPIDOPTERA: HYBLAEIDAE) IN LAO PEOPLE'S DEMOCRATIC REPUBLIC

THANSAMAY VONGXOMPHOU

FH 2001 9

POPULATION DYNAMICS AND LIFE CYCLE OF TEAK DEFOLIATOR HYBLAEA PUERA CRAMER., (LEPIDOPTERA: HYBLAEIDAE) IN LAO PEOPLE'S DEMOCRATIC REPUBLIC

THANSAMAY VONGXOMPHOU

MASTER OF SCIENCE UNIVERSITI PUTRA MALAYSIA 2001

POPULATION DYNAMICS AND LIFE CYCLE OF TEAK DEFOLIATOR HYBLAEA PUERA CRAMER. (LEPIDOPTERA: HYBLAEIDAE) IN LAO PEOPLE'S DEMOCRATIC REPUBLIC

.

By

THANSAMAY VONGXOMPHOU

Thesis Submitted in Fulfilment of the Requirement for the Degree of Master of Science in Faculty of Forestry Universiti Putra Malaysia

May 2001

DEDICATED TO MY BELOVED PARENTS AND WIFE

Abstract of thesis submitted to the Senate of Universiti Putra Malaysia In fulfilment of the requirements for the degree of Master of Science

POPULATION DYNAMICS AND LIFE CYCLE OF TEAK DEFOLIATOR *HYBLAEA PUERA* CRAMER, (LEPIDOPTERA: HYBLAEIDAE) IN LAO PPEOPLE'S DEMOCRATIC REPUBLIC

By

THANSAMAY VONGXOMPHOU

May 2001

Chairman: Associate Professor. Ahmad Said Sajap, Ph.D.

Faculty: Forestry

Forest lands in Lao People's Democratic Republic (Lao P.D.R) are largely owned and administered by the government. Teak (*Tectona grandis*) is one of the important hardwood species planted extensively in plantation in the northern part of Lao P.D.R for commercial purposes, but teak tree has numerous diseases, and insect pests which cause damage to the teak plantation. Teak defoliator *Hyblaea puera* is an important pest of teak in Lao P.D.R. It occurs every year during May to July when the tree flushes leaves. This study was conducted in the natural teak forest and teak plantations within two provinces i.e. Xayabury and Luang Prabang. This study investigated the population dynamics and distribution of the insect in different teak plantations, and its life cycle.

During a two-year period covering 1999 and 2000, the outbreak season for teak defoliator *H. puera* occurred in early May when the teak developed new leaves,

and the warm temperatures enabled the insect to complete its life cycle by late July. The result of the analysis indicated that the teak defoliator *H. puera* preferred to attack young teak plantations. Population density of the insects larvae was highest on the top stratum of the tree, though after feeding on the leaves the larvae descended to the lower stratum and the ground for more feeding and pupation. Its life cycle occur approximately 15 to 20 days. Male moths lived longer than the female moths; the mean longevity of adult male was 13.3 ± 2.50 days and that of the female was 8.8 ± 1.83 days. The adult female usually died after oviposition. The insect population recurred when no heavy rainfall. During periods of heavy rainfall, the insect completed its life cycle quickly, and subsequently disappeared from the teak forest.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

POPILASI DINAMIK DAN KITAR HIDUP PEROSAK JATI HYBLAEA PUERA CRAMER.,)LEPIDOPTERA: HYBLAEIDAE) DI REPUBLIK DEMOKRATIK RAKYAT LAOS.

Oleh

THANSAMAY VONGXOMPHOU

April 2001

Pengerusi: Profesor Madya Dr. Ahmad Said Sajap

Fakulti: Perhutanan

Tanah Hutan di Republik Demokratik Rakyat Laos (D. R. L) sebahagian besarnya dimiliki dan diurus oleh kerajaan. Kayu jati (*Tectona grandis*) adalah species kayu keras yang ditanam secara besar-besaran di bahagian utara Laos untuk tujuan komorsial tetapi kayu jati berkenaan diserang oleh pelbagai penyakit, dan serangga perosak yang merosakkan ladang kayu jati. *Hyblaea. puera* ialah perosak kayu jati yang penting di Laos, ia selalu menyerang setiap tahun ketika pokok jati mengeluarkan duan muda yang baru. Kajian ini telah dijalankan di kawasan hutan jati semulajadi dan di kawasan ladang jati di bahagian Xayabury dan Luang Prabang kajian yang dijalankan ialah penentuan dinamik populasi dan taburan serangga tersebut di kawasan ladang jati. Serta meneliti kitar hidup *H. puera* selama dua tahun kajian iaitu pada 1999 dan 2000 musim berlakunya "outbreak" perosak kayu jati *H. puera* ialah pada anval bulan Mai ketika pokok jati mengeluarkan daun yang masih

baru dan dipengaruhi oleh suhu yang agak tinggi serta melengkapi kitar hidupnya pada akhir bulan Julai Hasil anlisis kajian menunjukkan larva *H. puera* lebik gemar menyerang ladang kayu jati yang masih muda. Bilangan larva didapati lebih tinggi di bahagian atas pokok jati dan akan berpindah ke bahagian bawah apabila daun di bahagian atas habis dimakan untuk mendapatkan makanan serta menjadi pupa. Kitar hidup *H. puera* ialah sekitar 15 ke 20 hari, jika Selalunya kitar hindup seragga ini lebih singkat dan menjadi lenyap dari hutan jati ketika bulan musim hujan lebat.

ACKNOWLEDGEMENTS

Here I acknowledge the chairman of the supervisory committee, Associate Professor Dr. Ahmad Said Sajap for his valuable help throughout the project and patient comments on the manuscript. I would like to thank Professor Dr. Syed Tajuddin Syed Hassan and Dr. Faizah Abood Haris as members of the supervisory committee through their comments, suggestions, and supportive criticism and always challenging me in many ways, just to ensure me to produce a good quality research. Also I would to expect my gratitude to Associate Professor Dr. Rohani Ibrahim for reviewing the thesis for further improvement on behalf of the Dean of graduate school.

I would like to express my sincere thanks and appreciation to the Lao-Swedish Forestry Programme (LSFP) of the Department of Forestry for providing the financial to support my study at Universiti Putra Malaysia for two and half years.

The staff of Graduate school, staff of Faculty of Forestry and the University library staffs, thank you for your excellent service and kindness, and cooperation in many ways during my study.

I am indebted to my parents, who gave support in my academic pursuit. My heartfelt thanks are extended to my brothers, sisters, and every member of my family for their undivided love throughout my master's programme. Lastly, my special and deepest thanks and love to my wife, Boonthan VONGXOMPHOU, for her love, sacrifice, patience, support, and encouragement. My daughters, Southaphone, Khonsavanh and Vannaly VONGXOMPHOU, in their own ways have continuously provided me with love and inspiration. They patiently tolerated my preoccupation with my studies and work. My special love to them.

I also express an acknowledgement to Mr. Yaacob bin Abd Wahab and Nor Azlin Sapuan for their giving me to use some entomology's equipment and the lab for my study. M. Abdul Bakir, Noor Farikhah Haneda, Navies Maisin, and all Thai and Lao students thank you for advice, comment and friendship during our best time in UPM. I also acknowledge the staff at Northern Agriculture and Forestry Training Centre, Luang Prabang Province, Lao P.D.R., for their assistantship during the research conducted, especially on larvae investigation and moth trapping in the field. Finally, I would like to thank all my friends who remembered my struggle to finish the thesis manuscript.

TABLE OF CONTENTS

Page DEDICATION ii ABSTRACT iii ABSTRAK v ACKNOWLEDGEMENTS vii **APPROVAL** ix DECLARATION xi LIST OF TABLES xiv LIST OF FIGURES xix LIST OF ABBREVIATIONS XX

CHAPTER

1	INTR	ODUCTION	1
	1.1	General background	2
	1.2	Problem statement	3
	1.3	Objectives of the study	4
2	FORE	EST MANAGEMENT IN LAO P.D.R	5
	2.1	General background	5
	2.2	Forest situation	7
	2.3	Forest policy	9
	2.4	Forest management and planning	11
		2.4.1 Forest management plan are carried	
		out based on their respective categories	13
	2.5	Allocation of forest concession	14
	2.6	Forest revenue system	16
3	LITEI	RATURE REVIEW	18
	3.1	Characteristics of teak	18
	3.2	Distribution of teak	19
	3.3	The environmental suitability and geographical	
		distribution of teak in Lao P.D.R.	19
	3.4	Teak plantation management	20
	3.5	Taungya system	20
	3.6	The defoliation insect pest of teak tree	21
	3.7	<i>Hyblaea puera</i> , the teak defoliator	21
	3.8	Distribution of <i>Hyblaea puera</i>	22
	3.9	Biology of <i>Hyblaea puera</i>	22
	•••	3.9.1 The life stages	22
	3.10	Lifecycle and voltinism	24
	3.11	Host plants	24
	3.12	Population dynamics of <i>Hyblaea puera</i>	25
	3.12	Seasonal activity of the teak defoliator	23
	5115	Hyblaea puera	26
4	МАТ	ERIALS AND METHODS	27
5	4.1	Field studies	27

		4.1.1	Experimental site	27
			Stand description	29
			Field data collection	29
		4.1.4	Data analysis	33
	4.2		tory studies	34
			•	34
		4.2.2	Moth rearing	34
		4.2.3	Eggs and larval rearing	35
		4.2.4	Data analysis	35
5			ND DISCUSSIONS	36
	5.1	Field s		36
		5.1.1	The distribution of teak defoliator	
			Hyblaea puera in the year 1999	36
		5.1.2	The distribution of teak defoliator	
			Hyblaea puera population in the year2000	49
		5.1.3	The distribution of teak defoliator	
			Hyblaea puera in the second outbreak	
			of the year 2000	63
		5.1.4	The mating and oviposition of	
			Hyblaea puera moths	76
		5.1.5	General discussion	78
	5.2	Labora	tory studies	81
		5.2.1	Insect morphology	81
		5.2.2	Longevity	82
		5.2.3	Oviposition	82
		5.2.4	Eggs of Hyblaea puera	83
		5.2.5	Larvae of teak defoliator Hyblaea puera	83
		5.2.6	Pupa of <i>Hyblaea puera</i>	85
		5.2.7	The partial life table of the insect teak	
			defoliator Hyblaea puera	86
		5.2.8	General discussion	
6	CONC			07
6			NS AND RECOMMENDATIONS	97 07
	6.1		usions	
	6.2	Kecon	mendations	99
REFERENCE	S			100
APPENDICE	S			103
BIODATA O	F THE	AUTHO	DR	130

LIST OF TABLES

Table

1	Distribution forest types in Lao P.D.R.	9
2	Royalty rates for species categories	17
3	Characteristic of the study stands	27
4	The mean number of eggs/twig at the 4 different stands	36
5	Distribution of eggs/twig at different stratum of the	
	tree in 4 stands	37
6	ANOVA results on eggs distribution in 4 different stands	
	and 3 strata of the tree in the year 1999	38
7	Results of LSD on mean number of eggs with respect to	
	the stand and the stratum of the tree in the year 1999	38
8	The mean number of larvae/twig in the first sampling	
	(2/06/99)	39
9	ANOVA results on larvae in the first sampling (2/06/99)	39
10	Results of LSD on mean number of larvae with respect to	
	the stand and the stratum in the first sampling $(2/06/99)$	40
11	The mean number of larvae/twig in the second sampling	
	(4/06/99)	41
12	ANOVA results on larvae in the second sampling (4/06/99)	41
13	Results of LSD on mean number of larvae with respect to	
	the stand and the stratum in the second sampling $(\frac{1}{06})$	41
14	The mean number of larvae/twig in the third sampling	
	(6/06/99)	42
15	ANOVA results on larvae in the third sampling (6/06/99)	43
16	Results of LSD on mean number of larvae with respect to	
	the stand and the stratum in the third sampling $(6/06/99)$	43
17	The mean number of larvae/twig in the fourth sampling	10
- /	(8/06/99)	44
18	ANOVA results on larvae in the fourth sampling (8/06/99)	44
19	Results of LSD on mean number of larvae with respect to	
	the stand and the stratum in the fourth sampling $(8/06/99)$	45
20	The mean number of larvae/twig in the fifth sampling	
20	(10/06/99)	46
21	ANOVA results on larvae in the fifth sampling $(10/06/99)$	46
22	Results of LSD on mean number of larvae with respect to	10
	the stand and the stratum in the fifth sampling $(10/06/99)$	46
23	The mean number of larvae/twig sampled in 4 stands	10
23	from 30/05/99 to 12/06/99	47
24	ANOVA results on larvae sampled from 30/05/99	• /
21	to 12/06/99	48
25	Results of LSD on mean number of larvae with	70
23	respect to the stand and the stratum of the tree and day	
	sampled From 30/05/99 to 12/06/99	48
26	-	40
26	The mean number of eggs/twig in 4 different stands	50
77	in the first outbreak of the year 2000	50
27	The mean number of eggs/twig at different stratum of tree in 4 stands in the first outbreak of the year 2000	51
	tree in 4 stands in the first outbreak of the year 2000	51

28	ANOVA results on egg distribution in 4 different stands and 3 strata of the tree in the first outbreak	
	of the year 2000	51
29	Results of LSD on mean number of eggs with respect	
	to the stand and the stratum of the tree in the first	
	outbreak of the year 2000	51
30	The mean number of larvae/twig in the first sampling	
	(24/05/2000) in the first outbreak of the year 2000	52
31	ANOVA results on larvae in the first sampling	
51	(24/05/2000) in the first outbreak of the year 2000	53
32	Results of LSD on mean number of larvae with	00
	respect to the stand and the stratum in the first sampling	
	(24/05/2000) in the first outbreak of the year 2000	53
33	The mean number of larvae/twig in the second sampling	55
55	(26/05/2000) in the first outbreak of the year 2000	54
34	ANOVA results on larvae in the second sampling	51
51	(26/05/2000) in the first outbreak of the year 2000	54
35	Results of LSD on mean number of larvae with	51
55	respect to the stand and the stratum in the second sampling	
	(26/05/2000) in the first outbreak of the year 2000	55
36	The mean number of larvae/twig in the third sampling	55
50	(28/05/2000) in the first outbreak of the year 2000	56
37	ANOVA results on larvae in the third sampling	50
57	(28/05/2000) in the first outbreak of the year 2000	56
38	Results of LSD on mean number of larvae with	50
50	respect to the stand and the stratum in the third sampling	
	(28/05/2000) in the first outbreak of the year 2000	56
39	The mean number of larvae/twig in the fourth sampling	50
59	(30/05/2000) in the first outbreak of the year 2000	57
40	ANOVA results on larvae in the fourth sampling	57
40	(20/05/2000) is the first soft soft of the second 2000	58
41	(30/05/2000) in the first outbreak of the year 2000 Results of LSD on mean number of larvae with	50
71	respect to the stand and the stratum in the fourth sampling	
	(30/05/2000) in the first outbreak of the year 2000	58
42	The mean number of larvae/twig in the fifth sampling	50
42		59
43	(01/06/2000) in the first outbreak of the year 2000 ANOVA results on larvae in the fifth sampling	39
43		59
44	(01/06/2000) in the first outbreak of the year 2000 Results of LSD on mean number of larvae with	59
44	respect to the stand and the stratum in the fifth sampling	
	(01/06/2000) in the first outbreak of the year 2000	60
45	The mean number of larvae/twig in the first outbreak	00
43	of the year 2000 sampled from 22/06/2000 to 3/06/2000	61
46	ANOVA results on larvae in the first outbreak of the year	01
40	2000 sampled from 22/05/2000 to 3/06/2000	61
17	•	01
47	Results of LSD on mean number of larvae with	
	respect to the stand and the stratum in the first outbreak	62
10	of the year 2000 sampled From 22/05/2000 to 3/06/2000	62
48	The mean number of eggs/twig in 4 different stands	62
	in the second outbreak of the year 2000	63

49	The mean number of eggs/twig sampled at different stratum of the tree in 4 stands in the second outbreak of the year 2000	64
50	ANOVA results on eggs distribution in 4 different stands and 3 strata of the tree in the Second outbreak	U T
	of the year 2000	64
51	Results of LSD on mean number of eggs with respect to	
	the stand and the stratum sampled in the second	
	outbreak of the year 2000	65
52	The mean number of larvae/twig in the first sampling	
	(18/07/2000) in the second outbreak of the year 2000	66
53	ANOVA results on larvae in the first sampling	
	(18/07/2000) in the second outbreak of the year 2000	66
54	Results of LSD on mean number of larvae with	
	respect to the stand and the stratum in the first sampling	
	(18/07/2000) in the second outbreak of the year 2000	66
55	The mean number of larvae/twig in the second sampling	
	(20/07/2000) in the second outbreak of the year 2000	67
56	ANOVA results on larvae in the second sampling	
	(20/07/2000) in the second outbreak of the year 2000	68
57	Results of LSD on mean number of larvae with	
	respect to the stand and the stratum in the second sampling	
	(20/07/2000) in the second outbreak of the year 2000	68
58	The mean number of larvae/twig in the third sampling	
	(22/07/2000) in the second outbreak of the year 2000	69
59	ANOVA results on larvae in the third sampling	<i>(</i>)
<u>()</u>	(22/07/2000) in the second outbreak of the year 2000	69
60	Results of LSD on mean number of larvae with	
	respect to the stand and the stratum in the third sampling	-
(1	(22/07/2000) in the second outbreak of the year 2000	70
61	The mean number of larvae/twig in the fourth sampling $(24/07/2000)$ in the second anthrophysical effects are 2000	71
62	(24/07/2000) in the second outbreak of the year 2000	71
02	ANOVA results on larvae in the fourth sampling $(24/07/2000)$ in the second outbreak of the year 2000	71
63	(24/07/2000) in the second outbreak of the year 2000 Results of LSD on mean number of larvae with	/1
05	respect to the stand and the stratum in the fourth sampling	
	(24/07/2000) in the second outbreak of the year 2000	71
64	The mean number of larvae/twig in the fifth sampling	/1
04	(26/07/2000) in the second outbreak of the year 2000	72
65	ANOVA results on larvae in the fifth sampling	12
05	(26/07/2000) in the second outbreak of the year 2000	73
66	Results of LSD on mean number of larvae with	15
00	respect to the stand and the stratum in the fifth sampling	
	(26/07/2000) in the second outbreak of the year 2000	73
67	The mean number of larval/twig in the second outbreak	15
07	of the year 2000 sampled in 4 stands $(16 - 28/07/2000)$	74
68	ANOVA results on larvae in the second outbreak of the	, T
	year 2000 sampled from $16 - 28/07/2000$	75
69	Results of LSD on mean number of larvae with	, 0
- /	respect to the stand, stratum and day in the second	
	· · · · · · · · · · · · · · · · · · ·	

	outbreak of the year 2000 sampled from $16 - 28/07/2000$	75
70	The mean number of moths trapped in the nighttime	
	during their mating and oviposition time of the moths	76
71	ANOVA Results on trapped moths collected for 8 days	
	at nighttime during outbreak of teak defoliator	77
72	Results of LSD on mean number of moths with	
	respect to the stand, time and date trapped for 8 days	
	during outbreak of teak defoliator	77
73	The measurement of the head capsule, body length and	
	duration of Larvae at different stages of its development	85
74	The measurement of the body size, incubation and	
	duration of the insect in each development stages	86
75	The partial life table, percent mortality, survival rate	
	and generation mortality of <i>Hyblaea puera</i> from egg	
	up to adult	87
76	Number of egg cluster and egg present in each stratum	0,
10	of the tree on 7/05/99	104
77	Number of egg cluster and egg present in each stratum	101
, ,	of the tree on 30/05/99	104
78	Number of egg cluster and egg present in each stratum	104
/0	of the tree on 1/06/99	105
79	Number of egg cluster and egg present in each stratum	105
13	of the tree on 30/05/99	105
80	Number of egg cluster and egg present in each stratum	105
00		106
81		100
01	Number of egg cluster and egg present in each stratum of the tree on 22/05/2000	106
02		100
82	Number of egg cluster and egg present in each stratum	107
02	of the tree on 19/05/2000	107
83	Number of egg cluster and egg present in each stratum	107
0.4	of the tree on 20/05/2000	107
84	Number of egg cluster and egg present in each stratum	100
0.5	of the tree on 15/07/2000	108
85	Number of egg cluster and egg present in each stratum	100
	of the tree on 16/07/2000	108
86	Number of egg cluster and egg present in each stratum	
~ -	of the tree on 20/07/2000	109
87	Number of egg cluster and egg present in each stratum	
	of the tree on 23/07/2000	109
88	Number of larvae presented in each stratum of the tree	
	collected on 10 – 18/05/99	110
89	Number of larvae presented in each stratum of the tree	
	collected on 2 – 10/06/99	111
90	Number of larvae presented in each stratum of the tree	
	collected on 4 – 12/05/99	112
91	Number of larvae presented in each stratum of the tree	
	collected on $2 - 10/06/99$	113
92	Number of larvae presented in each stratum of the tree	
	collected in 5 different days in 1999	114
93	Number of larvae presented in each stratum of the tree	

	collected on 24/05 – 1/06/2000	115
94	Number of larvae presented in each stratum of the tree	
	collected on 24/05 – 1/06/2000	116
95	Number of larvae presented in each stratum of the tree	
	collected on 22 - 30/05/2000	117
96	Number of larvae presented in each stratum of the tree	
	collected on 23 - 31/05/2000	118
97	Number of larvae presented in each stratum of the tree	
	collected in 5 different days in the first outbreak of the	
	year 2000	119
98	Number of larvae presented in each stratum of the tree	
	collected on 18 - 26/07/2000	120
99	Number of larvae presented in each stratum of the tree	
	collected on 19 - 27/07/2000	121
100	Number of larvae presented in each stratum of the tree	
	collected on 23 - 31/07/2000	122
101	Number of larvae presented in each stratum of the tree	
	collected on 23 - 31/07/2000	123
102	Number of larvae presented in each stratum of the tree	
	collected in 5 different days in the second outbreak of	
	the year 2000	124
103	Pupae rearing	125
104	Longevity of moths feed with 10% of honey solution	125
105	Eggs produced by females moths	126
106	Number of larvae rearing in containers in the laboratory	127
107	Number of larvae become pupae	128
108	Size of pupae and moths in mm	129

LIST OF FIGURES

Figure

1	Map of Lao P.D.R	6
2	Map of Lao P.D.R (Location of the study sites)	28
3	Diagrams of sample stands	30
4	Stand I (Natural teak forest during dry season)	31
5	Moth trapping cage	33
6	The mean number of moth collected from trapping	55
U	for 8 days	78
7	Daily mean numbers of eggs laid by a female moth	82
8	Cumulative means number of eggs laid by a	02
0	female moth within 4 days	83
9	Rainfall recorded in Xieng Ngurn district in the year 1999	88
10	Rainfall recorded in Xieng Ngurn district in the year 2000	89
10		09
11	Five years old teak plantation showing damage caused	02
10	by Hyblaea puera	92
12	Hyblaea puera larvae feeding on the young teak leaf	92
13	Damage leaf caused by the feeding of larvae of	
	Hyblaea puera	93
14	Hyblaea puera larvae span on silk thread as they	
	descend to the ground during daytime	93
15	Hyblaea puera larvae climb up on the tree trunk in the	
	evening	94
16	Eggs of Hyblaea puera laid singly in batches	
	of average 103 eggs	94
17	The first instar larvae of <i>Hyblaea puera</i>	95
18	The fourth and fifth instars larvae of <i>Hyblaea puera</i>	95
19	Pupa of <i>Hyblaea puera</i> Pupae	96
20	Dorsal and ventral view of <i>Hyblaea puera</i> moths	96

LIST OF ABBREVIATIONS

AACs	=	Annual Allowable cuts
Anon	=	Anonymous
Cr	=	Crown
dbh	=	Diameter at Breast Height
DD	=	Dry Dipterocarp
Dia	=	Diameter
GF	=	Gallery Forest
Н	=	Height
LMD	=	Low Mixed Deciduous
LSFP	=	Lao-Swedish Forestry Program
Μ	=	Mixed
NE	=	Northeast
NE NSRM		Northeast New System Resources Management
NSRM	=1 =	New System Resources Management
NSRM NTF	=1 = =	New System Resources Management Natural teak forest
NSRM NTF NW	=1 = =	New System Resources Management Natural teak forest Northwest
NSRM NTF NW PDR	[= = = =	New System Resources Management Natural teak forest Northwest People Democratic Republic
NSRM NTF NW PDR S	[= = = = =	New System Resources Management Natural teak forest Northwest People Democratic Republic Coniferous
NSRM NTF NW PDR S SE	[= = = = =	New System Resources Management Natural teak forest Northwest People Democratic Republic Coniferous Southeast

CHAPTER 1

INTRODUCTION

Teak (*Tectona grandis* L.), one of the most valuable hardwood timber species in Laos is attacked by a number of insects. Among them, two defoliators, *Hyblaea puera* (Cramer) (Lepidoptera: Hyblacidae) and *Eutectona machaeralis* (Lepidoptera: Pyralidae) are most serious insect pest in Laos. The damage by these defoliators *H. puera* and *E. machaeralis* adversely affect the tree growth and vigor besides causing certain abnormalities resulting to qualitative loss to timber (Champion 1934: Beeson, 1941).

Hyblaea puera is a serious pest of teak, which passes through 14 generations a year (Beeson 1941). Eggs are laid on tender leaves and the larvae feed on the leaves from within leaf folds (Nair *et al* 1985). During outbreaks large populations of larvae of uniform ages are found extensively defoliating plantation. Generally mature caterpillars descend to the ground on silk threads and pupate in the soil. In rainy months, pupation occurs in the leaves of ground vegetation (Zacharias and Mohandas, 1990). During the year defoliation occurred only for a short period from late April to September when one or two population peaks. The insect survived the rest of the period, October - March, by the survival of low larval population and short-range moth migration (Pawar and Bhatnagar, 1990).

1.1 General background

Most insect defoliators belong to the order Lepidoptera, whose larval stages feed on leaves. These insects generally have very high reproductive potentials and short life cycles. Hence rapid population build-ups can be expected within a very short period of establishment of the insect pest. The majority of these insects favour young leaves and hence in teak the period when high populations of these pests occur would be the months when the trees put on new flushes of leaves. The feeding patterns of these insects vary. There are those that feed only on the epidermis and tissues, avoiding the veins, thus leaving skeletons of leaves behind. Others feed on all leaf tissues including the veins, either beginning at the edges and working their way inwards or by creating hole on the leaf surface and enlarging them. Some of these insects may eat away entire leaves whilst others may wander from leaf to leaf, feeding only on part of the leaves (Tho, 1981).

Two species of pests, well-known insect of teak tree *Tectona grandis*, in Laos are *Hyblaea puera* popularly known as teak defoliator, and *Eutectona machaeralis* syn. *Pyrausta machaeralis* Walker (Lepidoptera: Pyraustidae), also known as teak skeletonizer. Larvae of the *H. puera* feed on the entire leaf, leaving only the major veins, while those the larvae of *E. machaeralis* feed only on the green matter, leaving all the veins intact. Thus qualifying for the name skeletonizer. One of the two *H. puera* is the more serious because it feeds on young leaves during the early part of the growing season, compared with *E. machaeralis*, which feeds on old leaves not long before natural leaf fall (Nair, 1988).

Defoliation does not kill teak trees, but it reduces the tree growth. The studies have shown that natural defoliation by *H. puera* caused an average loss of 44 % of

the potential volume increment in 4 - 9 year old teak plantations, while *E. machaeralis* had no significant impact on growth. Although it was not possible to quantify the benefit in terms of volume gain over the entire rotation (60 years), research demonstrated that *H. puera* could have a substantial impact on wood production (Nair, 1988)

1.2 Problem statement

Teak is one of the major hardwood species grown extensively in plantation in Lao P.D.R. for commercial purposes, but there are many insect pests that can cause extensive defoliation on teak.

One of these insects frequently attacking is *H. puera*. This pest, which has been shown to affect growth by defoliation in the young teak trees and it has not been studied thoroughly in Laos. Mackenzie (1921) stated that teak suffered a loss of 1/12 of its annual increment, while Beeson (1941) had estimated the loss at 8.2 % of the annual increment. The loss estimated by Champion (1934) at 60 to 70 % of the basal area increment (Kadambi, 1972).

The larvae of *H. puera* consume the whole leaf including the midrib, they causes greater loss of increment on teak. They directly retard girth increment, loss of timber quality by forking, death of the leading shoot, formation of epicormic branches.

Now a days, study on damage control defoliation on teak plantation have not been taken up to protect the loss of annual growth of the trees. Such study on the distribution, biology and ecology life cycle of the teak defoliator will be conducted.