

UNIVERSITI PUTRA MALAYSIA

NUCLEOPOLYHEDROSIS VIRUS OF SPODOPTERA UTURA: INFLUENCE OF ENVIRONMENTAL FACTORS ON EFFICACY AND IMPROVEMENT FOR FIELD APPLICATION

MOHAMMAD ABDUL BAKIR

FH 2001 5

NUCLEOPOLYHEDROSIS VIRUS OF SPODOPTERA LITURA: INFLUENCE OF ENVIRONMENTAL FACTORS ON EFFICACY AND IMPROVEMENT FOR FIELD APPLICATION

By

MOHAMMAD ABDUL BAKIR

Thesis Submitted in Fulfilment of the Requirement for the Degree of Doctor of Philosophy in the Faculty of Forestry Universiti Putra Malaysia

July 2001

То

My daughter Aniqa Tahsin Liya and father Abdul Baten

4

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

NUCLEOPOLYHEDROSIS VIRUS OF SPODOPTERA LITURA: INFLUENCE OF ENVIRONMENTAL FACTORS ON EFFICACY AND IMPROVEMENT FOR FIELD APPLICATION

By

MOHAMMAD ABDUL BAKIR

July 2001

Chairman: Associate Professor Ahmad Said Sajap, Ph.D.

Faculty: Forestry

Chemical pesticides significantly reduce agricultural losses but pose environmental hazards. Their effectiveness are threatened by increasing insect resistance and unwanted destruction of non-target organisms. Nucleopolyhedroviruses (NPVs) are getting wide attention as an alternative and biorational method to control insect pests. In this study, infectivity of a locally isolated NPV to control the polyphagous pest Spodoptera *litura* (Fabricius) (Lepidoptera: Noctuidae) was examined. The effects of different environmental factors such as pH, temperature, sunlight and ultraviolet lights (UV-A, UV-B and UV-C) on the infectivity of the virus were studied. Capabilities of different materials to protect the virus from deleterious effects of UV and sunlight were evaluated. The virus was formulated with different protectant materials and the effectiveness of different virus formulations at practical field level with single and multiple applications to control S. litura were investigated.

S. litura larvae were observed to be susceptible to infection by the studied NPV. Larval mortalities were 10% to 100%, when first to fourth instar larvae were infected with the virus concentrations of $1 \times$ 10^2 to 1×10^{10} polyhedral inclusion bodies (PIBs)/mL. The median lethal concentration (LC_{50}) values for the 1st to 4th instar larvae were 3.2×10^6 , 1.1×10^7 , 1.3×10^7 and 4.7×10^7 PIBs/mL, respectively. The median lethal time (LT_{50}) values were 2.0, 5.4, 9.2 and 16.6 days for the 1st to 4th instar larvae, respectively. Optimum infective virus persistency was observed at neutral pH. NPV infectivity decreased whilst LT₅₀ values increased, when exposed to high alkaline pH suspension (pH 11.0) compared with that of neutral pH. However, virus exposures to pH 3.0, 5.0 and 9.0 did not significantly reduce the infectivity. Larval mortality increased with increasing larval rearing temperature and LT₅₀ value decreased by 4 fold when infected larvae were reared at 30°C compared with that of 20°C. Optimum infection was observed when the infected larvae reared at 30°C. The virus lost all infectivity after 12 hours of exposure to direct sunlight. All types of UV (UV-A, UV-B and UB-C) demonstrated deleterious effect on NPV infectivity. UV-B and UV-C were more deleterious compared with that of UV-A. NPV infectivity was completely destroyed when continuously exposed to UV-B and UV-C for 360 hours (15 days). However, UV protectant materials tinopal and riboflavin provided 100% protection of NPV against UV-B inactivation at 1% concentration and also enhanced infectivity by reducing larval killing time. Only tinopal at 1% concentration provided 100%

protection of the virus against sunlight inactivation and also enhanced the infectivity. Field studies conducted with single and multiple spray applications of NPV on sawi (*Brassica rapa* Linnaeus) demonstrated that NPV is effective for controlling *S. litura*. As a result, *B. rapa* yield increased and damage was less in the NPV treated plots compared with those of control plots. Yield and damage in NPV treated plots were similar to chemical pesticide treated plots. Results of this study may contribute in developing biological control program using NPV in Malaysia and other countries where *S. litura* is predominantly found.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

SPODOPTERA LITURA NUKLEOPOLIHEDROSIS VIRUS: PENGARUH FAKTOR ALAM SEKITAR KE ATAS BERKESANAN DAN PEMBAIKAN APLIKASI DI LAPANGAN

Oleh

MOHAMMAD ABDUL BAKIR

Julai 2001

Pengerusi: Professor Madya Ahmad Said Sajap, Ph.D.

Fakulti: Perhutanan

Racun seranga kimia dapat mengurangkan kerugian dalam hasil serangga perosak, walau pertanian yang desebabkan oleh bagaimanapun ia boleh membahayakan alam sekitar, memusnahkan serangga-serangga lain yang tidak berkaitan dan mengurangkan keberkesanannya terhadap serangga perosak pada masa akan datang akibat peningkatannya ketahanan serangga perosak tersebut terhadap racun kimia. Sebagai alternatif, satu kaedah biorasional untuk mengawal serangga perosak ulat ratus polifagus (Spodoptera litura, Fab.) dijalankan. Keberkesanan nukleopolihedrovirus (NPV) untuk mengawal larva S. litura, kesan factor-faktor persekitaran seperti pH, suhu, UV dan sinaran matahari, kesan perlindungan dari UV dan sinaran matahari, formulasi dan keberkesanan formulasiformulasi virus di peringkat lapangan untuk mengawal perosak ini turut dikaji dalam penyelidikan ini.

Nilai LC₅₀ untuk larva di instar pertama hingga keempat adalah 3.2x10⁶, 1.1x10⁷, 1.3x10⁷ dan 4.7x10⁷, manakala nilai LT₅₀ adalah 2.0, 5.4, 9.2 dan 16.6 hari. Kematian tertinggi yang disebabkan oleh SINPV adalah pada pH neutral (pH 7.0) dan mengurang secara tidak signifikan pada pH 3.0 dan 9.0 tetapi mengurang secara signifikan pada pH alkali (pH 11.0). Nilai LT₅₀ yang terendah adalah pada pH 7 dan yang tertinggi adalah pada pH 11.0. kematian tertinggi (100%) berlaku pada suhu 30°C dan yang terendah pada suhu 20°C. Nilai LT₅₀ ialah 24 hari pada 20°C dan 5.5 hari pada 30°C. UV-B dan UV-C di dapati lebih merosakkan daripada UV-A. Jangkitan virus akan musnah apabila didedah kepada UV-B dan UV-C selama 360 jam (15 hari). Selepas terdedah secara langsung kepada sinaran matahari selama 12 jam ke semua aktiviti virus akan hilang. Nukleopolyhedrovirus (NPV) dengan 1% tinopal dan riboflavin menyebabkan 100% kematian larva selepas pendedahan kepada UV-B manakala NPV tanpa pelindung akan menyebabkan kematian larva Tinopal (1%) memberikan 100% perlindungan sebanyak 41%. kepada SINPV dari sinaran terus matahari dan mengurangkan 1.2 kali nilai LT₅₀ berbanding virus yang tidak didedahkan. Dalam kajian di lapangan, formulasi virus dan tinopal dengan satu semburan memberikan pengeluaran hasil yang tinggi berbanding virus sahaja dan tiada perbezaan signifikan dengan racun kimia bagi pengeluaran hasil sawi (Brsssica rapa) dan kerosakan daun. Antara formulasi-formulasi virus, virus yang menggunakan kaedah penyemburan berlipat ganda (multiple) dan diformulasi dengan 0.5%

tinopal dapat menggurangkan kerosakan berbanding plot yang dirawat dengan racun kimia. Daripada penyelidikan yang dijalankan NPV dapat digunakan sebagai racun biologi untuk mengawal serangga perosak ini dan pengawalan yang lebih baik boleh diperolehi dengan menggunakan kaedah penyemburan berganda dan penyemburan pada peringkat awal larva.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor Associate Professor **Ahmad Said Sajap**, Ph.D., Fac. of Forestry, Universiti Putra Malaysia (UPM) for accepting me as his student that made me possible to come in touch with his diverse research activities from current pest problem, chemical control of pests to environment friendly biological control and kindly providing me graduate assistantship (GA) throughout my study. I am indebted to his day-to-day intellectual, constructive, sympathetic and patience guidance, which helped me to fulfill my dream to truth.

I wish to express sincere gratitude to my members of the supervisory committee Professor and Dean **Mohd. Yusof Hussein**, Ph.D., Fac. of Agriculture, UPM, Professor **Norani Abdul Samad**, Ph.D., Fac. of Biological Science and Environmental Studies, UPM and **Mr. Hussan Bin Abdul Kadir**, Research Officer, Malaysian Agricultural Research and Development Institute (MARDI) for their kind assistance, critical discussions and encouragement in the preparation of this thesis.

I would like to express my sincere gratitude to Mr. Yaacob Bin Haji Abdul Wahab, Mrs. Halima Hussien and Mr. Abdul Latib Senin (Forestry, UPM) for their help. I am grateful to my colleagues Mrs. Azlin Binte Sapuan, Miss. Noor Farikah, Mr. Mahasan, Miss. Maria Lardizabal (Forestry, UPM) and Mrs. Lau Wei Hong (Biology and

Environmental Studies, UPM) who were always friendly and encouraged me in this study. I acknowledge the tremendous help of Mrs. Jamia'h Ismail and all the staffs of insectory, MARDI. I thank Mr. Ho Oi Kuan and Mrs. Aminah Jusoh, Electron Microscopy Section, UPM. I am grateful to Dr. Siti Rubiah Zainuddin, all the lecturers especially Dean, staffs in the Fac. of Forestry and Graduate School, UPM for their nice manner and kind help. I duly acknowledge the help of Dr. Dzolkhifli Omar, Assoc. Prof., Fac. of Agriculture, UPM, Mrs. Zaharah Bt. Talib and Mr. Mohd. Yunus Bin Jaffar, MARDI for their critical discussions in statistical analysis. I am grateful to Bangladesh Council of Scientific and Industrial Research (BCSIR) for providing me study leave for this program. I am grateful to Mrs. Ismet Ara, Dr. Fauzia Begum, Dr. Md. Nurul Huq and Dr. Formuzul Haque, BCSIR for providing me relevant information and help to take up this study program. I express my gratitude to Prof. Dr. Abul Khair (Jahangirnagar University) and Dr. A. N. M. Obaidul Islam (BCSIR) for their kind guidance and encouragement. I thank my family members Mrs. Ismet Ara, Mr. Bahauddin Bhuiyan, Mrs. Asma Baten, Mr. Ismail Hossain Miah, Mrs. Hosne Ara, Miss. Nilufa Akter, Miss. Mahmoda Akter, Mr. Mohammed Rashed, Mrs. Shamim Ara, Mr. Aziz Mohammad and Miss. Aniqa Tahsin Liya for their affection and sacrifices. He's my late father Mr. Abdul Baten who had been as the source of inspirations and guidance whom I miss every sphere of life. Finally my profound gratefulness goes to the Almighty for everything I have achieved.

TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	vi
ACKNOWLEDGEMENTS	ix
APPROVAL	xi
DECLARATION	xiii
LIST OF TABLES	xvii
LIST OF FIGURES	xxii
GLOSSARY AND ABBREVIATIONS	XXV

CHAPTER

Ι	GENERAL INTRODUCTION	1
II	LITERATURE REVIEW	6
	Overview of Spodoptera litura	6
	Type of Damage by S. litura	8
	Economic Loss by S. litura	9
	Biological Control of S. litura	10
	Insect Viruses	12
	Uses of Viruses in Pest Management	27
	Environmental Effects on the Efficacy of Viruses	29
III	EXPERIMENTAL DESIGN AND STATISTICS	31
IV	INFECTIVITY OF NULCLEOPOLYHEDROVIRUS	
	TO SPODOPTERA LITURA LARVAE	37
	Introduction	37
	Materials and Methods	38
	Results	40
	Discussion	49
	Conclusions	51

CHAPTER		Page
V	EFFECT OF pH ON THE INFECTIVITY OF SPODOPTERA LITURA NUCLEOPOLYHEDROVIRUS Introduction Materials and Methods Results Discussion Conclusions	52 52 53 54 59 60
VI	INFECTIVITY OF NUCLEOPOLYHEDROVIRUS TO SPODOPTERA LITURA AT DIFFERENT TEMPERATURES Introduction Materials and Methods Results Discussion Conclusions	61 61 62 63 69 72
VII	EFFECT OF NATURAL SUNLIGHT ON SPODOPTERA LITURA NUCLEOPOLYHEDROVIRUS Introduction Materials and Methods Results Discussion Conclusions	73 73 74 76 85 86
VIII	EFFECT OF ULTRAVIOLET (UV) LIGHT ON THE EFFICACY OF SPODOPTERA LITURA NUCLEOPOLYHEDROVIRUS Introduction Materials and Methods Results Discussion Conclusions	87 87 88 89 98 99
IX	STUDIES ON MATERIALS AS UV-B PROTECTANT OF SPODOPTERA LITURA NUCLEOPOLYHEDROVIRUS Introduction Materials and Methods Results Discussion Conclusions	101 101 102 104 113 114

CHAPTER		Page
х	ACTIVITY OF NATURAL SUNLIGHT PROTECTANTS OF SPODOPTERA LITURA NUCLEOPOLYHEDROVIRUS Introduction Materials and Methods Results Discussion Conclusions	115 115 116 119 128 129
XI	FIELD TRIAL WITH SINGLE APPLICATION OF SPODOPTERA LITURA NUCLEOPOLYHEDROVIRUS ON SAWI (BRASSICA RAPA) Introduction Materials and Methods Results Discussion Conclusions	130 130 131 137 144 145
XII	FIELD EVALUATION OF MULTIPLE SPAY APPLICATIONS OF SPODOPTERA LITURA NUCLEOPOLYHEDROVIRUS ON SAWI (BRASSICA RAPA) Introduction Materials and Methods Results Discussion Conclusions	146 146 147 150 160 162
XIII	GENERAL DISCUSSION	163
XIV	FUTURE RECOMMENDATIONS	173
XV	CONCLUSIONS	179
REFERENCE	S	181
APPENDICES		201
BIODATA		211

LIST OF TABLES

Table		Page
4.1	First Instar Larval Mortalities Infected with Different Concentrations of NPV	43
4.2	Second Instar Larval Mortalities Infected with Different Concentrations of NPV	43
4.3	Third Instar Larval Mortalities Infected with Different Concentrations of NPV	44
4.4	Fourth Instar Larval Mortalities Infected with Different Concentrations of NPV	44
4.5	LC ₅₀ Values of NPV for Different <i>S. litura</i> Larval Instars	47
4.6	Activity Ratio of LC_{50} Values of Different Larval Instars	47
4.7	LT ₅₀ Values of NPV for Different <i>S. litura</i> Larval Instars	48
4.8	Activity Ratio of LT_{50} Values of Different Larval Instars	48
5.1	Effect of Exposures to Different pH Suspensions Prior to Larval Ingestion on <i>S. litura</i> NPV Infectivity	56
5.2	LT ₅₀ values of <i>S. litura</i> NPV that had been Exposed to Different pH Suspensions	58
5.3	Activity Ratio of LT_{50} Values of NPVs those had been Exposed to Different pH Suspensions	58
6.1	Effect of Larval Rearing Temperature on S. litura NPV Infectivity	65

xvii

Table

6.2	Effect of Larval Rearing Temperature on $LT_{\rm 50}$ Value of NPV	67
6.3	Activity Ratio of LT_{50} Values at Different Larval Rearing Temperatures	67
7.1	UV Intensity, Temperature and Relative Humidity During Sunlight Exposure Periods	79
7.2	Larval Mortalities Infected with NPVs those had been Exposed to Direct Sunlight for Different Periods	80
7.3	Effect of Sunlight Exposure Periods on LT_{50} Values of NPV	82
7.4	Activity Ratio of LT ₅₀ Values of Different Sunlight Exposure Periods	83
8.1	Effect of UVs on NPV after 1 h of Exposure	91
8.2	Effect of UVs on NPV after 5 h of Exposure	91
8.3	Effect of UVs on NPV after 20 h of Exposure	92
8.4	Effect of UVs on NPV after 168 h of Exposure	92
8.5	Effect of UVs on NPV after 360 h of Exposure	93
9.1	Efficacy of Selected Materials Used as Protectants of NPV Against UV-B Inactivation	107
9.2	LT_{50} Values of NPV that had been Exposed to UV-B with Different Protectant Materials	111
9.3	Activity Ratio of LT_{50} Values of NPV Exposed to UV-B with Different Protectant Materials	112
10.1	Efficacy of Protectant Materials against Sunlight Inactivation of NPV	122
10.2	LT_{50} Values of NPVs those had been Exposed to Sunlight with Different Protectant Materials	126

Page

Table

10.3	Activity Ratio of LT_{50} Values of NPV that had been Exposed to Sunlight with Different Protectant Materials	127
11.1	Effect of Single Application of Different Formulations of NPV on Sawi Yield Infected with <i>S. litura</i>	140
11.2	Relative Efficiency (RE) of Different Formulations of <i>S. litura</i> NPV on Sawi Yield	141
11.3	Damage Index (%) of Different Treated Plots	142
11.4	Relative Efficiency (RE) of Leaf Damage of Different Formulations of NPV	143
12.1	Effect of Multiple Spray Applications on Sawi Yield	153
12.2	Relative Efficiency (RE) of Different Treatments on Sawi Yield	154
12.3	Damage Indices (%) of Different Treated Plots	155
12.4	Relative Efficiency (RE) of Different Treatments on Leaf Damage	156
Appendix 1	Summary of ANOVA for the Table 4.1: First Instar Larval Mortalities Infected with Different Concentrations of NPV	202
Appendix 2	Summary of ANOVA for the Table 4.2: Second instar Larval Mortalities Infected with Different Concentrations of NPV	202
Appendix 3	Summary of ANOVA for the Table 4.3: Third instar Larval Mortalities Infected with Different Concentrations of NPV	203
Appendix 4	Summary of ANOVA for the Table 4.4: Fourth instar Larval Mortalities Infected with Different Concentrations of NPV	203

Table

Page

		-
Appendix 5	Summary of ANOVA for the Table 5.1: Effect of Exposure to Different pH Suspensions Prior to Larval Ingestion on <i>S. litura</i> NPV Infectivity	204
Appendix 6	Summary of ANOVA for the Table 6.1: Effect of Larval Rearing Temperature on <i>S. litura</i> NPV Infectivity	204
Appendix 7	Summary of ANOVA for the Table 7.2: Larval Mortalities after Ingesting NPV that had been Exposed to Direct Sunlight for Different Periods	205
Appendix 8	Summary of ANOVA for the Table 8.1: Effect of Different UVs on NPV after 1 h of Exposure	205
Appendix 9	Summary of ANOVA for the Table 8.2: Effect of Different UVs on NPV after 5 h of Exposure	206
Appendix 10	Summary of ANOVA for the Table 8.3: Effect of Different UVs on NPV after 20 h of Exposure	206
Appendix 11	Summary of ANOVA for the Table 8.4: Effect of Different UVs on NPV after 168 h of Exposure	207
Appendix 12	Summary of ANOVA for the Table 8.5: Effect of Different UVs on NPV after 360 h of Exposure	207
Appendix 13	Summary of ANOVA for the Table 9.1: Efficacy of Selected Materials Used as Protectants of NPV Against UV-B Inactivation	208
Appendix 14	Summary of ANOVA for the Table 10.1: Efficacy of Protectant Materials Against Sunlight Inactivation of NPV	208
Appendix 15	Summary of ANOVA for the Table 11.1: Effect of Single Application of Different Formulations of NPV on Sawi Infected with S. <i>litura</i>	209
Appendix 16	Summary of ANOVA for the Table 11.3: Damage Index (%) of Different Treated Plots	209

Table		Page
Appendix 17	Summary of ANOVA for the Table 12.1: Effects of Multiple Spray Applications on Sawi Yield	210
Appendix 18	Summary of ANOVA for the Table 12.3: Damage Index (%) of Different Treated Plots	210

LIST OF FIGURES

Figure		Page
2.1	Different Stages of <i>S. litura</i> Life Cycle and Larval Identification Characters	7
2.2	Different Stages of S. litura NPV Development	23
2.3	NPV Infected S. litura Symptoms	26
4.1	Cumulative Mortalities of First Instar Larvae Infected with Different Concentrations of NPV (PIBs/mL)	45
4.2	Cumulative Mortalities of Second Instar Larvae Infected with Different Concentrations of NPV (PIBs/mL)	45
4.3	Cumulative Mortalities of Third Instar Larvae Infected with Different Concentrations of NPV (PIBs/mL)	46
4.4	Cumulative Mortalities of Fourth Instar Larvae Infected with Different Concentrations of NPV (PIBs/mL)	46
5.1	Cumulative Mortalities of Larvae Infected with NPV that had been Exposed to Different pH Suspensions	57
6.1	Cumulative Mortalities of Larvae Infected with NPVs those had been Reared at Different Temperatures	66
6.2	Relationship between NPV Infected Larval Rearing Temperature and Larval Mortality	68
7.1	Cumulative Mortalities (%) of Larvae Infected with NPV that had been Exposed to Sunlight	81
7.2	Relationship between Larval Mortality and Sunlight Exposure Period of the Virus before Infection	84
8.1	Cumulative Mortalities of Larvae Infected with UV-A Exposed Virus	94

Figure		Page
8.2	Cumulative Mortalities of Larvae Infected with UV-B Exposed Virus	94
8.3	Cumulative Mortalities of Larvae Infected with UV-C Exposed Virus	95
8.4	Cumulative Mortalities of Larvae Infected with UV Unexposed Virus	95
8.5	Relationship between Virus exposure to UV-A and Larval Mortality	96
8.6	Relationship between Virus exposure to UV-B and Larval Mortality	96
8.7	Relationship between Virus exposure to UV-C and Larval Mortality	97
9.1	Cumulative Mortalities of Larvae Infected with NPV that had been Exposed to UV-B with Different Protectant Materials	108
9.2	Reduction of NPV infectivity after the UV-B Exposure with Protectant Materials Compared with that of UV- B Unexposed NPV	109
9.3	Infectivity of NPV Exposed to UV-B with Protectant Materials Compared with that of UV-B Exposed NPV without any Protectant Material	110
10.1	Cumulative Mortalities of Larvae Infected with NPVs those had been Exposed to Sunlight with or without Protectant Materials	123
10.2	Reduction of NPV Infectivity after the Sunlight Exposure with Different Protectant Materials Compared with that of Unexposed Virus	124
10.3	Increase of NPV Infectivity after the Sunlight Exposure with Different Protectant Materials Compared with that of Virus Exposed without any Protectant Material	125

Figure		Page
11.1	Sawi Plants (<i>Brassica rapa</i>) were Grown in Traditional Way as the Local Farmers Grow	133
11.2	Plots were Separated by Pieces of Plywood to Protect the Larval Escape or Crossing to Other Plots	134
12.1	Sawi (<i>B. rapa</i>) were Grown in Traditional Way to investigate Multiple Spray Effects of Different Virus Formulations	148
12.2	Plots were Separated by Two Pieces of Plywood to Prevent Larval Escape or Crossing to Other Plots	148
12.3	Virus Treated Plot after Multiple Spray Applications	157
12.4	Virus + Crude Brown Sugar (1%) Treated Plot	157
12.5	Virus + Tinopal (0.5%) Treated Plot	158
12.6	Nurelle-D Treated Plot	158
12.7	Damaged Control Plot	159

