UNIVERSITI PUTRA MALAYSIA

SAGO STARCH AND ITS ACRYLAMIDE MODIFIED PRODUCTS AS COATING MATERIAL IN RECYCLED PAPER

WONG SIN YENG

FH 2001 4
SAGO STARCH AND ITS ACRYLAMIDE MODIFIED PRODUCTS
AS COATING MATERIAL IN RECYCLED PAPER

By

WONG SIN YENG

Thesis Submitted in Fulfilment of the Requirement for
the Degree of Master of Science in the Faculty of Forestry
Universiti Putra Malaysia

December 2001
Starches are usually used in recycled paper to improve the paper strength properties. Apart from the common starches available in the market, sago starch offers another alternative since it is cheaper. This study was carried out to determine the suitability of sago starch as paper additive. The basic properties i.e., pH, viscosity and solid content, of the unmodified (4%, 5% and 6% w/v basis) and modified sago starch [sago starch blended with acrylamide (38.5% grafting efficiency), sago starch grafted with acrylamide in an acidic condition and sago starch grafted with acrylamide in an alkaline condition] were determined. The starches were then used to coat laboratory made recycled papers. Various effects were studied, namely, starch concentrations, methods of sago starch modification, addition of different types of initiator and further curing at different temperatures.

Increasing the concentration of the unmodified sago starch solutions from 4% to 6% caused significant reduction in their pH values and increased both the viscosity and solid content of the solutions. The unmodified sago starch solution was very viscous
(>447 mPa.s) and were susceptible to biological attack after two days at ambient. The incorporation of acrylamide into sago starch through blending or grafting significantly reduced the viscosity of the solutions. All the modified starches remained biologically resistant even after 14 days of exposure to ambient.

Coating the paper with unmodified sago starch, generally improved both the physical and mechanical properties of the paper significantly as compared to the uncoated paper. Paper coated with unmodified sago starch at 5% concentration (US5) gave higher burst index (2.64 kPa.m²/g), better smoothness (950 ml/min) and lower porosity (35 ml/min) than those coated at 4% (US4) and 6% (US6). Amongst the three types of sago starch modification methods (blending, grafting in acidic condition and grafting in alkaline condition), blending gave superior performance when coated on the recycled paper, producing papers with very high folding endurance (110 times) and crush strength (128 N). Nevertheless, the smoothness and porosity of these papers were unsatisfactory due to insufficient curing shown by the micrographs. Fourier Transform Infrared Spectroscopy (FTIR) spectra show that the interaction between the blended acrylamide-starch solutions and the fibre was weak. The use of ceric ammonium nitrate (CAN) as initiator and further curing at 50°C however, had able to improve these properties. Amongst the five types of paper produced (uncoated, coated with unmodified sago starch, coated with sago starch blended with acrylamide, coated with sago starch grafted with acrylamide in acidic and alkaline condition), paper coated with blended acrylamide-sago starch gave the most desirable physical and mechanical properties as well as resistant towards biodegradation.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KANJI SAGU DAN PRODUK UBAH SUAIANNYA DENGAN AKRILAMIDA SEBAGAI BAHAN PENYALUT DALAM KERTAS KITAR SEMULA

Oleh

WONG SIN YENG

Disember 2001

Pengerusi : Dr. Paridah Md. Tahir
Fakulti : Perhutanan

Kanji biasanya digunakan dalam kertas kitar semula bagi memperbaiki kekuatan kertas. Selain daripada kanji-kanji yang biasa didapati di pasaran, kanji sagu menawarkan satu lagi sumber alternatif. Kajian ini telah dijalankan untuk menentukan kesesuaian kanji sagu sebagai additif kertas. Ciri-ciri asas (pH, kepekatan dan kandungan pepejal) untuk larutan kanji sagu yang tidak diubahsuai (4%, 5% dan 6% w/v basis) dan larutan kanji sagu yang telah diubahsuai (kanji sagu dicampur dengan akrilamida, pempolimeran cangkuk kanji sagu dengan akrilamida di dalam larutan asid dan alkali) telah ditentukan. Seterusnya, larutan kanji sagu akan disalut ke atas kertas kitar semula yang dihasilkan di dalam makmal. Pelbagai kesan-kesan telah dikaji seperti kepekatan kanji sagu, kaedah pengubahsuaiuntunk kanji sagu, penambahan ‘initiator’ dan suhu kematangan di suhu-suhu yang berbeza.

Penambahan kepekatan kanji sagu yang tidak diubahsuai menyebabkan pengurangan nilai pH, dan penambahan daam kedua-dua kepekatan dan kandungan pepejalnya. Larutan kanji sagu yang tidak diubahsuai mempunyai kepekatan yang tinggi (> 447
mPa.s) dan mudah diserangi kulat. Penambahan akrilamida ke dalam kanji sagu secara pencampuran atau pempolimeran cangkuk telah mengurangkan kepekatan larutan dengan bererti. Kesemua kanji sagu yang telah diubahsuai tahan ke atas serangan biologikal walaupun didedahkan selama 14 hari.

Penyalutan kertas dengan kanji sagu yang tidak diubahsuai, secara amnya, dapat mempertingkatkan sifat-sifat fizikal dan mekanikal kertas dibandingkan dengan kertas yang tidak disalut. Kertas yang disalut dengan kanji yang tidak diubahsuai pada kepekatan 5% (US5) memberi indeks ketembusan (2.64 kPa.m²/g), kelicinan (950 ml/min) dan ketelusan (35 ml/min) yang lebih baik dibandingkan dengan kertas yang dilitupi kanji sagu yang tidak diubahsuai pada tahap kepekatan 4% (US4) dan 6% (US6). Di antara tiga jenis kaedah pengubahsuai kanji (pencampuran terus, pempolimeran cangkuk di dalam acid dan alkali). Pencampuran terus memberi keputusan yang lebih baik dengan keupayan lipatan (110 kali) dan 'crush' (128 N) yang sangat tinggi. Akan tetapi, pencampuran terus memberi sifat kelicinan dan ketelusan yang kurang memuaskan seperti yang dilihat di dalam mikrograf. Spektra Fourier Transform Infrared Spectroscopy (FTIR) menunjukkan hubungan yang lemah di antara larutan pencampuran terus akrilamida- kanji sagu dengan gentian. Walaubagaimanapun, melalui penggunaan 'ceric ammonium nitrate' (CAN) sebagai 'initiator' dan suhu kematangan pada 50°C, sifat-sifat ini telah dapat dipertingkatkan. Di antara lima jenis kertas yang dihasilkan (tidak disalut, disalut dengan kanji sagu yang tidak diubahsuai, disalut dengan kanji sagu yang dicampurkan terus dengan akrilamida, disalut dengan pempolimeran cangkuk kanji sagu dengan akrilamida di dalam acid dan alkali), kertas yang dilitup menggunakan
pencampuran terus memberi sifat fizikal dan mekanikal yang lebih baik serta sifat ketahanan terhadap kulat.
ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisory committee consisting of Dr. Paridah Md. Tahir, Prof. Dr. Wan Md. Zin Wan Yunus and Dr. Sarani Zakaria for their guidance and comments throughout the course of this study.

Special thanks are due to Universiti Putra Malaysia and ITTO for sponsoring my study. Many thanks are also due to the staff of Faculty of Forestry especially to Mr. Abd. Latib Senin from Physiology Laboratory for his assistance in using the equipments in his lab and to Mr. Harmaen Ahmad Saffian for the unlimited usage of Wood Chemistry Laboratory. My thanks are also due to the staff especially to Kak Ros, in the Department of Chemistry, Faculty of Science and Environmental Studies, UPM for their assistance. I also wish to express my deepest gratitude to Dr. Nik Ghazali Nik Salleh of MINT for his permission to use the facilities in MINT and Mr. Yong Fook Onn of Pulp and Paper Laboratory of FRIM for helping out in pulp and paper evaluations. Acknowledgement is also due to those involved directly or indirectly in the completion of this study.

Lastly, I would like to dedicate my deepest gratitude to my family and friends for their support and encouragement.
I certify that an Examination Committee met on 5th December 2001 to conduct the final examination of Wong Sin Yeng on her Master of Science thesis entitled “Sago Starch and its Acrylamide Modified Products as Coating Material in Recycled Paper” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Jalaluddin Harun, Ph.D.
Lecturer,
Faculty of Forestry,
Universiti Putra Malaysia.
(Chairman)

Paridah Md. Tahir, Ph.D.
Lecturer,
Faculty of Forestry,
Universiti Putra Malaysia.
(Member)

Wan Md. Zin Wan Yunus, Ph.D.
Professor/Dean,
Faculty of Science and Environmental Studies,
Universiti Putra Malaysia.
(Member)

Sarani Zakaria, Ph.D.
Lecturer,
School of Applied Physics,
Faculty of Science and Technology,
Universiti Kebangsaan Malaysia.
(Member)

MOHD. GHAZALI MOHAYIDIN, Ph.D.,
Professor/Deputy Dean of Graduate School,
Universiti Putra Malaysia.

Date: 7 DEC 2001
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Master of Science.

AINI IDERIS, Ph.D.,
Professor,
Dean of Graduate School,
Universiti Putra Malaysia.

Date: 10 JAN 2002
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

WONG SIN YENG

Date: 7 DECEMBER 2001
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>ii</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
</tbody>
</table>

CHAPTER

1 **INTRODUCTION**
1.1 General Review 1
1.2 Justification of the Study 4
1.3 Objectives of the Study 5

2 **LITERATURE REVIEW**
2.1 Sago Starch 6
2.1.1 General Review 6
2.1.2 Physical and Chemical Properties 7
2.1.3 Modification of Sago Starch 13
2.1.4 Graft Co-polymerisation 14
2.1.5 Availability and Economic Importance of Sago in Malaysia 17
2.2 Acrylamide 18
2.3 Paper Recycling 22
2.3.1 General Review 22
2.3.2 Changes in Paper and Fibres During Recycling 24
2.3.3 Current Status of Recycled Paper Production in Malaysia 27
2.4 Paper Strength Additives 28
2.5 Application of Starch in Papermaking 31

3 **MATERIALS AND METHODS**
3.1 Introduction 34
3.2 Materials 34
3.3 Sago Starch Physical Properties Assessment 35
3.3.1 pH Measurement 35
3.3.2 Determination of Moisture Content 36
3.3.3 Determination of Ash Content 36
3.3.4 Viscosity Measurement 37
3.3.5 Determination of Protein 37
3.4 Part I: Preparation of Sago Starch Solutions 38
3.4.1 Preparation of Unmodified Sago Starch Solutions 38
3.4.2 Modification of Sago Starch 39
3.4.3 Evaluation of Sago Starch 40
3.5 Part 2: Paper Making, Coating and Evaluation of the Coated Paper
3.5.1 Handsheet Making 41
3.5.2 Coating of Paper 42
3.5.3 Curing of Coated Paper 43
3.5.4 Evaluation of Mechanical and Physical Properties of Paper 43
3.5.5 Characterisation of Paper 48
3.6 Statistical Analysis 50

4 RESULTS AND DISCUSSION 52
4.1 Basic Properties of Sago Starch 53
4.1.1 pH Value 53
4.1.2 Moisture Content 53
4.1.3 Ash Content 54
4.1.4 Viscosity Measurement 54
4.1.5 Protein Measurement 55
4.2 Part I: Properties of Unmodified and Modified Sago Starch Solutions 55
4.2.1 Effect of Concentrations on the Properties of Unmodified Sago Starch Solutions 55
4.2.2 Effect of Types of Modification on the Properties of Sago Starch 59
4.3 Part II: Utilisation of Sago Starch as Coating Material on Paper Made from Recycled Pulp 64
4.3.1 Effects of Sago Starch Concentrations on the Recycled and Filter Paper Properties 64
4.3.2 Effects of Types of Starch Modification on the Paper Properties 80
4.3.3 Effects of Initiators Addition in the Solution of Blending Sago Starch with Acrylamide on the Recycled Paper properties 92
4.3.4 Effects of Further Curing on the Coated Recycled Paper Properties 95

5 CONCLUSIONS AND RECOMMENDATIONS 102
5.1 Conclusions 102
5.2 Recommendations 104

REFERENCES 105
APPENDIX A 115
VITA 118
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Characteristics and General Properties of Commercial Starches</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Physical Properties of Acrylamide</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>Status of Paper and Paperboard, Malaysia 1997-1998 (Metric Tons)</td>
<td>27</td>
</tr>
<tr>
<td>3.1</td>
<td>List of Materials Used in This Study and Their Manufacturers</td>
<td>35</td>
</tr>
<tr>
<td>4.1</td>
<td>Quality of Sago Starch Used in This Study</td>
<td>53</td>
</tr>
<tr>
<td>4.2</td>
<td>Basic Properties of Unmodified Sago Starch</td>
<td>57</td>
</tr>
<tr>
<td>4.3</td>
<td>Basic Properties of Modified Sago Starch</td>
<td>60</td>
</tr>
<tr>
<td>4.4</td>
<td>Summary of Statistical Analysis of the Influence of Starch Concentrations,</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Types of Modification, The Presence of Initiator and Curing Method on the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Properties of the Coated Recycled Paper</td>
<td></td>
</tr>
<tr>
<td>A.1</td>
<td>Table A.1: Properties of Recycled Paper Coated With Sago Starch at Different</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>Concentrations</td>
<td></td>
</tr>
<tr>
<td>A.2</td>
<td>Table A.2: Properties of Recycled Paper Coated With Different Methods of</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>Sago Starch Modification</td>
<td></td>
</tr>
<tr>
<td>A.3</td>
<td>Table A.3: Properties of Recycled Paper Coated With Sago Starch Blended</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>With Acrylamide at Different Initiators</td>
<td></td>
</tr>
<tr>
<td>A.4</td>
<td>Properties of Recycled Paper Coated With Sago Starch Blended</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>With Acrylamide at Different Levels of Curing</td>
<td></td>
</tr>
<tr>
<td>A.5</td>
<td>Properties of Filter Paper Coated With Sago Starch at Different Levels of</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Concentration</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Granules of Various Starches (a) Corn (b) Wheat (c) Rice (d) Tapioca (e) Sago (f) Potato (Jarowenko, 1970)</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Segment of Starch Molecules Showing Structure of Linear Amylose Component (Hofreiter, 1981)</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Polymeric Structure of Starches (a) Amylose (b) Amylopectin</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>Interfacial Mixing in Polymer Blends</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>Mechanism of Graft Copolymerisation</td>
<td>16</td>
</tr>
<tr>
<td>2.6</td>
<td>Effect of Repeated Recycling on Refined Chemical Pulps (Robert, 1996)</td>
<td>25</td>
</tr>
<tr>
<td>3.1</td>
<td>Illustration of the Coating Machine (P1-1210 Film Coater)</td>
<td>43</td>
</tr>
<tr>
<td>3.2</td>
<td>Cutting Pattern of the Paper Samples</td>
<td>44</td>
</tr>
<tr>
<td>4.1</td>
<td>Appearance of Unmodified Sago Starch Solutions at Different Concentrations [From Left: 4%, 5% and 6% Concentration (w/w)]</td>
<td>59</td>
</tr>
<tr>
<td>4.2</td>
<td>Appearance of Modified Sago Starch [From Left: (US) Unmodified Sago Starch, B (Sago Starch Blended with Acrylamide), AC (Sago Starch Grafted with Acrylamide at Acidic Condition) and AL (Sago Starch Grafted with Acrylamide Adjusted to Alkaline Condition)]</td>
<td>61</td>
</tr>
<tr>
<td>4.3</td>
<td>FTIR Spectra of Sago Starch, Acrylamide and Sago Starch Grafted with Acrylamide</td>
<td>63</td>
</tr>
<tr>
<td>4.4</td>
<td>Folding Endurance for Paper Coated with Unmodified Sago Starch at Different Concentrations (Control = Uncoated Paper, US4 = Paper Coated with 4% Concentration, US5= Paper Coated with 5% Concentration, US6= Paper Coated with 6% Concentration)</td>
<td>67</td>
</tr>
<tr>
<td>4.5</td>
<td>Stiffness Strength for Paper Coated with Unmodified Sago Starch at Different Concentrations (Control = Uncoated Paper, US4 = Paper Coated with 4% Concentration, US5= Paper Coated with 5% Concentration, US6= Paper Coated with 6% Concentration)</td>
<td>67</td>
</tr>
</tbody>
</table>
4.6 Burst Index for Paper Coated with Unmodified Sago Starch at Different Concentrations (Control = Uncoated Paper, US4 = Paper Coated with 4% Concentration, US5= Paper Coated with 5% Concentration, US6= Paper Coated with 6% Concentration)

4.7 Tensile Index for Paper Coated with Unmodified Sago Starch at Different Concentrations (Control = Uncoated Paper, US4 = Paper Coated with 4% Concentration, US5= Paper Coated with 5% Concentration, US6= Paper Coated with 6% Concentration)

4.8 Ring Crush Strength for Paper Coated with Unmodified Sago Starch at Different Concentrations (Control = Uncoated Paper, US4 = Paper Coated with 4% Concentration, US5= Paper Coated with 5% Concentration, US6= Paper Coated with 6% Concentration)

4.9 Tear Index for Paper Coated with Unmodified Sago Starch at Different Concentrations (Control = Uncoated Paper, US4 = Paper Coated with 4% Concentration, US5= Paper Coated with 5% Concentration, US6= Paper Coated with 6% Concentration)

4.10 Smoothness for Paper Coated with Unmodified Sago Starch at Different Concentrations (Control = Uncoated Paper, US4 = Paper Coated with 4% Concentration, US5= Paper Coated with 5% Concentration, US6= Paper Coated with 6% Concentration)

4.11 Porosity for Paper Coated with Unmodified Starch at Different Concentrations (Control = Uncoated Paper, US4 = Paper Coated with 4% Concentration, US5= Paper Coated with 5% Concentration, US6= Paper Coated with 6% Concentration)

4.12 SEM Showing (a) Surface of Control (Uncoated Recycled Paper) (b) Surface of Recycled Paper Coated with US5 (5% Concentration). Magnification: 300X

4.13 SEM Showing Cross Sectional View of (a) Control (Uncoated Recycled Paper) (b) Recycled Paper Coated with US4 (4% Concentration) (c) Recycled Paper Coated with US5 (5% Concentration) (d) Recycled Paper Coated with US6 (6% Concentration). Magnification: 170X. (Surface Facing Down Represents the Coated Surface)

4.14 SEM Pictures Showing Cross Sectional View of (a) Control (Uncoated Recycled Paper) (b) Recycled Paper Coated with US4 (4% Concentration) (c) Recycled Paper Coated with US5 (5% Concentration) (d) Recycled Paper Coated with US6 (6% Concentration). Magnification: 1000X (Surface Facing Down Represents the Coated Surface)
4.15 Starch Content for Recycled Paper Coated with Sago Starch at Different Concentrations (Control = Uncoated Paper, US4 = Paper Coated with 4% Concentration, US5= Paper Coated with 5% Concentration, US6= Paper Coated with 6% Concentration)

4.16 FTIR Spectra of Recycled Paper Coated with Unmodified Sago Starch at Different Levels of Concentration (Control = Uncoated Paper, US4 = Paper Coated with 4% Concentration, US5= Paper Coated with 5% Concentration, US6= Paper Coated with 6% Concentration)

4.17 Folding Endurance for Recycled Paper Coated with Different Methods of Sago Starch Modification (US= Unmodified Sago Starch, B= Sago Starch Blended with Acrylamide, AC = Sago Starch Grafted with Acrylamide at Acidic Condition, AL= Sago Starch Grafted Acrylamide and Adjusted to Alkaline Condition)

4.18 Stiffness Strength for Recycled Paper Coated with Different Methods of Sago Starch Modification (US= Unmodified Sago Starch, B= Sago Starch Blended with Acrylamide, AC = Sago Starch Grafted with Acrylamide at Acidic Condition, AL= Sago Starch Grafted Acrylamide and Adjusted to Alkaline Condition)

4.19 Burst Index for Recycled Paper Coated with Different Methods of Sago Starch Modification (US= Unmodified Sago Starch, B= Sago Starch Blended with Acrylamide, AC = Sago Starch Grafted with Acrylamide at Acidic Condition, AL= Sago Starch Grafted Acrylamide and Adjusted to Alkaline Condition)

4.20 Tensile Index for Recycled Paper Coated with Different Methods of Sago Starch Modification (US= Unmodified Sago Starch, B= Sago Starch Blended with Acrylamide, AC = Sago Starch Grafted with Acrylamide at Acidic Condition, AL= Sago Starch Grafted Acrylamide and Adjusted to Alkaline Condition)

4.21 Crush Strength for Recycled Paper Coated with Different Methods of Sago Starch Modification (US= Unmodified Sago Starch, B= Sago Starch Blended with Acrylamide, AC = Sago Starch Grafted with Acrylamide at Acidic Condition, AL= Sago Starch Grafted Acrylamide and Adjusted to Alkaline Condition)

4.22 Tear Index for Recycled Paper Coated with Different Methods of Sago Starch Modification (US= Unmodified Sago Starch, B= Sago Starch Blended with Acrylamide, AC = Sago Starch Grafted with Acrylamide at Acidic Condition, AL= Sago Starch Grafted Acrylamide and Adjusted to Alkaline Condition)
4.23 Smoothness for Recycled Paper Coated with Different Methods of Sago Starch Modification (US = Unmodified Sago Starch, B = Sago Starch Blended with Acrylamide, AC = Sago Starch Grafted with Acrylamide at Acidic Condition, AL = Sago Starch Grafted Acrylamide and Adjusted to Alkaline Condition) 84

4.24 Porosity for Recycled Paper Coated with Different Methods of Sago Starch Modification (US = Unmodified Sago Starch, B = Sago Starch Blended with Acrylamide, AC = Sago Starch Grafted with Acrylamide at Acidic Condition, AL = Sago Starch Grafted Acrylamide and Adjusted to Alkaline Condition) 84

4.25 SEM Pictures of Recycled Paper Surface (a) US (Unmodified Sago Starch) (b) B (Sago Starch Blended with Acrylamide) (c) AC (Sago Starch Grafted with Acrylamide at Acidic Condition) (d) AL (Sago Starch Grafted with Acrylamide and Adjusted to Alkaline Condition). Magnification: 300X 86

4.26 SEM Pictures of Recycled Paper Cross Sectional View of (a) US (Unmodified Sago Starch) (b) B (Sago Starch Blended with Acrylamide) (c) AC (Sago Starch Grafted with Acrylamide at Acidic Condition) (d) AL (Sago Starch Grafted with Acrylamide and Adjusted to Alkaline Condition). Magnification: 170X (Surface Facing Down Represents the Coated Surface) 87

4.27 SEM Pictures of Recycled Paper Cross Sectional View of (a) US (Unmodified Sago Starch) (b) B (Sago Starch Blended with Acrylamide) (c) AC (Sago Starch Grafted with Acrylamide at Acidic Condition) (d) AL (Sago Starch Grafted with Acrylamide and Adjusted to Alkaline Condition). Magnification: 1000X (Surface Facing Down Represents the Coated Surface) 88

4.28 Starch Content for Recycled Paper Coated with Different Methods of Sago Starch Modification (US = Unmodified Sago Starch, B = Sago Starch Blended with Acrylamide, AC = Sago Starch Grafted with Acrylamide at Acidic Condition, AL = Sago Starch Grafted Acrylamide and Adjusted to Alkaline Condition) 90

4.29 FTIR Spectra of Recycled Paper Coated with Different Methods of Sago Starch Modification (US = Unmodified Sago Starch, B = Sago Starch Blended with Acrylamide, AC = Sago Starch Grafted with Acrylamide at Acidic Condition, AL = Sago Starch Grafted Acrylamide and Adjusted to Alkaline Condition) 91

4.30 Folding Endurance for Paper Coated With Sago Starch Blended with Acrylamide at Different Initiators (CAN = Ceric Ammonium Nitrate, PP = Potassium Persulfate) 93

xvii
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.31</td>
<td>Stiffness Strength for Recycled Paper Coated with Sago Starch Blended with Acrylamide at Different Initiators (CAN = Ceric Ammonium Nitrate, PP= Potassium Persulfate)</td>
</tr>
<tr>
<td>4.32</td>
<td>Burst Index for Recycled Paper Coated with Sago Starch Blended With Acrylamide at Different Initiators (CAN = Ceric Ammonium Nitrate, PP= Potassium Persulfate)</td>
</tr>
<tr>
<td>4.33</td>
<td>Tensile Index for Recycled Paper Coated with Sago Starch Blended with Acrylamide at Different Initiators (CAN = Ceric Ammonium Nitrate, PP= Potassium Persulfate)</td>
</tr>
<tr>
<td>4.34</td>
<td>Crush Strength for Recycled Paper Coated Sago Starch Blended with Acrylamide at Different Initiators (CAN = Ceric Ammonium Nitrate, PP= Potassium Persulfate)</td>
</tr>
<tr>
<td>4.35</td>
<td>Tear Index for Recycled Paper Coated with Sago Starch Blended with Acrylamide at Different Initiators (CAN = Ceric Ammonium Nitrate, PP= Potassium Persulfate)</td>
</tr>
<tr>
<td>4.36</td>
<td>Smoothness for Recycled Paper Coated with Sago Starch Blended with Acrylamide at Different Initiators (CAN = Ceric Ammonium Nitrate, PP= Potassium Persulfate)</td>
</tr>
<tr>
<td>4.37</td>
<td>Porosity for Recycled Paper Coated with Sago Starch Blended with Acrylamide at Different Initiators (CAN = Ceric Ammonium Nitrate, PP= Potassium Persulfate)</td>
</tr>
<tr>
<td>4.38</td>
<td>FTIR Spectra of Recycled Paper Coated with Sago Starch Blended with Acrylamide at Different Initiators (CAN = Ceric Ammonium Nitrate, PP= Potassium Persulfate)</td>
</tr>
<tr>
<td>4.39</td>
<td>Folding Endurance for Recycled Paper Coated with Sago Starch Blended with Acrylamide at Different Levels of Curing</td>
</tr>
<tr>
<td>4.40</td>
<td>Stiffness Strength for Recycled Paper Coated with Sago Starch Blended with Acrylamide at Different Levels of Curing</td>
</tr>
<tr>
<td>4.41</td>
<td>Burst Index for Recycled Paper Coated with Sago Starch Blended with Acrylamide at Different Levels of Curing</td>
</tr>
<tr>
<td>4.42</td>
<td>Tensile Index for Recycled Paper Coated with Sago Starch Blended with Acrylamide at Different Levels of Curing</td>
</tr>
<tr>
<td>4.43</td>
<td>Crush Strength for Recycled Paper Coated with Sago Starch Blended with Acrylamide at Different Levels of Curing</td>
</tr>
<tr>
<td>4.44</td>
<td>Tear Index for Recycled Paper Coated with Sago Starch Blended with Acrylamide at Different Levels of Curing</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>4.45</td>
<td>Smoothness for Recycled Paper Coated with Sago Starch Blended with Acrylamide at Different Levels of Curing</td>
</tr>
<tr>
<td>4.46</td>
<td>Porosity for Recycled Paper Coated with Sago Starch Blended with Acrylamide at Different Levels of Curing</td>
</tr>
<tr>
<td>4.47</td>
<td>FTIR Spectra of Recycled Paper Coated with Sago Starch Blended with Acrylamide (Initiator PP) Cured at Different Levels of Temperatures</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 General Review

Utilisation of recycled fibre in the paper industry is not new. Even though it has become commercial since 1800, serious investigation on this material had only started by late 1960's (Howard, 1991). Today, paper recyclability is the main issue in pulp and paper industries (Capps, 1994; Mouyal, 1994; Uutela and Black, 1990).

There are four important driving forces for recycled paper utilisation. The first being the environmental issues such as the growing shortage of landfill sites, the limited/prohibition of burning of paper waste and the saving of energy resources (Mouyal, 1994; Virtanen and Nilsson, 1993). The second is the economic factor, especially in countries or regions where forest resource is scarce. Recycled fibre in such countries is very often cheaper than virgin pulp. The third is the increase in quality of recycled fibre due to the latest developments in recycling technology which has enabled recycling mills to produce a very high quality recycled pulp with properties similar to that of virgin pulp (McCool, 1991). Finally, legislation has been passed in numerous countries which set minimum requirements for the recycled fibre content in certain products and mandatory collection schemes (Capps, 1994).

There are at present 18 paper mills including one integrated pulp and paper mill in operation in Malaysia. Out of this number, 16 mills use recycled paper either from
old newspaper, or magazine paper or corrugated liners. In 1999 alone, about 850,000 metric ton recycled paper was produced in Malaysia (Anon, 2000).

However, the use of recycled pulp has its limitation, particularly to the strength of the paper. Additive is thus used to strengthen the paper. In some cases it is not possible to add a chemical additive to the dilute pulp slurry and achieve the desired paper property. Hence, a number of functional additives are applied to the surface of preformed paper. Starch, one of the more popular additives, has become more important as strength additive, either applied internally or on the surface (Spence, 1990).

Starch is the principal food reserve polysaccharide in the plant kingdom. It forms the major source of carbohydrates in the human diet and is therefore of great economic importance. Since ancient times conversion of starch to a variety of products has been known to many populations. Breadmaking and fermented beverages are among the early technologies of human civilisation (Charles, 1953; Ralph, 1950; Jones, 1983). Starch, taken from grains, tubers and roots has been consumed as food and feed for centuries. Starches are also utilised in several other non-food sectors such as in paper industry which consumes a significant amount of starch annually. In North America alone, the total volume of industrial starches consumed in paper and papermills for the year of 1995 is over 3 billion pounds at industrial capacity. The total volume of the industrial starches in paper and boardmaking is USD400-USD425 million (Anon, 1995).
Although the current consumption of starch by the paper industry is high, many other synthetic materials are available that can substitute for starch are available. Recent advances in papermaking technology have made it easier to use such substitutes at a specific cost/performance basis. This is a serious challenge to the starch industry. At present, this challenge can be met by many advantages that starch provides. Starch is a natural polymer with high molecular weight that can be depolymerised with a great degree of control. It is a hydrophilic polymer that disperses in water and attaches to cellulose fibres and pigments through hydrogen bonding. Starch has hydroxyl groups that allow a wide range of substitution or oxidation reactions to adjust its rheological characteristics and to eliminate retrogradation. Cationic, anionic, or amphoteric groups can be added to induce specific charges. Starch may be grafted to produce new materials with properties that combine the advantages of natural and synthetic polymer (BeMiller, 1997).

The principle material used for surface treatment in commercial paper mills is starch. Other materials for this purpose include strength additives [poly (vinyl alcohol), carboxymethylcellulose and natural gums] and sizing agent (wax emulsions or blends of these emulsions with rosin size, styrene-maleic anhydride copolymers, polyurethane resins and fluorochemical sizes). Because of its high amylose content, sago starch has some potential as additive (Anon, 1999). Nevertheless, sago starch is easily hydrated and swelled, lose viscosity and produce very cohesive pastes (Bujang and Ahmad, 2000). Thus it has to be modified prior to usage. Modified sago starch has improved properties such as viscosity, gelling time, and molecular weight which are vitally crucial for application as paper additive.
Since in its natural form sago starch has limited number of uses, chemical modification is crucial in meeting the certain requirements such as viscosity. Some of these modifications are blending and grafting of sago starch with other synthetic monomer to improve the viscosity, as well as the durability.

1.2 Justification of the Study

Synthetic paper additives were used commercially since the early 1940's. They are generally added at levels of 5% or more and are used primarily for specialty paper grades (Alince et al., 1976). Polymers of polyacrylamide were soon found to have many unique properties that made them especially effective as dry strength additives. Various other compositions have been reported as having dry strength-properties. Most of these can be classified as being cationic non-acrylamide-containing polymers such as polyethylenimine, vinyl pyridine, vinyl sulfonium, polyacrylic hydrazide and condensation polymers of polyamines, ketones and aldehydes (Allan and Reif, 1971; Quere and Guiroy, 1973; Humiston et al., 1964; Machida et al., 1965; Chan and Guitard, 1977).

Naturally occurring polysaccharides such as starches and gums were the first commercially used dry strength additives, and the products and their derivatives are still widely used today. However, the usage of these natural polymers is hindered by the preference and wide consumption for synthetic additives. Therefore, the modification of natural polymers such as sago starch is a promising method for the preparation of new materials. This enables one to introduce special properties and
broaden the field of the potential application of those abundance biopolymers. Two
of such methods are through the incorporation of these types of biopolymers (starch)
with synthetic monomers. Blending and grafting of sago starch with synthetic
monomers such as styrene, methylnethacrylate and acrylamide have improved
several properties of the sago starch. Harrizzeandi (1998), Pang (1999) and
Puspamalar (1999) reported that incorporating sago starch with synthetic monomers
reduces the swelling behaviour and increases the molecular weight of the starch.

It is hoped that this work could provide the impetus to use sago starch as a
complimentary additive to the local paper industry. Through this study it is hoped
that sago starch could establish another alternative usage that would help to
accelerate development of sago industry in Malaysia.

1.3 Objectives of the Study

The main objectives of the study are:

♦ To investigate the suitability of sago starch as an additive to improve the
 mechanical and physical properties in recycled paper

♦ To determine the effects of modification with acrylamide on the properties of
 starch solutions and the paper coated with it

♦ To determine suitable curing methods for sago starch - coated paper