

UNIVERSITI PUTRA MALAYSIA

COMPUTER AIDED DESIGN AND ANALYSIS IN DIE/MOULD OF CASTING PROCESS

MD. SHAMSUL ABEDIN

FK 1997 5

COMPUTER AIDED DESIGN AND ANALYSIS IN DIE/MOULD OF CASTING PROCESS

MD. SHAMSUL ABEDIN

MASTER OF SCIENCE UNIVERSITY PUTRA MALAYSIA

1997

ж.

COMPUTER AIDED DESIGN AND ANALYSIS IN DIE/MOULD OF CASTING PROCESS

By

MD. SHAMSUL ABEDIN

Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science in the Faculty of Engineering, University Putra Malaysia

September 1997

DEDICATED TO

My parents

AKNOWLEDGEMENTS

The author wishes to express his profound appreciation and gratitude to the chairman of the supervisory committee, Dr. Shamsuddin bin Sulaiman, Head of the Mechanical and Manufacturing Engineering Department for his supervision, guidance and constructive suggestions and comments throughout the duration of the project.

The author is also indebted to the members of the supervisory committee, Mr. Mohd. Rasid Osman and Dr. A. M. S. Hamouda for their affectionate guidance, prompt decision and valuable assistance during this period. Special gratitude to Dr. A. M. S. Hamouda for useful suggestions and supplying valuable research materials.

Sincere thanks to Mr. Tajul Ariffin, Mr. Ahmad Saiffuddin, Mr. Suleiman, Mrs Ruffina Rouf and Mrs. Rohana Tajul of the Engineering Faculty and the member of the other laboratories for their technical support. A special thanks goes to my friends and fellow colleagues for their encouragement.

Finally the author acknowledges the assistance rendered by the respective Lecturers, Staffs of the Graduate School and Staffs of the University Putra Malaysia, too numerous to mention individually, in many direct and indirect way.

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS	iii
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF PLATES	xi
LIST OF ABBREVIATIONS AND NOMINCLATURES	xii
ABSTRACT	xiv
ABSTRAK	xv

CHAPTER

Ι	INTRODUCTION1
	Project Background1
	Computer Involvement in Design and Analysis
	Integration of Computer Aided Design and Computer Aided
	Analysis
	Concept of Die/Mould Design in CAD
	Problem Definition and Scope of Work
	Objectives of the Present Work
	Layout of Thesis
Π	LITERATURE REVIEW8
	Computer Aided Design (CAD)10
	Design Specification Processing
	Find out the Axisymmetric Sequence
	Initial Geometric Modelling
	Geometric Modelling Schemes
	Wire – Frame Geometry
	Surface Representation Scheme
	Solid Modelling14
	Mesh Generation
	Creating Database
	Transferring and Extracting16
	IGES Format17
	DXF Format17
	Graphical Aids for Pre-processing
	Computer Aided Analysis
	Graphical Aids for Post-processing
	Die/Mould Design Considerations

	Die/Mould Design	20
	Factors of Die/Mould Failure	22
	Failure Due to Design	23
	Failure Due to Poor Heat Treatment	
	Alignment of Die/Mould	24
	Draft Angle Consideration	24
	Runner Systems Consideration	25
	Steps for Mechanical Surface Treatment	23
	Thermal Stresses in Die/Mould	
		20
III	MATHEMATICAL MODELLING	27
	Fluid Network Formulations	
	Matrix Representation of the Mod	
	Modelling Technique for Feeding System	
	Thermal Network Formulation	
	Matrix Representation	
	Modelling Technique for Thermal Exchange System	37
		,
IV	SOFTWARE DEVELOPMENT FOR CASTING PROCES	SS 43
	Mesh Generation	44
	Quadratic Shape	
	Curved Shape	
	Tag Generation for the Process	45
	Fluid Network	45
	Pre-processing Program	
	Fluid Network Program	
	Generation of the Data File for Graphs	
	Four Node Graphs	47
	Single Node Graph	48
	Thermal Network	48
	Pre-processing Program	48
	Thermal Network Program	<u>4</u> 9
	Generation of the Data File for Granhs	40
	Four Node Graphs	
	Single Node Graph	50
V	CASTING SIMULATION RESULTS AND DISCUSSION	64
	Physical Properties of the Die/Mould and Filling Material	65
	Model Shape for the Analysis	65
	Fluid Filling Progress for Model Shape	65
	Comparison between Different Draft Angles of the Runner Sv	stem
	and Flow Rate	
	Thermal Analysis	

	Model Mesh.	
	Temperature Response	68
	Temperature Contours.	
	Thermal Stresses in Die/Mould	69
5711	CONCLUSIONS AND DECOMMEND ATIONS	01
VII	CUNCLUSIONS AND RECOMMENDATIONS	
	Conclusions	91
	Recommendations	93
REFERENC	CES	
APPENDIC	 ES	
VITA		150
PUBLICAT	IONS	151

·

LIST OF TABLE

Table		F	Page	
1	Physical Property for Die and Cast Materials	6	55	

LIST OF FIGURES

Figure

1	Stage of Finite Element Pre-processing	19
2	Fluid Flow in a Cylindrical Volume	39
3	Laminar and Turbulent Velocity Profile	39
4	Steps of the Conceptual Design Phase	40
5	Mesh Generation Steps	40
6	3D View of the Analysed Model	41
7	2D Representation of the Model Mesh	41
8	Heat Transfer Mechanisms	42
9	The Network Diagram Representation of Homogeneous Link, Interface Link and Coolant Link	42
10	Thermal Network Diagram Schematic	42
11	Mesh Generation Process Layout	51
12	Tag Generation Process Layout	51
13	Pre-processing Program for Fluid Network	52
14	Flow Chart for Fluid Filling Process	53
15	Data Extraction Layout	54
16	Pre-processing Program for Thermal Network	55
17	Flow Chart of Thermal Network Program Process	56
18	Shows the Proposed Model for the Analysis	71
19	Liquid Metal Progress for the Flow Rate of 0.009 m ³ /sec	74
20	Pressure Variation at Node 1 with Time for the Flow Rate m^3 /sec	74
21	Metal Filling Percentage Vs Time for the Flow Rates 0003 m ³ /sec	75

22	Number of Element Filled by the Fluid Vs Time for Flow Rate of	
	0.003 m ³ /sec	75
23	Comparison of Flow Rate Vs Pressure for Different Draft Angles	76
24	Comparison of Flow Rate Vs Time for Different Draft Angles	76
25	Model Mesh for the Core of Die/Mould	77
26	Temperature Curve at Interface Nodes	78
27	Temperature Curve at Cast And Mould	78
28	Temperature Curve at Different Physical Condition	79
29	Temperature Curve at Node 281 And 193	79
30	Temperature Curve at Interface Link Nodes	80
31	Temperature Distribution During the Casting Process	80
32	Temperature Distribution Contour at Time 0.0 sec	81
33	Temperature Distribution Contour at Time 1.0 sec	81
34	Temperature Distribution Contour at Time 2.0 sec	82
35	Temperature Distribution Contour at Time 3.0 sec	82
36	Temperature Distribution Contour at Time 4.0 sec	83
37	Temperature Distribution Contour at Time 5.0 sec	83
38	Temperature Distribution in Die from Cast Material in First Trial	84
39	Axisymmetric Temperature Contour for the Core	85
40	Shaded Contour of Thermal Stress of the Axisymmetric Core	86
41	Thermal Stress Contour with the Results	87
42	3D Wire-Frame and Solid Model of the Mesh	88
43	Shows the Temperature Change along B-A Section	89
44	Shows the Temperature Change along C-D Section	89
45	Shows the Thermal Stresses along B-A Section	90

90

LIST OF PLATES

Plate

Page

1	Opening Logo of the CasCAD	57
2	Menu Profile for the Mesh Generation	57
3	Menu Profile for the Fluid Network	58
4	Tag Generation for the Element	58
5	Menu Profile for Fluid Network	59
6	Four Nodes Graph for the Fluid Network Post-processor	59
7	Single Node Graph for the Fluid Network Post-processor	60
8	Smooth Curve for the Fluid Network Post-processor	60
9	Step Information for Thermal Network	61
10	Menu Profile for the Thermal Network	61
11	Mesh Generation for the Thermal Network	62
12	Four Nodes Graph for the Thermal Network Post-processor	62
13	Single Node Graph for the Thermal Network Post-processor	63
14	Smooth Curve for the Thermal Network Post-processor	63

ABBREVIATIONS AND NOMENCLATURES

- CAD : Computer Aided Design
- CAM : Computer Aided Manufacturing
- CAA : Computer Aided Analysis
- CAE : Computer Aided Engineering
- FEA : Finite Element Analysis
- VDU : Visual Display Unit
- DBMS : Database Management System
- IGES : Initial Graphics Exchange Specification
- DXF : Drawing Interexchange File
- AME : Advanced Modelling Extension
- A : Cross-sectional area (m²)
- A_f : Coolant cross-sectional area (m²)
- A_s : Structure cross-sectional area (m²)
- A_i : Interface area (m²)
- B : Heat transfer coefficient increase with time $(W/m^{2o}C)$
- C : Specific heat (J/kg^oC)
- f : Friction factor
- g : Gravitational acceleration (m/s^2)
- gr : Gravitational force per unit volume (radial direction) (N/m³)
- g_z : Gravitational force per unit volume (axial direction) (N/m³)
- h : Heat transfer coefficient $(W/m^{2o}C)$
- H : Enthalpy (J/kg)
- h_i : Interface heat transfer coefficient (W/m²⁰C)

$\mathbf{h}_{\mathbf{l}}$: Head loss (m)
k	: Loss coefficient
K	: Thermal conductivity (W/m°C)
L	: Length (m)
L _{eff}	: Effective length (m)
Lt	: Latent heat (J/kg)
m	: Mass (kg)
Р	: Pressure (N/m ²)
Pe	: Inertia pressure (N/m ²)
Pt	: Total pressure (N/m ²)
Pv	: Viscous pressure (N/m ²)
q	: Heat flow (W)
Q	: Flow rate (m ³ /s)
Q1	: Heat flow at node 1 (W)
Q2	: Heat flow at node 2 (W)
t	: Time(s)
Т	: Temperature (°C)
ρ	: Density (kg/m ³)
μ	: Viscosity (kg/ms)
τ	: Shear stress (N/m ²)

Abstract of thesis submitted to the Senate of University Putra Malaysia in partial fulfilment of the requirements for the degree of Master of Science.

COMPUTER AIDED DESIGN AND ANALYSIS IN DIE/MOULD OF CASTING PROCESS

By

MD. SHAMSUL ABEDIN

September 1997

Chairman: Dr. Shamsuddin bin Sulaiman

Faculty: Engineering

Computer Aided Design (CAD) and Computer Aided Analysis (CAA) have been investigated and developed since the last twenty years as standalone systems. There is useful link between CAD and CAA in terms of data extraction from the graphics to non-graphics format for the analysis.

Computer Aided Design and Computer Aided Analysis packages have been developed incorporating AutoCAD for the fluid feeding progress and the thermal behaviour during the casting process. Network analysis process has been adopted for the current development. The Developed package includes the CAD graphics for design, transferring graphics to non-graphics and vice versa for pre-processing and post-processing for the Engineering Analysis.

The Developed package has been tested for the Die/Mould design for the proposed model. Finite element packages have been used for the prediction of the residual stresses of the Die/Mould.

Abstak tesis yang dikemukakan kepada Senet Universiti Pertanian Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains.

REKABENTUK TERBANTU KOMPUTER DAN ANALISIS DALAM ACUAN PROSES PENUANGAN

Oleh

MD. SHAMSUL ABEDIN

September 1997

Pengerusi: Dr. Shamsuddin sulaiman

Faculti: Kejuruteraan

Rekabentuk Terbantu Komputer, CAD (computer aided design) dan Analisis Terbantu Komputer, CAA (computer aided analysis) telah dikaji, dan dibangunkan sejak dua puluh tahun yang lepas sebagai sistem-sistem berasingan. Terdapat hubungan yang rapat di antara CAD dan CAA dari segi pentukaran data dari grafik mahupun bukan grafik untuk membuat analisis.

Pakej CAD dan CAA telah dibina menggunakan AutoCAD untuk "fluid feeding progress" dan kelakuan haba dalam proses "Penuangan". Proses analisis rangkaian telah digunakan untuk kajian kini. Pakej yang direka memasukkan grafik CAD dalam rekabentuk, pertukaran dari grafik kepada bukan grafik dan sebaliknya untuk proses-sebelum dan proses-selepas analisis dalam kejuruteraan.

Pakej yang direka telah diuji manggunakan rekebentuk "die/mold" untuk model yang dicadangkan. Pakej unsur terhingga digunakan untuk membuat anggaran dalam "residual stresses" pada "die/mold".

CHAPTER I

INTRODUCTION

Project Background

Technical progress is very fast in the application of the computers to the manufacturing activities. Currently it is possible to computerise all the individual activities that make up a 'product cycle' from the demand for a product to its production. In this production cycle, design and analysis are the first steps among the successive steps of the cycle. So, design and analysis are the roots of the production cycle. Computer can perform repetitive jobs and lots of computational works very efficiently and quickly than human beings. So, it has become very effective to integrate computer to design and analysis processes. Computer integration in design and documentation helps to give the outlook of the generated idea by the designer. After visualising the design, the designer can modify his idea without too much effort as well as it can be presented as a final design. In Computer Aided Design (CAD), the designer can view the drafted design in different angles and sides.

For the analysis techniques such as finite difference, finite element, boundary element, hybrid and network element, the designer can extract the co-ordinate values and perform the computational effort by picking those co-ordinate values. This

possibility helps to reduce time constraint, as well as increase the accuracy of the calculation.

Computer Involvement in Design and Analysis

CAD involves any type of design activity, which makes use of the computer to develop, analyse or modify an engineering design. Modern CAD systems (some time integrated with CAD/CAM systems) are based on interactive computer graphics which denote a user-oriented system in which the computer is employed to create transformation, and display data in the form of picture or symbols (McMahon Chris and Browne Jimmie, 1993).

However, from the viewpoint of product design evaluation, the most important design phase is the conceptual design phase and the development of CAD systems to support work in this phase is desirable. Conceptual design phase includes much creative work, which is combined in a complex manner that appears to be creative/intelligent work at first glance (Arai and Kazuaki, 1992).

Computer aided engineering simplifies the creation of a database by permitting several applications to share the information in the database. These applications include finite difference, network approach and finite element analysis of stresses, strains, defections, fluid flow, temperature distribution in structures and load-bearing members and the generation, storage, and retrieval of NC data. Computer Aided Analysis systems are also used extensively in the design of

integrated circuits and other electronic devices (Kalpakjian, 1995 and Tay, A-O, 1997).

Integration of Computer Aided Design and Computer Aided Analysis

During the past recent years, industry has made a move to incorporate scientific techniques into die/mould design. Industries like to adopt a more systematic strategy; since the complexity of the parts to be cast has increased, the lead times have been reduced dramatically over the last decade. Many medium size and even small companies are now trying to incorporate computer aided design and computer aided manufacturing techniques in their design and manufacturing processes in an effort to reduce both the cost and time (Zhang et. al, 1996).

A computer aided analysis (CAA) system can be used to generate the initial process sequence (Altan, 1985), as well as increase the accuracy of the process. The basic calculations for generating each section in the sequence require the computation of areas and volumes for complex parts. Designers currently perform these computations manually while making approximation of certain sections of the part to simplify the problem. Thus, the conventional approach to Die/Mould design usually does not lead to very accurate results. Consequently, a reliable and practical engineering design technique would be useful. With the aid of Finite Element Method based analysis programs, the metal filling and heat transfer process can be simulated to identify and eliminate potential trouble spots in the process sequence.

Concept of Die/Mould Design in CAD

Die-casting is one of the most economical casting processes for manufacturing precision shaped parts in mass production. Die-cast component are being used increasingly in the automobile, aerospace, electronic and other industries because of their premium quality, low cost, and low weight (Allsop D. F. and Kennedy D., 1983).

The die casting industry is being challenged by the world marketplace to improve its manufacturing process continuously. To become more competitive, die casters have to reduce development time and improve quality. CAD/CAE technology has become an efficient tool for die casters to meet these increasingly (Zhang et. al, 1997).

From the general concept of the mould/die operation, it is important to design a mould/die that will safely absorb the forces of clamping, injection, and ejection. Furthermore, the flow conditions of the plastic path must be adequately proportional in order to obtain uniformity of product quality cycle after cycle. Finally, effective heat absorption from the molten metal by the Die/Mould has to be incorporated for a controlled rate of solidification prior to removal from the moulds (Peter, 1996).

Problem Definition and Scope of Work

Design, analysis and visualisation of the component are the most significant for the product design cycle. Design, design modification and documentation needs lot of time and intensive human labour. Commonly used analysis software needs to create data file for pre-processing. Visualisation process shows the data progress and outline of the generated results. Still there is not too much work on casting process to fulfil the above mentioned phases. Computer application of those phases eliminates tedious repetitive work and it is possible to generate almost accurate results depending on the complexity of the product.

CAD has become a standard tool in engineering design and analysis of manufacturing processes. At the design stage, it is normal way to develop a draught and carry out Finite Element Analysis (FEA) to assess the pressure in different stages of the element during the filling process and the temperature gradient in different segments depending on the initial metal temperature according to the feeding progress of engineering components.

Currently, many software packages are used during the phases of the design and development processes. Most of these tools are stand-alone analysis or test modules that are optimised to perform specific functions.

The main objective of this project is to develop a CAD/CAA system, which is an integration of CAD and CAA techniques for the casting process. It will mean, that a casting component can be drawn on a Visual Display Unit (VDU) screen and

the graphics data are then transferred from graphics to non-graphic format. These data known as pre-processing data will be arranged through the programming effort to run the Network Element programs for the fluid filling process and thermal behaviour of casting.

Objectives of the Present Work

The present study is focused on the Computer Aided Design and Computer Aided Analysis of Die/Mould of casting process, in this respect objectives of the current project are:

- 1. To find a way to create model drawings for Casting pattern and Die/Mould towards the direction of the integration of CAD and CAE.
- 2. To generate the meshes for the finite element analysis pre-processing input data and transfer the co-ordinate data from graphics to non-graphics format which will store all the information in a standard database for geometric calculation.
- Analysis of the primary design is carried out using network approach for filling, solidification and temperature distribution in Mould/Die.
- 4. To draw graphs and contour for the post processing data for the prediction of the metal flow and thermal behaviour during the casting process.
- Compare the simulated result for heat transfer by using different software currently available for the analysis.

Layout of Thesis

This thesis consists of seven chapters. The first chapter contains the introduction and aims of the research. Chapter II deals with the literature review, which includes topics, related to Computer Aided Design and Computer Aided Analysis and die/mould design.

Chapter III addresses the mathematical formulation of the network analysis of fluid flow and thermal aspects. Chapter IV caters for the development of the software for the pre and post processor.

In chapter V, results are shown for the model for fulfilling the objectives. Chapter VI concludes the overall development system and results and recommendations for future work.

CHAPTER II

LITERATURE REVIEW

In this chapter, important factors that are involved with data extraction, transfer, modelling and relevant works are reviewed for the integration of Computer Aided Design (CAD) and Computer Aided Analysis (CAA). In the area of Computer Application in Casting process, some work has been carried out on customising CAD, but very few work has been done related to metal filling, solidification and heat transfer process.

Recently, Zhang et. al, 1997 developed a CAD package for Die casting by customising CAD tools. The authors presented the P - Q2 technique which is based on the pumping rate capacity of die casting machine which can be used to predict the occurrence when a die is put on the machine. The authors showed the different pumping rates influencing the runner and gating system and predicted their location to achieve correct pressure and the flow rate.

Xinghong Li et. al, 1995 developed some tools on computer aided design system. They produced a multiview drawing showing isometric view in addition to the three principal views, all properly positioned, aligned and rendered for user interaction, and automated the production of the multiview drawing of a given solid.

