

UNIVERSITI PUTRA MALAYSIA

SOME ASPECTS OF PINUS CARIBAEA MOR. VAR. HONDURENSIS BARR. AND GOLF. NUTRITION IN PENINSULAR MALAYSIA

ABANG NARUDDIN ZAINORIN

FH 1981 1

SOME ASPECTS OF PINUS CARIBAEA MOR. VAR. HONDURENSIS BARR. AND GOLF. NUTRITION IN PENINSULAR MALAYSIA

by

Abang Naruddin Zainorin

A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science (Forestry) in the Universiti Pertanian Malaysia

September, 1981

This thesis attached hereto, entitled "Some aspects of <u>Pinus caribaea</u> Mor. var. <u>hondurensis</u> Barr. and Golf. nutrition in Peninsular Malaysia" prepared and submitted by Abang Naruddin Zainorin in partial fulfilment of the requirements for the degree of Master of Science (Forestry), is hereby accepted.

PROF. ABDUL-MANAP AHMAD Chairman, Examining Committee Faculty of Forestry Universiti Pertanian Malaysia

E. Backland

PROF. E.P. BACHELARD External Examiner Department of Forestry, Australian National University Canberra, Australia

Canig

DR. KAMIS AWANG Internal Examiner Faculty of Forestry, Universiti Pertanian Malaysia Serdang, Selangor

DR. P.B.L. SRIVASTAVA Supervisor & Internal Examiner Faculty of Forestry, Universiti Pertanian Malaysia Serdang, Selangor

Date: May 1982

ACKNOWLEDGEMENTS

The author wishes to express his profound gratitude to his supervisor, Dr. P.B.L. Srivastava, for his guidance, criticism and suggestions during the course of work in the preparation of thesis.

He is also greatly indebted to Professor (Dr.) Haji Abdul Manap Ahmad, the Dean of Faculty of Forestry, Universiti Pertanian Malaysia for all the facilities and encouragement during the course of study. He also wishes to acknowledge his greatest appreciation to the Sarawak State Government and the Vice-Chancellor of the Universiti Pertanian Malaysia for the continued sponsorship of the study.

The author would also like to acknowledge with gratitude the co-operation and assistance of Encik Shamsuddin Ibrahim and Encik Chin Yue Mun, the Managers of Ulu Sedili and Kemasul Pine Plantations respectively during the field trials. Special thanks go to Dr. Yap Thoo Choi of the Faculty of Agriculture, Dr. Nawi Abdul Rahman of the Mathematics Department, Dr. Mohd. Mahyuddin Dahan and Puan Rohana Atan of the Faculty of Veterinary and Husbandary Science of the Universiti Pertanian Malaysia, for their advice, assistance and use of facilities.

The author is also grateful to the two Heads of Departments, Encik Asahari Mukhtar and Encik Mohd. Zain Jusoh and other staff of the Faculty of Forestry, Universiti Pertanian Malaysia for

i

their ready co-operation without which this study could not have been completed in time.

Special appreciation goes to his wife, Fatimah, for her encouragement and patience. Last, but not the least, the author wishes to record his appreciation to Cik Katherine Yee for her care in typing the manuscript.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS		
TABLE OF CON	TENTS	<i>,</i> íii
LIST OF TABL	ES	vii
LIST OF PLAT	ES	ix
LIST OF FIGU	IRES	x
ABSTRACT		xiii
CHAPTER 1	INTRODUCTION	1
1.1	General	1
1.2	Aim and scope of the study	5
CHAPTER 2	REVIEW OF LITERATURE	8
2.1	Fertilisers in forestry	8
2.2	Foliar diagnostic analysis	12
	2.2.1 Season	20
	2.2.2 Age of foliage	22
	2.2.3 Position of foliage in the crown	24
2.3	Malaysian experience	25
CHAPTER 3	METHODOLOGY	31
3.1	Plant sampling	31
3.2	Plant analysis	32
3.3	Measurements	33
3.4	Soil sampling	33
3.5	Soil analysis	34
3.6	Statistical procedures	36

					I ago
CHAPTER	4	POT EXPERI			38
	4.1	Introduc	tion		38
	4.2	Material	s and Met	hods	41
		4.2.1	Layout o	f the experiment	41
			4.2.1.1	Potting medium and seedlings	41
			4.2.1.2	Experimental design	43
		4.2.2	Treatmen	ts	43
		4.2.3	Measurem	ents and observations	45
		4.2.4	Foliar a	nalysis	45
	4.3	Results			45
		4.3.1	Growth p	attern	47
		4.3.2	Height i	ncrement	47
		4.3.3	Collar-d	iameter increment	53
		4.3.4	Dry matt	er production	57
			4.3.4.1	Needles	57
			4.3.4.2	Stem	61
			4.3.4.3	Roots	61
			4.3.4.4	Total dry weight of plant	64
		4.3.5		ship between foliar concentration and growth	69
			4.3.5.1	Nitrogen	69
			4.3.5.2	Phosphorus	71
			4.3.5.3	Potassium	80
		4.3.6		ship between foliar ratio and growth	82
			4.3.6.1	N:P ratio	86
			4.3.6.2	K:P ratio	86
	4.4	Discussi	on		89

Page

CHAPTER	5	FIELD TRIA	L		97
UIAI ILK	5.1				97
				1 1.	
	5.2	Material	s and met	noas	99
		5.2.1	Field pl	ots	99
			5.2.1.1	Kemasul Pine Plantation	99
			5.2.1.2	Ulu Sedili Pine Plantation	101
		5.2.2	Design a	nd layout	101
		5.2.3	Treatmen	ts	102
		5.2.4	Chemical	analyses	103
	5.3	Results			105
		5.3.1		f position and season r nutrient concentrations	105
			5.3.1.1	Nitrogen	105
			5.3.1.2	Phosphorus	108
			5.3.1.3	Potassium	110
			5.3.1.4	Calcium	112
			5.3.1.5	Magnesium	114
		5.3.2	Sampling	position and period	114
		5.3.3	Sample s	ize	119
		5.3.4	Effect o	f treatments on growth	122
		5.3.5		f treatments on foliar concentrations	12 3
		5.3.6		ship between foliar ation and growth	129
	5.4	Discussi	on		132
CHAPTER	6	GENERAL D	ISCUSSION	S	138

CHAPTER 7	CONCLUSIONS	145
BIBLIOGRAPHY		147
APPENDICES		161
VITA		197

LIST OF TABLES

Table	No.		Page
1		Physical and chemical properties of soil and potting mixture	42
2		Treatments (Pot experiment)	44
3		Amount of nutrient applied (Pot experiment)	44
4		The results of analysis of variance	46
5		Test on significance of diffe re nces between mean height inc reme nt	52
6		Test on significance of differences between mean collar-diameter increment	56
7		Test on significance of differences between mean dry weight of needles	60
8		Test on significance of differences between mean dry weight of stem	63
9		Test on significance of differences between mean dry weight of roots	66
10		Test on significance of differences between mean total dry matter production	70
11		Treatments (Field trial)	102
12		Amount of nutrient applied (Field trial)	103
13		Physical and chemical properties of soil	104
14		The highest and lowest nutrient concentration in different positions in each season	106
15		Coefficient of variation of N, P, K, Ca and Mg in various sample positions during the three sampling periods	116
16		Number of sample trees required at various percentage errors (E) between population means and sample means at $p \approx 0.05$	121
17		Foliar nutrient contents and growth parameters	126

vii

Table No.		Page
18	Coefficient of multiple correlation between growth and nutrient concentrations in needles	132
19	N and P content in needles of untreated seedlings and trees of P. caribaea var. hondurensis in Malaysia	140
20	Foliage N and P contents of P. caribaea on different sites in Peninsular Malaysia	141

LIST OF PLATES

Plate No.		Page
1	N ₁ P ₅ K - The best treatment for height growth	51
2	Treatment that gave highest collar-diameter increment and dry matter production	59

LIST OF FIGURES

Fi	gur	e	No	

1	Foliar sampling positions	31
2 a	Growth pattern - dome-shape	47
2 b	Growth pattern - inverted-cone	47
3a	Main effects of N, P, and K on mean height increment	48
3b	Effect of different treatments on mean height increment	49
4a	Main effects of N, P, and K on collar- diameter increment	54
4b	Effects of different treatments on mean collar-diameter increment	55
5	Effect of different treatments on dry weight of needles	58
6	Effect of different treatments on mean dry weight of stem	62
7	Effect of different treatments on dry weight of roots	65
8a	Effects of N, P, and K on total dry matter production	67
8b	Effect of NP interaction on mean total dry matter production	68
9a	Relationship between absolute height increment and percentage N in needles	72
9b	Relationship between collar-diameter increment and percentage N in needles	73
9c	Relationship between mean total dry matter production and percentage N in needles	74
10	Relationship between P supply and concentra- tion in needles	75

P	a	g	e

11	Effect of P supply on N and K concentrations	11
12 a	Relationship between mean height increment and P percentage in needles	78
12b	Relationship between mean collar-diameter increment and percentage P in needles	79
12c	Relationship between total dry matter production and percentage P in needles	81
1 3a	Relationship between mean height increment and percentage K in needles	83
13b	Relationship between mean collar-diameter increment and percentage K in needles	84
13c	Relationship between mean total dry matter production and percentage K in needles	85
1 4a	Relationship between height increment and N:P ratio	87
14b	Relationship between collar-diameter increment N:P ratio	87
14c	Relationship between total dry matter production and N:P ratio	88
15a	Relationship between mean height increment and K:P ratio	90
15b	Relationship between mean collar-diameter and K:P ratio	90
15c	Relationship between mean total dry matter production and K:P ratio	91
16a	Effect of sample position and season on N foliar concentration at Kemasul	107
16b	Effect of sample position and season on N foliar concentration at Ulu Sedili	107
17a	Effect of sample position and season on P foliar concentration at Kemasul	109
17b	Effect of sample position and season on P foliar concentration at Ulu Sedili	109

Figure No.

p	а	0	e
۰.	а,	Б	~

18a	Effect of sample position and season on K foliar concentration at Kemasul	111
18b	Effect of sample position and season on K foliar concentration at Ulu Sedili	111
19 a	Effect of sample position and season on Ca concentration at Kemasul	113
19b	Effect of sample position and season on Ca foliar concentration at Ulu Sedili	113
20a	Effect of sample position and season on Mg foliar concentration at Kemasul	115
20b	Effect of sample position and season on Mg foliar concentration at Ulu Sedili	115
21 a	Effect of treatments on height increment	124
21b	Effect of treatments on diameter increment	124
22a	Effect of treatment levels on foliar N concentration in needles	127
22b	Effect of treatment levels on foliar P concentration in needles	127
22c	Effect of treatment levels on foliar K concentration in needles	128
22d	Effect of treatment levels on foliar Ca concentration in needles	128
22 e	Effect of treatment levels on foliar Mg concentration in needles	130

ABSTRACT

Three approaches were employed to study some nutritional aspects of <u>Pinus caribaea</u> var. <u>hondurensis</u> namely, soil analysis, soil bio-assay and foliar analysis.

Five soil composites each from Kemasul (Pahang) and Ulu Sedili (Johore) plantation areas were analysed for physical and chemical properties. For pot culture, a $2^2 \times 6$ factorial experiment using soil collected from Kemasul was conducted to study the effects of nitrogen, phosphorus and potassium on the growth of P. caribaea var. hondurensis seedlings. Nitrogen and potassium were applied at levels equivalent to 0 and 112 kg/ha; and phosphorus at 0, 168 kg/ha, 336.2 kg/ha, 504 kg/ha, 672.2 kg/ha and 840.3 kg/ha. At the end of the experiment, dry weight of roots, stems and needles were determined. Needles were analysed for N, P and K contents. Simultaneously, two randomised complete block fertiliser trials were laid out in the field. Nitrogen and potassium were applied at 0 and 224 kg/ha each while phosphorus was given at 0, 336.2 kg/ha, 672.2 kg/ha and 1008.3 kg/ha levels. Needles from these plants were collected at three times to concide with dry (February - May), transitional (June - September) and wet (October - January) seasons from five positions in the crown.

The study shows that phosphorus is highly deficient at both the sites. Application of P fertiliser at the rate of about 340 kg/ha at Ulu Sedili and about 504 kg/ha at Kemasul would be

xiii

desirable for optimum gorwth of <u>P. caribaea</u> var. <u>hondurensis</u> seedlings. Application of nitrogen at 112 kg/ha and phosphorus at the various levels resulted in increased concentrations of these elements in the foliage. Foliar P concentration of seedlings was positively and significantly related to height increment and total dry matter production. Only N:P and K:P ratios were positively and significantly related to height increment.

In the field, only N, P and Ca were significantly affected by the application of NPK fertilisers. However, foliar N, P and K concentrations were found to be insignificantly related to either height or diameter growth. The foliar concentrations of these elements were relatively low and did not cover the range necessary to relate nutrient concentration-growth relationship, presumably due to short period between fertiliser application and the last sampling. The field trial also showed that N and Mg were best sampled from the upper position in the crown while P, K and Ca were best estimated from the outermost sample position in the lower part of the crown. Sampling can be done towards the end of the dry season (February - May) or during the transitional period (June - September) when the concentration of most of the nutrients was less variable. For practical purposes, 15 to 20 trees would be required to be sampled from the upper part of the crown for a reliable estimate for most of the nutrients.

CHAPTER 1

INTRODUCTION

1.1 General

Malaysia is recognised as one of the world's leading exporters of tropical hardwoods. The humid rain forests form a rich and important natural resource of the country, covering about fifty-nine per cent of the total land mass of about 33.0 million hectares. The forests are known to comprise some 2,500 to 3,000 species of tree species belonging to almost 100 botanical families (Ng, 1976). However, at present only 15 families are of importance to the timber industry with Dipterocarpaceae accounting for about two-thirds of the total wood removal from the forests (For. Dept., 1977).

The increased land use for agriculture, the increasing demand for timber, technological advances in timber extraction machinery and equipment, and improvement in the infrastructure during the last few decades have resulted in large tracts of forest lands being cleared and at a fast rate. In Peninsular Malaysia, approximately 360,121 ha of forested lands were cleared annually in the recent years and about 75 per cent of the total lands cleared were for agricultural development (For. Dept., 1979). This has far exceeded what would have been permitted under the sustained yield management policy. With an estimated 5.1 million ha forest lands, 3.2 million ha are loggable and the rest are unproductive by virtue of their

protective and other intangible benefits (For. Dept., 1979). If the present rate of harvesting is continued, it is projected that Peninsular Malaysia would be transformed into a net importer of tropical hardwoods by 1995.

In view of this fact, it is now realised in Malaysia that the natural forests are not the inexhaustable resource they were once considered to be. Several strategies are therefore planned to ensure that this renewable resource is perpetuated at productive levels, one of them being to raise large scale plantations of suitable exotic and indigenous species. It is therefore not difficult to surmise that plantation forestry is going to play an important role in future in view of the many problems encountered in regenerating the natural forests in the tropics. Besides, on the ground of productivity alone, many tropical plantations grown on a 10 - 20 years rotation have an annual increment of 40 cubic meters/ha while the output of most tropical forests even with extensive use of secondary species is unlikely to rise above 250 cu m/ha when logged at the end of a cutting cycle lasting 60 - 90 years. The awareness of the importance of forest plantations in the tropics which aims at bridging production and demand of timber to meet the world market is thus evident. Some 50,000 ha of Pinus caribaea have been planted annually in the tropical countries in recent years (IUFRO, 1977). One of the widely accepted approaches is to raise 'compensatory' plantations. As the name implies, 'compensatory' plantations are not viewed as substitutes to the existing natural forests but rather are meant to improve the productivity of degraded areas or areas of low agricultural

potential such as those under shifting cultivation.

Under the Fourth Malaysia Plan (1981 - 1985), fast growing tropical tree species, such as Gmelina arborea Roxb., Maesopsis eminnii Engl., Acacia mangium Willd., Albizzia falcataria Back., Eucalyptus deglupta Blume and Pinus caribaea Mor. var. hondurensis Barr. and Golf. will be planted under the compensatory plantation programme. So far, only P. caribaea var. hondurensis has been planted on a commercial scale in the country. This programme has been the result of extensive research begun in the 1950's when the species was first introduced in the country. The species was found to be favourable for ease of handling in the nursery, relatively low transplanting mortality, and capacity to compete with lalang grass (Imperata cylindrica Beaur.). Reports that the species could yield between 18 and 34 cu m/ha/ year were thought to be realistic (Voss, 1980). In well-managed plantations and over short rotation periods of 8 to 15 years the growth was expected to exceed 20 cu m/ha/year (Johnson, 1976). These figures far exceeded the mean annual increment (MAI) of tropical forests of 2.5 cu m/ha per year (Johnson, 1976). On better sites in Peninsular Malaysia, the species has been reported to yield 14 cu m/ha/year (Freezaillah, 1966), and between 20 to 30 cu m/ha per year in Sabah (Liew and Morrissey, 1979).

However, relatively small areas of better Class I and II sites under Land Capability Classification (Panton, 1965; Wong, 1974) are available for plantation forestry and most of the better sites have been allocated for agriculture. Soils in Peninsular Malaysia are basically granitic and non-volcanic in origin with parent materials ranging from 180 to 350 million years in age (Owen, 1951). Generally, most of the soils have been found to be deficient in one or more of the major nutrient elements, particularly phosphorus and nitrogen (Shorrocks, 1965a). Marginal soils of Class 111 and Class V1 have physical and chemical limitations and are often characterised by heavy-texture, imperfect drainage, and nutritional imbalance (Platteborze, 1971a). In addition, tropical soils are highly leached. In the lowlands, the unweathered material is not available to the tree roots while chemical weathering cannot possibly supply the element lost by leaching (Waring, 1971). Current methods of land clearing and site preparation (Sakhibun and Mohd. Sharif Kudin, 1980) further result in a loss of fertility.

The earlier views that forest trees require small amounts of nutrients, and that such supplies could be developed and maintained by careful management of the crop no longer holds true in modern forestry. Pines, like any other crop, need adequate amounts of nutrients for optimum growth and productivity. A lack of, or a deficiency in any one of the essential elements is known to affect growth and yield severely. Pine plantations in Malaysia have shown poor growth and other malformations such as foxtailing, multiple leader shoots, shoot dieback, basket whorls and necrosis. Waring (1971) attributed most of the growth ill-healths to nutrient deficiencies while Slee, Spidy and Shim (1976) emphasised climatic factors particularly temperature and daylength as the causes of these abnormalities.

In many countries, such as Australia and New Zealand, growth restrictions have been avoided by fertiliser applications. In fact, the practice has been well established in these countries and is an integral part of plantation forestry management. However, in developing countries, the use of fertilisers in plantation forestry is relatively new and has yet to be accepted as an operational routine. In agriculture plantation crops such as rubber, oil palm, cocoa, however, the use of fertilisers has been well recognised. For instance, <u>Hevea</u> needs nitrogen and phosphorus for optimum productivity. Besides, the fertiliser programme is well developed in relation to plant age, type of clone, soil conditions and management practices (Puspharajah and Tan, 1972).

In pine plantations, the early capture of the site and rapid canopy closure are desirable if weed competition is to be avoided and nutrient cycling initiated in the stand. Failure to achieve this will result in poor growth. Several studies in Malaysia have indicated that fertilisation of young pine has resulted in increased growth (Platteborze, 1971b; Carmean and Kok, 1974; Lim and Sundralingam, 1974; Sundralingam and Ang, 1975).

1.2 Aim and scope of the study

Presently, throughout the world, the importance of fertilisers in forestry is gaining recognition. Fertiliser use is now a standard silviculture practice both in the nursery and in the field. Several techniques to determine the nutritional status of soils and plants have been tried. Among the popular techniques used are soil bio-assay, soil and plant analyses. Lately, the latter has been preferred for assessing the status of soils and predicting fertiliser requirements of the crops.

In temperate and subtropical countries, the method of foliar diagnosis has been widely used to determine nutrient deficiencies before corrective measures are implemented. However, one constraint of this method is that the concentration of nutrients in the foliage is usually influenced by both the internal physiological factors and external climato-edaphic factors. This can be overcome, however, by standardising the sampling technique. In many countries, investigations of the sampling techniques to meet specific purposes have been conducted in detail and systems of monitoring nutrient status of the growing crops have been made available to forest managers (Mead and Will, 1976). The sampling techniques used in temperate and subtropical regions may not be applicable to the tropical region where the climate is non-seasonal and plant growth is continuous throughout the year (Srivastava and Hiew, 1980; Srivastava and Abu Bakar, 1980). Moreover, relatively few studies have been conducted on these aspects in the tropics in general and Malaysia in particular.

With the establishment of the compensatory plantation programmes in Malaysia, there is a need to carry out nutritional studies so that critical levels of nutrient requirements can be assessed and soil amendments carried out. With this in mind, the main aim of this study is to determine the fertiliser requirements, particularly phosphorus, using soil analysis, soil bio-assay and foliar analysis. Since foliar diagnostic technique has not been used widely in Malaysian forestry, it is therefore important to standardise the sampling procedures for predicting fertiliser levels. With this, it is hoped that this preliminary investigation

using the three methods will provide some analytical data useful for developing a fertiliser regime for this promising species.

CHAPTER 2

REVIEW OF LITERATURE

2.1 Fertilisers in forestry

The importance of fertilisation in forestry has been well recognised and has been reviewed extensively by Stoeckeler and Arneman (1961), Tamm (1964), Mustanoja and Leaf (1965), Boule (1973) and Ballard (1978). Experiments using fertilisers started as early as in 1901 in Germany and subsequently Henz in 1904 recommended the use of nitrogen fertiliser on forest trees (Stoeckeler and Arneman, 1961). To-day, the use of fertiliser has developed from that of correcting nutrient imbalance to one of increasing growth and production. The extent and magnitude of the use of fertilisers in forestry has greatly increased as illustrated by Boule (1973), Atkinson and Morison (1975), Pritchett and Smith (1975) and Woolons and Will (1975). This was due to the fact that plantation forestry has become more and more important in view of the shrinking volume and area of natural forests in the world. It is projected (Johnston, 1976) that by the year 2000, there would be a shortfall of wood products due to a rapid increase of world population. The problem could only be surmountable by the establishment of plantation forestry which is in fact has become the current trend of forestry practices in many countries.

However, for fast out-turn and high productivity, plantation forestry requires a high nutrition level which could not be always attained from the untreated soil. The response of forest crops

8