MOLECULAR CHARACTERISATION OF BACTERIOCINOGENIC LACTOBACILLUS PLANTARUM ISOLATED FROM MALAYSIAN FERMENTED FOOD

MORTEZA SHOJAEI MOGHADAM
FBSB 2009 29
MOLECULAR CHARACTERISATION OF BACTERIOCINOGENIC
LACTOBACILLUS PLANTARUM ISOLATED FROM MALAYSIAN
FERMENTED FOOD

By

MORTEZA SHOJAEI MOGHADAM

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
In Fulfilment of Requirements for the Degree of Master of Science
DEDICATIONS

I wish to dedicate this work to my grandmother who passed away during my study and I missed the chance to participate in her funeral. God bless her soul.
MOLECULAR CHARACTERISATION OF BACTERIOCINOGENIC
LACTOBACILLUS PLANTARUM ISOLATED FROM MALAYSIAN
FERMENTED FOOD

By
MORTEZA SHOJAEI MOGHADAM

October 2009

Chairman: Dr. Foo Hooi Ling, Ph.D

Faculty: Biotechnology and Biomolecular Sciences

Molecular approaches were used in this study to characterize six bacteriocinogenic *Lactobacillus plantarum* strains isolated from Malaysian foods since biochemical approaches could not differentiate them distinctively. The *Lb. plantarum* strains were initially identified as *Lb. plantarum* I with 99.9% similarity by the analysis of carbohydrate fermentation pattern using API CHL50 identification kit. The biochemical identification result was further confirmed by analyzing partial sequence of 16S rDNA that showed 99-100 % similarity to *Lb. plantarum*. Identification up to genus level was also achieved when Amplified Ribosomal DNA Restriction Analaysis (ARDRA) was applied with *Lactococcus lactis* MG1363, *Lb. plantarum* ATCC 11305, *Lb. johnsonii*, *Streptococcus thermophilus* BAA 250 and *Pediococcus acidilactici* 446 as reference strains. Furthermore, the studied *Lb. plantarum* strains were characterized using genotypic methods: plasmid profiling, randomly amplified polymorphic DNA (RAPD), polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), repetitive extragenic
palindromes (Rep)-PCR as well as 16S-23S rDNA (ITS1) and 23S-5S rDNA (ITS2) spacer regions analyses. The strain RG14 was successfully differentiated from others by plasmid profiling. Results from RAPD study in which 6 arbitrary primers were tested, revealed slight differences in the genome of six *Lb. plantarum* strains. Moreover, sequence analysis of ITS1 revealed a four base pair variable region from which the strains could be divided into four groups. Comparative analysis of ITS1 with 17 *Lb. plantarum* strains available in GenBank confirmed the variability of this region and showed that the genotype of the studied strains are not present in the strains used for comparative analysis. As for PCR-RFLP study, the studied strains were initially screened for the presence of structural bacteriocin genes. It was found that all studied strains harboured the novel combination of *plantaricin EF* (*Pln EF*) and *plantaricin W* (*Pln W*), which had not been reported elsewhere. However, the PCR-RFLP technique was not discriminative when the *Pln EF* genes were digested with restriction enzymes *Hind*III, *Mbo*I and *Pst*I. Although rep-PCR showed strong typing ability, the banding pattern was not discriminative. The ITS2 region showed an extra 5S rDNA sequence downstream of the ribosomal DNA region. The ITS2 region, however, was highly conserved among the strains and encodes rRNA that form secondary structure with the predicted free energy of -11.5 Kcal/mol. In conclusion, the studied strains are novel bacteriocinogenic *Lb. plantarum*, which were successfully discriminated in a polyphasic approaches using plasmid profiling, RAPD and ITS1 analysis with the RAPD technique showing the highest discriminatory power.
PENCIRIAN MOLEKULAR LACTOBACILLUS PLANTARUM
BAKTERIOSINOGENIK YANG DIPENCILKAN DARIPADA MAKANAN
TERTAPAI MALAYSIA

Oleh

MORTEZA SHOJAEI MOGHADAM

Oktober 2009

Pengerusi: Professor Madya Dr Foo Hooi Ling, Ph.D

Fakulti: Bioteknologi dan Sains Biomolekul

Teknik molekul digunakan dalam kajian ini untuk mencirikan enam strain bakteriosinogenik Lactobacillus plantarum yang dipencilkan daripada makanan Malaysia memandangkan teknik biokimia tidak dapat membezakan enam strain tersebut secara sepsifik. Strain Lb. plantarum yang dikenalpasti pada awalnya sebagai Lb. plantarum I dengan 99.9% persamaan melalui analisis fermentasi karbohidrat API CHL50. Keputusan biokimia ini dikenalpasti dengan analisis separa jujukan bagi 16S rDNA yang telah menunjukkan 99-100% persamaan dengan Lb. plantarum. Identifikasi pada paras genera dicapai dengan teknik “Amplified Ribosomal DNA Restriction Analaysis (ARDRA)” yang menggunakan Lactococcus lactis MG1363, Lb. plantarum ATCC 11305, Lb. johnsenii, Streptococcus thermophilus BAA 250 dan Pediococcus acidilactici 446 sebagai strain rujukan.
Seterusnya, strain yang dikaji dibezakan dengan menggunakan kaedah genotaip: profil plasmid, “randomly amplified polymorphic DNA (RAPD)”, “PCR-Restriction Fragment Length Polymorphism (PCR-RFLP)”, “Repetitive extragenic palindromes (Rep)-PCR” dan “16S-23S rDNA (ITS1)” dan “23S-5S rDNA (ITS2) intergenic spacer region analysis”. Strain RG14 berjaya dibezakan daripada strain lain melalui teknik profil plasmid. Keputusan kajian RAPD yang dijalankan melalui enam primer arbitari menunjukkan sedikit pembezaan dalam kandungan gen enam *Lb. plantarum* yang dikaji. Secara tambahan, analisis jujukan ITS1 menunjukkan empat pasang bes daripada bahagian berubah membezakan strain yang dikaji kepada empat kumpulan. Analisis perbandingan ITS1 dengan 17 strain *Lb. plantarum* dalam GenBank membuktikan bahagian berubah dan keputusan menunjukkan genotaip strain yang dikaji tidak terdapat dalam strain lain yang digunakan untuk analisis perbandingan. Bagi kajian PCR-RFLP, kehadiran gen struktur bakteriosin dalam strain yang dikaji telah dikenalpasti dan didapati bahawa semua strain mengandungi kombinasi *plantaricin EF (Pln EF)* and *plantaricin W (Pln W)* yang unik yang tidak pernah dilaporkan dalam kajian lain. Walaubagaimanapun, teknik PCR-RFLP tidak dapat menunjukkan perbezaan antara strain yang dikaji apabila gen *Pln EF* dihadam dengan *HindIII, MboI* and *PstI*. Walaupun rep-PCR mempunyai kebolehan penyisihan yang kuat, corak jalur yang diperolehi dalam kajian ini tidak menunjukkan sebarang perbezaan. Bahagian ITS2 menunjukkan satu jujukan 5S rDNA tambahan di bawah bahagian ribosom DNA. Bahagian ITS2 amat dipulihara antara strain yang dikaji dan ia juga mengekodkan rRNA yang membentuk struktur sekunder dengan tenaga yang dijangka -11.5 Kcal/mol. Secara kesimpulan, semua strain yang dikaji dibuktikan adalah bakteriosinogenik *Lb. plantarum* yang novel, di mana strain ini telah berjaya dibezakan melalui kaedah profil plasmid, RAPD and
ITS1 analisis dengan teknik RAPD menunjukkan keupayaan pembezaan yang tertinggi berbanding dengan teknik lain.
ACKNOWLEDGEMENTS

First, I would like to express my deepest appreciation to the chairman of my supervisory committee, Assoc. Prof. Dr. Foo Hooi Ling, for her invaluable guidance, advice and support throughout the course of this study, and her patience, useful comments and suggestions during the preparation of my thesis.

My sincere gratitude also goes to Prof. Dr. Raha Abdul Rahim and Dr. Leow Thean Chor, who served on my thesis committee and kindly provided valuable advice and suggestions for this work and my thesis.

Special thanks to my fellow labmates, Anu, Wawa, Yanti, Sab, Deela, Shahrul, Bakhtiar, Sadegh, Ali, Shamsiah, Hui Fong, Tze Young, Ira, Li Oon and other members in Biotech 3, for their friendships, experienced advice, support and helping hands, who made the days and nights in the lab exciting and pleasant.

I wish to extend my sincere appreciations to my housemates, Sina, Ehsan, Shoeib, Amir and Mehdi for their kind sharing, encouragements and motivations.

Last, but not least, my deepest regards are due to my family as well as my fiancée, Ms. Susan Maleki, for their endless love, care, consideration and support.
I certify that an Examination Committee has met on 14/10/2009 to conduct the final examination of Morteza Shojaei Moghadam on his degree of Master of Science thesis entitled “Molecular Characterization of Bacteriocinogenic Lactobacillus plantarum Strains Isolated from Malaysian Food” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the degree of Master of Science.

Members of the Examination Committee were as follows:

Parameswari Namasivayam, PhD
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Shuhaimi Mustafa, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Siti Khairani Bejo, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Thong Kwai Lin, PhD
Professor
Faculty of Science
Universiti of Malaya
(External Examiner)

BUJANG KIM HUAT, Ph.D.
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: ________________
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Foo Hooi Ling, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular sciences
Universiti Putra Malaysia
(Chairman)

Raha Abdul Rahim, Ph.D.
Professor
Faculty of Biotechnology and Biomolecular sciences
Universiti Putra Malaysia
(Member)

Thean Chor Leow, Ph.D.
Senior Lecturer
Faculty of Biotechnology and Biomolecular sciences
Universiti Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD.
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 14 January 2010
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institutions.

MORTEZA SHOJAEI MOGHADAM

Date: ____________
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATIONS</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>APPROVAL SHEETS</td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION FORM</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Background 1
1.2 Objectives 3

2 LITERATURE REVIEW

2.1 Lactic acid bacteria (LAB) 4
2.2 The genus *Lactobacillus* 6
 2.2.1 Classical classification 6
 2.2.2 Modern classification 8
 2.2.3 Habitats 9
2.3 Application of Lactic acid bacteria 10
 2.3.1 Food safety 10
 2.3.2 Lactic acid bacteria as probiotics 11
 2.3.3 Vegetable fermentation 11
 2.3.4 Lactic acid bacteria as live vehicles 12
 2.3.5 Bacteriocins and food preservation 12
2.4 Identification and differentiation of microorganisms 15
 2.4.1 Basic molecular techniques used in genotypic typing methods 17
 2.4.2 Genotypic methods 20

3 Materials and Methods

3.1 Strains and growth conditions 34
3.2 Preparation of stock cultures 34
3.3 Agarose gel electrophoresis 35
3.4 Digestion of double stranded DNA molecules with restriction enzymes 36
3.5 Extraction of total DNA 36
3.6 Quantification of DNA 37
3.7 DNA and RNA sequence analysis 38
3.8 Identification of *Lb. plantarum* strains 38
 3.8.1 Biochemical identification 39
3.8.2 Molecular identification

3.9 Differentiation of *Lb. plantarum* strains

3.9.1 Analysis of ribosomal DNA loci

3.9.2 Locus specific-Restriction Fragment Length Polymorphism (PCR-RFLP)

3.9.3 Isolation of plasmid from *Lb. plantarum* strains and plasmid profiling

3.9.4 Randomly amplified polymorphic DNA (RAPD)

3.9.5 rep-PCR using (GTG)₅ primer

4 RESULTS AND DISCUSSION

4.1 Extraction of total DNA

4.2 Identification of *Lb. plantarum* strains

4.2.1 Biochemical identification

4.2.2 Molecular identification by 16S rDNA sequences analysis

4.3 Amplified rDNA restriction analysis (ARDRA)

4.4 Analysis of 16S-23S rDNA intergenic spacer region (ITS1)

4.5 Analysis of 23S-5S rDNA intergenic spacer region (ITS2)

4.6 Locus specific-Restriction Fragment Length Polymorphism (PCR-RFLP)

4.6.1 Screening of plantaricin genes

4.6.2 Restriction Fragment Length Polymorphism analysis of *plnEF*

4.7 Plasmid profiling

4.8 Randomly amplified polymorphic DNA (RAPD)

4.9 rep-PCR

5 SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FUTURE STUDY

5.1 Summary

5.1.1 Identification of bacteriocinogenic *Lb. plantarum* strains

5.1.2 Differentiation of bacteriocinogenic *Lb. plantarum*

5.2 Conclusion

5.3 Future study

REFERENCES

APPENDICES

BIODATA OF STUDENT

LIST OF PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The Lactobacillus subgroups. Adapted from Carr et al. (2002).</td>
</tr>
<tr>
<td>2.2</td>
<td>Habitat of the genus Lactobacillus (Adapted from Stiles and Holzapfel (1997))</td>
</tr>
<tr>
<td>2.3</td>
<td>Classification of LAB bacteriocins adapted from Nes et al. (1996)</td>
</tr>
<tr>
<td>3.1</td>
<td>Sequences of primers used for amplification of different regions of ribosomal DNA loci</td>
</tr>
<tr>
<td>3.2</td>
<td>Primers used for the screening of structural bacteriocin genes present in Lb. plantarum strains.</td>
</tr>
<tr>
<td>3.3</td>
<td>DNA sequence and characteristics of six arbitrary primers used for RAPD-PCR analysis.</td>
</tr>
<tr>
<td>3.4</td>
<td>21 possible combinations by primers listed in Table 3.3.</td>
</tr>
<tr>
<td>4.1</td>
<td>Spectrophotometric determination of total DNA extracted from LAB strains.</td>
</tr>
<tr>
<td>4.2</td>
<td>Representative analysis of carbohydrate fermentation pattern of bacteriocinogenic Lb. plantarum strains produced by API CHL 50 identification kit.</td>
</tr>
<tr>
<td>4.3</td>
<td>The identity of 16S rDNA sequences of bacteriocinogenic Lb. plantarum strains isolated from Malaysian fermented food.</td>
</tr>
<tr>
<td>4.4</td>
<td>PCR amplification of bacteriocin structural genes in bacteriocinogenic Lb. plantarum strains isolated from Malaysian fermented food.</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Schematic representation of a 16S–23S spacer and organization of its functional regions (shadowed boxes). As indicated by brackets, the presence of tRNA genes is not universal and their number and type may vary among species. Adapted from García-Martínez et al. (1999).</td>
<td>24</td>
</tr>
<tr>
<td>2.2</td>
<td>Diagramatic summary of Randomly amplified polymorphic DNA (RAPD) procedure adapted from Griffiths et al. (1996).</td>
<td>28</td>
</tr>
<tr>
<td>4.1</td>
<td>Agarose gel electrophoresis of total DNA extracted from LAB strains.</td>
<td>49</td>
</tr>
<tr>
<td>4.2</td>
<td>Carbohydrate fermentation pattern of bacteriocinogenic Lb. plantarum UL4 as shown by all studied Lb. plantarum strains obtained by API CHL 50 identification kit (Biomeareux-France).</td>
<td>54</td>
</tr>
<tr>
<td>4.3</td>
<td>PCR-amplified 16S rRNA gene from bacteriocinogenic Lb. plantarum strains.</td>
<td>57</td>
</tr>
<tr>
<td>4.4</td>
<td>The secondary structure model for prokaryotic 16S rRNA</td>
<td>58</td>
</tr>
<tr>
<td>4.5</td>
<td>Alignment of 16S rDNA partial sequences amplified from Lb. plantarum strains together with four strains deposited in GenBank.</td>
<td>60</td>
</tr>
<tr>
<td>4.6</td>
<td>Amplified ribosomal DNA restriction analysis using MboI.</td>
<td>64</td>
</tr>
<tr>
<td>4.7</td>
<td>Amplified ribosomal DNA restriction analysis using NcoI.</td>
<td>65</td>
</tr>
<tr>
<td>4.8</td>
<td>Amplified ribosomal DNA restriction analysis using PstI.</td>
<td>66</td>
</tr>
<tr>
<td>4.9</td>
<td>Amplification of 16S-23S intergenic spacer regions of Lb. plantarum strains.</td>
<td>69</td>
</tr>
<tr>
<td>4.10</td>
<td>Alignment of short form of 16S-23S intergenic spacer region of studied L. plantarum strains together with 17 Lb. plantarum strains deposited in GenBank.</td>
<td>70</td>
</tr>
<tr>
<td>4.11</td>
<td>Amplification of 23S-5S intergenic spacer regions of Lb. plantarum strains.</td>
<td>73</td>
</tr>
<tr>
<td>4.12</td>
<td>Alignment of short form of 23S-5S intergenic spacer regions amplified from 6 bacteriocinogenic Lb. plantarum strains.</td>
<td>74</td>
</tr>
<tr>
<td>4.13</td>
<td>Predicted secondary structure of ITS2 and its free energy using Vienna RNA websuite.</td>
<td>75</td>
</tr>
<tr>
<td>4.14</td>
<td>Amplification of plantaricin EF from Lb. plantarum strains.</td>
<td>77</td>
</tr>
<tr>
<td>4.15</td>
<td>Amplification of plantaricin W from Lb. plantarum strains.</td>
<td>78</td>
</tr>
</tbody>
</table>
4.16 RFLP analysis of *plnEF* genes from bacteriocinogenic *Lb. plantarum* strains using A) *Hind*III, B) *Pst*I and C) *Mbo*I.

4.17 Analysis of plasmid banding patterns extracted from bacteriocinogenic *Lb. plantarum* strains.

4.18 Analysis of banding patterns generated by RAPD experiment using primer combinations A) R1/R2, B) R1/R3, C) R1/R5 and D) R5/R6.

4.19 Summary of RAPD result and the order of primer combinations required for discriminating of *Lb. plantarum* strains.

4.20 Analysis of banding patterns generated by (GTG)₅-PCR.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>~</td>
<td>Approximately</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>A_{260}</td>
<td>Absorbance at 260 nm</td>
</tr>
<tr>
<td>A_{280}</td>
<td>Absorbance at 280 nm</td>
</tr>
<tr>
<td>ATCC</td>
<td>America Type Culture Collection</td>
</tr>
<tr>
<td>ARDRA</td>
<td>Amplified Ribosomal DNA Restriction Analysis</td>
</tr>
<tr>
<td>BLAST</td>
<td>Basic Local Alignment Search Tool</td>
</tr>
<tr>
<td>bp</td>
<td>Base pair</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>deoxyribonucleotide triphosphate</td>
</tr>
<tr>
<td>dsDNA</td>
<td>double-stranded DNA</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylene diamine tetraacetic acid</td>
</tr>
<tr>
<td>EMBL</td>
<td>European Molecular Biology Laboratory</td>
</tr>
<tr>
<td>EMP</td>
<td>Embden-meyerhof-Parnas</td>
</tr>
<tr>
<td>G+C</td>
<td>guanine plus cytosine</td>
</tr>
<tr>
<td>g</td>
<td>Gravity force</td>
</tr>
<tr>
<td>GRAS</td>
<td>Generally regarded as safe</td>
</tr>
<tr>
<td>GTE</td>
<td>Glucose-Tris-EDTA</td>
</tr>
<tr>
<td>ITS-PCR</td>
<td>Intergenic spacer region-PCR</td>
</tr>
<tr>
<td>ITS1-S</td>
<td>Short form of ITS1</td>
</tr>
<tr>
<td>ITS1-L</td>
<td>Long form of ITS1</td>
</tr>
<tr>
<td>ITS2-S</td>
<td>Short form of ITS2</td>
</tr>
<tr>
<td>ITS2-L</td>
<td>Long form of ITS2</td>
</tr>
<tr>
<td>kb</td>
<td>Kilo base pair</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilo Dalton</td>
</tr>
<tr>
<td>LAB</td>
<td>lactic acid bacteria</td>
</tr>
<tr>
<td>Lb</td>
<td>Lactobacillus</td>
</tr>
<tr>
<td>Lc</td>
<td>Lactococcus</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>Magnesium chloride</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>mL</td>
<td>Milliliter</td>
</tr>
<tr>
<td>MRS</td>
<td>Man Rogosa and Sharpe</td>
</tr>
<tr>
<td>N</td>
<td>Normality</td>
</tr>
<tr>
<td>Na</td>
<td>Sodium</td>
</tr>
<tr>
<td>NaOH</td>
<td>sodium hydroxide</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Center for Biotechnology Information</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>nt</td>
<td>Nucleotide</td>
</tr>
<tr>
<td>ORF</td>
<td>Open Reading Frame</td>
</tr>
<tr>
<td>PCI</td>
<td>phenol-chloroform-isoamyl alcohol</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>P</td>
<td>Pediococcus</td>
</tr>
</tbody>
</table>
Pln Plantaricin
Pg Picogram
RAPD randomly-amplified polymorphic DNA
rDNA Ribosomal deoxyribonucleic acid
rRNA Ribosomal ribonucleic acid
RE restriction enzyme
Rep-PCR Repetitive Extragenic Palindromes-PCR
RFLP restriction fragment length polymorphism
rRNA ribosomal Ribonucleic acid
rrn ribosomal RNA operon
sdH2O sterile distilled water
SDS sodium dodecyl sulphate
S Streptococcus
TAE Tris-acetate-EDTA
Taq Thermus aquaticus
TE Tris-EDTA
T$_a$ Anealing Temperature
T$_m$ melting temperature
tRNA Transfer RNA
U Unit
UV Ultra Violet
V Volt
v/v volume per volume
w/v weight per volume
µg Microgram
µL Microliter
µg/mL Microgram per milliliter
µM Micromolar
CHAPTER 1
INTRODUCTION

1.1 Background

The biosphere was formed by and is completely dependent on the metabolism of microorganisms and on their interactions with each other. Currently, it is estimated that there are about $4-6 \times 10^{30}$ different prokaryotic cells, exceeding, by various orders of magnitude, all plant and animal diversity. This enormous genetic variability is the result of rare mutations and recombination events (Pontes et al., 2007). These reasons together with expectations about specialized species with novel enzymatic functions, new products and beneficial characteristics, have made bacterial identification as a growing field of interest within microbiology and led researchers to examine the enormous unknown diversity of prokaryotes present in different ecosystems (Temmerman et al., 2004; Pontes et al., 2007).

It is noteworthy that in some fields such as diagnostic and food industries, it is critically important to identify the isolates even up to the strain level. In such areas, where lactic acid bacteria (LAB) are extensively being used, strain-level identification is of great importance as some of the health beneficial effects of these bacteria have been reported to be strain specific (Ouwehand et al., 2002; Temmerman et al., 2004). Initially, phenotypic methods was widely used for identification and discrimination of bacteria, but it was soon revealed that these methods are not effective, as similar phenotypes displayed by strains do not always correspond to similar or even closely related genotypes. Consequently, there has been a shift towards the use of genotypic
characterization methods in order to provide a more distinctive classification and differentiation of bacteria (Temmerman et al., 2004).

In contrast to phenotypic methods, the genotypic methods directly analyze the DNA and tend to have higher resolution. In general, many genotypic methods are based on the principle of polymerase chain reaction (PCR) and electrophoretic separation of DNA fragments of different molecular size (Olive and Bean, 1999; Temmerman et al., 2004).

Various genotypic techniques have been developed and successfully applied to differentiate and characterize bacteria, such as amplified ribosomal DNA restriction DNA analysis (ARDRA) (Carmen and Hernández, 2007), species-specific primers based on other parts of ribosomal DNA (rrn) operon (Chenguad et al., 2001; Bringel and Hubert, 2003; Felis and Dellaglio, 2007) as well as recA (Torriani et al., 2001), randomly amplified polymorphic DNA (RAPD), plasmid profiling, restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP) (Olive and Bean, 1999; Temmerman et al., 2004) and repetitive extragenic palindromes (rep)-PCR (Gevers et al., 2001). However, the discriminatory power of the above-mentioned methods has been at genus to strain level depending on the bacterial type. Since each method has its own advantages and disadvantages, distinctive discriminatory molecular characterization studies have to be conducted in a combination of various molecular methods.

Bacteriocinogenic Lb. plantarum species is of high value particularly in food industry. They have been isolated and characterized from various sources. However, negligible
reports are available from those isolated from Malaysian foods. Surveys and comparison among available data showed that members of bacteriocinogenic *Lb. plantarum* species produce various plantaricins. Moreover, in almost all similar studies, bacteria from ecologically different sources were subjected to molecular characterization and those strains isolated from ecologically similar sources have been always assumed to be the same.

Six *Lb. plantarum* strains studied in this project were previously isolated from steamed fish, fermented tapioca and tempeh (Lim, 2003; Woo, 2001). Although the studied strains were isolated from different foods, phenotypic methods failed to differentiate the strains (Lim, 2003). Therefore, this study was conducted to identify and characterize six bacteriocinogenic *Lb. plantarum* strains isolated from Malaysian foods using molecular approaches.

1.2 Objectives

a) To identify the bacteriocinogenic *Lb. plantarum* strains isolated from Malaysian food.

b) To differentiate the strains using amplified ribosomal DNA analysis.

c) To differentiate the strains using analysis of ribosomal DNA intergenic spacer regions.

d) To differentiate the strains using locus specific restriction fragment length polymorphism.

e) To differentiate the strains using plasmid profiling.

f) To differentiate the strains using randomly amplified polymorphic DNA.

g) To differentiate the strains using repetitive extragenic palindromes-PCR.
CHAPTER 2

LITERATURE REVIEW

2.1 Lactic acid bacteria (LAB)

The lactic acid bacteria (LAB) emerged around 3 billion years ago, probably before the photosynthetic cyanobacteria. Their expansion has really begun with the apparition of milk-producing mammals, over 65 million years ago. However, the first registered usage comes from the discovery of small vases punched by small holes, near the Neufchatel Lake, over 3000 years BC. Since those days, humans are able to control milk curdling (Champomier-Vergès et al., 2002).

Lactic acid bacteria are now constituted of a heterogeneous group of Gram-positive bacteria with a strictly fermentative metabolism from which lactic acid is the key metabolite (Carr et al., 2002). LAB are catalase-negative, non-spore forming, micro-aerobe to strictly anaerobe, and appear either in rod or coccid shape. LAB consist of number of genera: Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, Oenococcus, Enterococcus and Streptococcus, Weisella, Carnobacterium, Tetragnococcus and Bifidobacterium (Klein et al., 1998; Carr et al., 2002; Temmerman et al., 2004). They are widespread in nature and commonly found in milk and dairy products, plant materials, silage, and intestinal tract and mucous membranes of humans and animals.

Lactic acid bacteria fall into two major groups based on their glucose fermentation: The homofermenters which produce lactic acid as the major product of fermentation of
glucose and the heterofermenters which produce a number of products besides lactic acid, including carbon dioxide, acetic acid, and ethanol from the fermentation of glucose (Carr et al., 2002). All of the above mentioned genera are extensively being used in food industry due to their GRAS “Generally Regarded As Safe” status (Carr et al., 2002).

In spite of the GRAS status of LAB, there have been reports on the involvement of these bacteria on human clinical infections. In a report by Aguirre and Collins (1993), a number of cases in which LAB have been implicated in human disease were reviewed and cited.

The classification of LAB has been largely based on the morphology, mode of glucose fermentation, growth at different temperatures, configuration of lactic acid produced, ability to grow at high salt concentrations, and acid/alkaline tolerance (Axelsson, 2004). By developing molecular techniques, however, classification of LAB have been dramatically changed and their identification was facilitated (Olive and Bean, 1999; Busch and Nitschko, 1999; Axelsson, 2004). For example, Streptococci were divided into three genetically distinct genera: Streptococcus, Enterococcus and Lactococcus (Stiles and Holzapfel, 1997; Champomier-Vergès et al., 2002). Members of LAB have small genome with low G+C (guanine plus cytosine) content (<50%) (Klein et al., 1998).
2.2 The genus *Lactobacillus*

2.2.1 Classical classification

The Lactobacilli were originally classified by Orla and Jensen (1919) into the homofermenters and heterofermenters based on the amount of lactic acid formed during glucose fermentation. Orla and Jensen (1919) also divided the Lactobacilli into the three groups (the Thermobacteria, Streptobacteria, and the Betabacteria) based on the growth temperature and biochemical reactions (Table 2.1). Although those three groups have been replaced for the most part, the three names are still commonly used and are defined according to growth temperature, ability to ferment pentoses, ability to produce carbon dioxide from glucose or gluconate, requirement for thiamine, formation of lactic acid as a major product of fermentation, homofermentative or heterofermentative type of fermentation, reduction of fructose to mannitol and hydrolysis of arginine (As cited in Carr *et al.*, 2002).