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March 2006 
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Faculty :  Biotechnology and Biomolecular Sciences 

 

A recombinant Escherichia coli BL21 (DE3) plysS (pGEX / T1S) strain harbouring 

thermostable lipase (E.C.3.1.1.3) gene from Geobacillus sp. was used through out this 

study.  Lipase production was investigated using 2 L fermenter with 1.5 L working 

volume.  Initial fermenter operation resulted in 11.07 U/mL activity with 24 h inoculum, 

temperature of 30°C, 250 rpm impeller speed and without pH and dissolve oxygen 

tension (DOT) control strategy.   

 

Optimisation of fermentation operation conditions such as inoculum age, temperature, 

impeller speed, airflow rate, pH and dissolve oxygen tension (DOT) control strategy 

throughout the fermentation were carried out and compared.  A substantial high activity 

of lipase was detected during fermentation with 10 h inoculum.  Lipase production was 

41.18 U/mL activity which was comparable to previous optimised shake bottle and was 
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3.7 times higher than with 24 h inoculum.  Increasing the cultivation temperature to 

37°C, resulted in an increased of lipase production to 89.82 U/mL activity with highest 

cell mass attained of 6.63 g/L.  However, no significant difference (41.18 and 46.71 

U/mL activity) in lipase production was observed at temperature 30°C and 40°C, 

respectively.  Lipase production increased with an increasing airflow rate, with highest 

production of 89.82 U/mL activity observed at 1.5 L/min (1 vvm).  In contrast, lipase 

production decreased to 47.30 U/mL activity with higher airflow rate, which was 2 times 

lower than those obtained at low airflow rates. 

 

Further experiment on impeller speed showed only slight increased in lipase production.   

When impeller speed increased from 250 to 350 rpm, only slight increase of lipase 

production observed, from 89.82 U/mL to 93.03 U/mL activity.  Higher and lower 

impeller speed showed no improvement in lipase production.  Production time was 

reduced from 8 h to 5 h.  Maximum cell mass decreased with increasing controlled pH 

and no improvement in overall productivity observed.  At all dissolve oxygen control 

(DOT) strategy studied, no improvement in lipase production was observed.  Highest 

production was observed in fermentation when DOT was controlled at 80% saturation 

which gave productivity of 4.85 U/mL.h. 
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Pengerusi :  Professor Madya Raja Noor Zaliha Raja Abd. Rahman, PhD 
 

Fakulti :  Bioteknologi dan Sains Biomolekul 

 

Strain rekombinan Escherichia coli BL 21(DE 3) plysS (pGEX / T1S) yang mengandungi 

gene lipase (E.C.3.1.1.3) stabil haba daripada Geobacillus sp. adalah strain yang 

digunakan dalam kajian ini.  Penghasilan enzim lipase hanyalah pada nilai activiti 11.07 

U/mL apabila percubaan pertama menggunakan fermenter dijalankan, dengan inokulum 

24 jam, suhu 30°C, halaju pengaduk 250 ppm, kadar kemasukan udara 1.5 L/min dan 

tanpa sebarang kawalan tetap terhadap pH media dan oksigen terlarut.   

 

Pengoptimuman usia inokulum, suhu, kadar kemasukan udara ke dalam sistem fermenter, 

kelajuan pengaduk, pH medium yang terkawal tetap, dan kesan tekanan oksigen terlarut 

terkawal tetap terhadap penghasilan lipase intrasellular di kaji menggunakan fermenter 2 

L dengan jumlah media 1.5 L. Aktiviti lipase yang tinggi dikesan dengan menggunakan 

usia inokulum 10 jam.  Penghasilan adalah pada nilai aktiviti 41.18 U/mL yang mana 

tidak jauh berbeza dengan keputusan optimum skala botol bergoncang.  Ia adalah 3.7 kali 
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lebih tinggi daripada menggunakan usia inokulum 24 jam.  Kenaikan ketara aktiviti 

lipase diperolehi setelah suhu  pengkulturan dinaikkan ke 37°C (89.82 U/mL aktiviti).  

Pada kajian kadar kemasukan udara, penghasilan lipase meningkat dengan peningkatan 

nilai kadar kemasukan udara, dengan nilai maksima masih kekal pada kadar kemasukan 

udara 1.5 L/min (1 vvm).  Namun begitu, nilai kemasukan udara yang lebih tinggi telah 

menurunkan penghasilan lipase sebanyak hampir 2 kali ganda (47.30 U/mL aktiviti).   

 

Eksperimen selanjutnya menunjukkan hanya sedikit kenaikan pada nilai aktiviti lipase, 

iaitu daripada 89.82 U/mL ke 93.03 U/mL apabila halaju pengaduk dinaikkan daripada 

250 ppm ke 350 ppm.  Kecekapan sel dalam penghasilan enzim dan nilai pengeluaran 

meningkat kesan daripada peningkatan penghasilan lipase iaitu 14.33 U.L/g dan 11.2 

U/mL.h, masing-masing.  Semasa proses fermentasi menggunakan strategi pH terkawal 

tetap sepanjang fermentasi, nilai kepekatan sel maksima menurun dengan nilai pH 

kawalan meningkat.  Penghasilan lipase didapati menurun dengan kenaikan nilai kawalan 

pH.  Daya pengeluaran enzim lipase menggunakan pendekatan ini menunjukkan tiada 

pembaikan.  Keputusan yang hampir sama diperolehi apabila strategi tekanan oksigen 

terlarut terkawal tetap dijalankan sepanjang tempoh fermentasi.  Pada semua kajian 

strategi kawalan ini, tiada pembaikan dalam penghasilan lipase dikesan.  Penghasilan 

tertinggi di kesan pada kawalan 80% oksigen terlarut dengan daya pengeluaran sebanyak 

4.85 U/mL.h.   
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

Lipases (acylglycerol – acylhydrolase, E. C. 3.1.1.3) have been traditionally obtained 

from animal pancreas as a digestive aid for human consumption.  Initial interest in 

microbial lipase was generated as a result of shortage of pancreas and difficulties in 

collecting available materials (Falk et al., 1991).  Lipases are enzymes of considerable 

physiological significance and industrial potential (Sharma et al., 2001).  Lipases are 

serine hydrolase, catalyse the hydrolysis of triglycerides to glycerol and free fatty acid at 

oil/water interface (Sugihara et al., 1995; Sharma et al., 2001). 

 

Compared to mammalian and plant, microbial lipases are much more diverse in their 

enzymatic properties and substrate specificities, which make them attractive for industrial 

applications (Sugihara et al., 1995).  Lipases of microbial origin are the most versatile 

enzymes and are known to bring about a range of bioconversion reactions, which 

includes hydrolysis, interesterification, esterification, alcoholysis, acidolysis and 

aminolysis (Haki and Rakshit, 2003).  Due to their extracellular nature, most of microbial 

lipases can be produce in large quantities and are quite stable under non-natural 

conditions such as high temperatures and nonaqueous organic solvents employed in many 

applications.   
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Their stability, inexpensive manufacturing, as well as their broad synthetic potential 

make microbial lipases as an ideal biocatalyst for oleochemistry and organic synthesis.  

Application in organic chemical processing, detergent formulations, synthesis of 

biosurfactants, oleochemical industry, dairy industry, agrochemical industry, paper 

manufacture, nutrition, cosmetics, and pharmaceutical processing, have recently been 

reviewed (Schmidt-Dannert, 1999; Sharma et al., 2001). 

 

Even though lipases have been used traditionally for decades, the range of application 

and the volume of lipases manufactured have been limited.  Accordingly, the economic 

importance of lipases to the enzyme industry has been quite restricted when compared 

with major industrial enzymes such as proteases and carbohydrases.  Recently, however, 

many new potential applications of lipases have been proposed and, since the methods for 

lipase production have been improved, some of these new uses will be economically 

viable.  In 1995, lipases are considered to be the third largest group based on total sales 

volume (Jaeger et al., 1997).  It is likely, therefore, that lipases will become of increasing 

importance, not only within areas traditionally employing large quantities of enzymes 

such as, for example, the detergent and food industries (Björkling et al., 1991). 

 

Thermostable enzymes are particularly attractive for industrial applications because of 

their high activities at the elevated temperatures and stabilities in organic solvents (Lee et 

al., 2001).  Most of the industrial processes in which lipases are employed function at 

temperature exceeding 45°C.  The enzymes, thus, are required to exhibit an optimum 

temperature around 50°C.  Some enzymatic processes for the physical refining of seed 
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oils have four distinct requirements.  These include pH of 5.0 and optimal temperature of 

around 65°C, adding an enzyme solution and enzyme reaction followed by the separation 

of the lysophosphatide from the oil at about 75°C.  Another best known examples 

probably being those used in starch hydrolysis for the production of high fructose syrup 

and the use of proteases in detergents.  These reactions, therefore, are enhanced through 

the utilization of thermo-tolerant lipases (Kristjansson, 1989; Haki and Rakshit, 2003).  

Thermostable are one of the main desirable characteristics that commercial lipases should 

exhibit.   

 

Thermostable enzymes are mainly derived from thermophilic microorganism. As 

isolation and cultivation of the extreme thermophiles often requiring anaerobic conditions 

at 100°C or above is much more difficult to operate, therefore, genetic engineering and 

cloning enzymes from thermophiles into appropriate mesophiles host is the best approach 

to express the selected protein.  Recently, Escherichia coli is still the most important and 

favorable host organism for recombinant protein production (Korz et al., 1995).  As most 

E. coli strain are aerobic mesophile, culturing in a fully equipped fermenter is the most 

suitable approach to enhance growth and protein production.  In E. coli, the amount of 

carbon source and level of oxygen play an important role in the metabolic fluxes 

associated to its growth.  Oxygen is a growth limiting factor and below a critical value 

affects the growth rate but at the same time can have inhibitory effects when present in 

excess.  Similarly, low levels of dissolved carbon dioxide are reported to stimulate 

growth, meanwhile increasing levels have progressive inhibitory effects.  The levels of 

dissolved oxygen and carbon dioxide are affected by the consumption or production 
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respectively, and the transfer rate between phases.  In aerobic systems, fermenter can 

work in optimal conditions for gas-liquid transfer by means of agitation and aeration 

(Alba and Calvo, 2000). 

  

The scope of this study was focused on development of process aimed at establishing 

high performance thermostable lipase fermentation using local recombinant strain, E. coli 

BL21 (DE3) plysS (PGEX / T1 S).  Therefore, the objectives of this research are; 

 

1. to compare and analyze experimental data of batch lipase fermentation of 1 L 

screw cap media – lab bottle and 2 L fermenter 

2. to improve thermostable lipase production using 2  L stirred tank fermenter 

3. to identify important fermenter parameters on maximum thermostable lipase 

production by recombinant E. coli. 



CHAPTER 2 

 
 

 

 

LITERATURE REVIEW 

 
 

2.1 Industrial enzymes 

 

Today, nearly 4000 enzymes are known, and of these, about 200 are in commercial use.  

Until the 1960s, the total sales of enzymes were only a few million dollars annually, but 

the market has since grown spectacularly (Godfrey and West, 1996).   

  

Twelve major producers and 400 minor suppliers satisfy the world enzyme demand.  

Around 60% of the total world supply of industrial enzymes is produced in Europe.  At 

least 75% of all industrial enzymes are hydrolytic in action.  Proteases dominate the 

market, accounting for approximately 40% of all enzyme sales.  As depicted in Table 1, 

most enzymes are used as industrial catalysis.  As an example, lipase have an important 

applications in food industry as additives to modify the food flavour as well as in laundry 

detergents due to it tendency toward lower washing temperatures to save energy 

(Sokolovska et al., 1998).  Indeed, the single biggest market of their use is in the 

detergent formulations.  While in therapeutic applications, penicillin G acylase (PGA) 

hydrolyses penicillin G to 6-aminopenicillanic acid (6APA), which is used in the semi-

synthetic antibiotic industry (Liu et al., 2000).  Other applications of enzymes are 

summarized in Table 1.      
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Table 1:  Fields of applications of enzymes (Sharma et al., 2001) 

               

 

Scientific research: Enzymes are used as research tools for hydrolysis, synthesis, 

analysis, biotransformations, and affinity separation. 

 

Cosmetic applications: Preparations for skin; denture cleansers. 

 

Medical diagnostics and chemical analyses: Blood glucose, urea, cholesterol; ELISA 

systems; enzyme electrodes and assay kits. 

 

Therapeutic applications: Antithrombosis agents, anti tumor treatments, anti-

inflammatory agents, digestive aids, etc. 

 

Industrial catalysis:   In speciality synthesis; brewing and wine making; dairy processing; 

fruit, meat and vegetable processing; starch modifications; leather processing; pulp and 

paper manufacture; sugar and confectionery processing; production of fructose; 

detergents and cleaning agents; synthesis of amino acids and bulk chemicals; wastewater 

treatment; desizing of cotton.  

              

 

 

2.2 Lipases 

  

Lipases  are ubiquitous enzymes of considerable physiological significance and industrial 

potential (Sharma et al., 2001).  Lipases are classified as serine hydrolases because the 

active site is generally characterized by the triad composed of serine, histidine and 

aspartate (Sharma et al., 2001; Reetz, 2002; Tyndall et al., 2002).   

 

Due to the flexibility of protein chains, lipases can catalyse three basic types of 

enzymatic reactions on the esteric bond between fatty acid and alcohol – hydrolysis, 

esterification and interesterification (Figure 1) (Sokolovská et al., 1998).  They usually 
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retain their structure and activity in organic solvents.  They also have several advantages 

over chemical catalyst: substrate specificity, regio- and enantio-selectivity, lower 

temperature and pressure requirements (Vanot et al., 2001). 

 

 

 

 

 

 

   Figure 1: Basic types of lipase enzymatic reactions: (a) hydrolysis  

 (b) esterification and (c) transesterification 

 

 

Lipases catalyse the hydrolysis of triacylglycerols to glycerol and free fatty acids.  In 

contrast to esterases, lipases are activated only when adsorbed to an oil-water interface 

(Martinelle et al., 1995) and do not hydrolysed dissolve substrates in the bulk fluid.  

Interfacial activation of lipases that occurs at this lipid-water interface is a phenomenon 

that can be traced to the unique structural characteristics of this class of enzymes.  

Lipases contain a helical oligopeptide unit that shields the active site.  This so-called lid, 

upon interaction with hydrophobic interface such as lipid droplet, undergoes movement 

in such a way that exposes the active site providing free access for the substrates 

(interfacial activation) (Reetz, 2002; Tyndall et al., 2002). 

 

 

(a)  RCO2H + 2H2O      RCO4H2 + 2 RCO2H 

(b)  RCO2H + R’OH     RCO2R’ + H2O 

 (C) RCO2R’ + R’’OH   RCO2R’’ + R’OH 
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Although lipases have been found in many species of animals, plants, yeast and fungi, the 

enzymes from microbial sources are currently receiving particular attention because their 

actual and potential application in the industry and different operating strategies have 

been evaluated to improve the yield of this enzyme (Sarkar et al., 1998; Sokolovská et 

al., 1998).  The yeast Candida lipolytica and Candida cylindracea have been identified as 

the most important microorganism to produce lipases (Falk et al., 1991).  However, there 

was also an interest in using microbial strain as they generally offer higher activities 

compared to yeast (Frost and Moss, 1987). 

 

Over the past decade, a number of bacterial lipases have been purified and characterized.  

However, as reported earlier, crude lipase preparations are among the commercial lipases 

most often employed in the hydrolysis and synthesis of a wide range of esters of 

commercial interest (Tripathi et al., 2004).  Lesser amounts of lipases are used in 

oleochemical transformations (Sharma et al., 2001).  

 

2.3 Applications of lipases 

 

Lipases find promising applications in organic chemical processing, detergent 

formulations, synthesis of biosurfactants, the oleochemical industry, the dairy industry, 

the agrochemical industry, paper manufacture, nutrition, cosmetics, and pharmaceutical 

processing (Sharma et al., 2001, Björkling et al., 1991).  The major commercial 

application for hydrolytic lipases is their use in laundry detergents.  Detergent enzymes 


