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Abstract
Proper integrated management of a dam reservoir requires that all components of the water resource 
system be known.  One of these components is the daily reservoir inflow which is the subject matter 
of this study, i.e. to establish predictions of what is coming in the next rainfall-runoff process over a 
catchment.  The transformation of rainfall into runoff is an extremely complex, dynamic, and more 
of a non-linear process.  The available six-year average daily rainfall data across the Sembrong 
dam catchment were computed using the well-known Theissen’s polygon method.  Daily reservoir 
inflow data were extracted by applying the water balance model to the Sembrong dam reservoir.  
Modelling of relationship between rainfall and reservoir inflow data was done using feed-forward 
back-propagation neural networks.  The final selected model has one hidden layer with 11 neurons 
in the hidden layer.  The selected model was applied for an independent data series testing. Results 
in relation to specific climatic and hydrologic properties of a small tropical catchment suggested 
that the model is suitable to be used in forecasting the next day’s reservoir inflow.  The efficiencies 
of the model Abtained indicated the validity of using the neural network for modelling reservoir 
inflow series.
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Introduction
Dam reservoirs plays a vital function at various times and for different purposes such as supplying 
water for irrigation, hydropower, mitigating disastrous environmental effects and impacts, as well 
as ensuring flood mitigation and as an insurance during periods of drought etc.  In many instances, 
these dams have no established ydrometric data collection network.  The absence of intense 
network (for the accuracy of data required for the establishment of a vast network facilities) is 
usually the norm in view of the high costs involved in setting them up.  These conditions can result 
in a considerable uncertainty in the hydrologic information obtained.  The non-linear relationship 
between input and output variables complicates the effort to forecast reservoir inflow events.  Many 
of the techniques currently used in modelling hydrological time-series consider linear relationships 
among the variables.  The two main technique groups are physically based conceptual models 
and time-series models.  In the first group, the procedure is to mathematically simulate the sub-
processes and physical mechanisms that prevail in the hydrological cycle.  These models usually 
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combined simplified forms of physical laws and are generally non-linear, time-invariant, and 
deterministic, with parameters which are representative of watershed characteristics (Hsu et al., 
1995) but ignore the spatially distributed, time-varying, and stochastic properties evident in the 
rainfall–runoff process.  The implementation and calibration of conceptual models can cause many 
difficulties which require intricate mathematical tools (Duan et al., 1992; Sorooshian and Gupta, 
1995), significant amounts of calibration data (Yapo et al., 1996), and some degree of expertise 
and experience with the model (Hsu et al., 1995).  With the time-series modelling approach in 
the second group, most of them fall within the framework of multivariate autoregressive moving 
average (ARMA) models (Raman and Sunilkumar, 1995).  In  runoff forecasting, the time-series 
models consider the stochastic structure of the time sequence of the runoff and precipitation values 
measured over time.  They are more practical than the conceptual models in the sense that there 
is no need to understand the internal structure of the physical processes which are taking place in 
the system being modelled.  The limitation of the univariate time-series methods is that the only 
information they incorporate is the value of the past flows.  Many of the available techniques are 
deficient in that they are not considered as non-linear dynamics inherent in the transformation of 
rainfall to runoff.

New computing tools and black-box modelling techniques have been introduced to take into 
cognizance the above mentioned insufficiency.  In the data driven modelling, the input variables 
connect to the output of a system with only limited knowledge about the physical behaviour of the 
system.  Meanwhile, techniques used for data-driven modelling can be stated as machine learning 
(decision tree, Bayesian methods, neural networks, reinforcement learning), soft computing (fuzzy 
inference systems, neuro-fuzzy), data mining (which uses machine learning methods and statistics), 
non-linear dynamics, and chaos theory.  These categories often overlap each other (Solomatine, 
2002).

Many researches have applied Artificial Neural Networks (ANNs) to model different complex 
hydrological processes.  Some ANN methods (Rumelhart et al., 1986) have been successfully 
employed to simulate the rainfall-runoff process.  In addition, the ANN methods have good 
generalization efficiency and are commonly used in practical hydrologic projects (Zealand et al., 
1999).  Even when there are missing data values, the ANN methods can be applied to aid in the 
completion of missing hydrological records (Khalil et al., 2001).  Some authors have compared 
Box–Jenkins with the ANN methods (Hsu et al., 1995; Abrahart and See, 1998) and confirmed, 
in most cases, the more accurate performance of the ANNs.  Traditionally, it is just a matter of 
studying the cause-effect relationship with historical data.  However, this simple statistics does not 
take into account other issues which take place in a time series.

This paper presents the results from a study on the application of the feed-forward back-
propagation neural networks to forecast the next day’s reservoir inflow.  The modelling procedure 
is demonstrated for a dam reservoir in Malaysia, where stream inflows are not measured, catchment 
overland runoff inflow is virtually not measured and rainfall being measured in a three-station 
network strategically placed in the catchment.

Methodology - ANN Modelling
There is this perpetual growing interest in the modelling of non-linear relationships.  The artificial 
neural networks (ANNs) are essentially semi-parametric regression estimators and therefore 
suitable for this purpose.  A significant advantage of the ANN approach in system modelling is 
that a well-defined physical relationship for systematically converting an input to an output is not 
required.  What is needed for most networks is a collection of representative examples (input–
output pairs) of the desired mapping.  Then, the ANN adapts itself to reproduce the desired output 
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when presented with the training sample inputs.  Meanwhile, network architecture determines 
the number of connection weights (free parameters) and the way information flows through 
the network. The determination of appropriate network architecture is not only one of the most 
important, but it is also one of the most difficult tasks in the model building process.  The multi-
layer perceptron (MLP) is the most popular network architecture in use today, due originally to 
Rumelhart et al. (1986), and it is discussed in most neural network text references.  As shown in 
Fig. 1, a typical MLP has neurons which are arranged in a distinct layered topology with its three-
layer relationship.

Network geometry determines the number of connection weights and how they are arranged.  
This is generally done by fixing a number of hidden layers and choosing the number of nodes in 
each of these.  The ANNs with one hidden layer has been shown to be able to approximate any 
function.  The number of nodes in the input layer is fixed by the number of model inputs, whereas 
the number of nodes in the output layer is equal to the number of the model outputs.  In this study, 
there was only one output, i.e. the reservoir inflow.  The selection of the final structure of the ANN 
model started with a minimum number of nodes in the hidden layer of two since the optimum 
number of hidden notes cannot be pre-determined, and the network is trained until a minimum 
mean square error is attained.  Then, the number of nodes in a hidden layer is gradually increased 
until such increase does not significantly improve the performance of the neural network, and thus 
result in an optimal number of notes in the hidden layer.

The process of optimizing the connection weights is known as ‘training’ or ‘learning.’  Here, 
the Levenberg–Marquardt backpropagation training (LMBP) is used to train a feed-forward neural 
network.  The transfer functions most commonly used are the sigmoidal type functions such 
as the logistic and hyperbolic tangent functions.  In this study, hyperbolic and linear functions 
were considered for the hidden and output layers, respectively.  The performances of the models 
developed in this study were evaluated using standard statistical performance evaluation based 
on error measures.  More specifically, three different statistical performance indices have been 
employed, namely normal root mean squared error or NRMSE (which is preferred in many iterative 
prediction and optimization schemes), Pearson’s correlation coefficient or R (which represents the 
relationship between two parameters giving a scatter plot by a linear relationship), and Nash–
Sutcliff efficiency or CE (which includes both observed and predicted values of the same).  These 
are defined as follows:

Fig. 1:  Structure of a typical MLP
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Where Q0(t) is the observed inflow at time t, Q(t) is the estimated inflow at time t, n is the total 
number of inflow data points estimated from the developed ANN model, Qo  is the mean observed 
inflow, Q is the mean estimated inflow.  Ei is the respective sum square of differences.

Case Study
The Sembrong dam (Fig. 2 and Plate 1), which is a dual purpose water supply cum flood mitigation 
dam was considered in this study.  The catchment of dam lies to the east of the Kuala Lumpur-
Singapore road and to the west of the Kuala Lumpur-Singapore railway in an area bounded by the 
latitude of 1057’-205’ N and by the longitude of 10308’-101017’ E in the west part of Peninsular 
Malaysia, about 10km from Air Hitam town in the state of Johor and on the Air Hitam - Kluang 
road.

The data which were needed and available were sourced from the water supplies company and 
the Department of Irrigation and Drainage which is in charge of the reservoir operations whilst 
reservoir inflow data were extracted using water balance equation for the reservoir.  The average 
rainfall across the catchment was calculated by constructing the well-known Theissen’s polygon 
(Fig. 3).  The daily data, which were derived from a period of 6 years, i.e. from 1995-1998 and 
from 2002-2004 (Fig. 4), were considered as the training-validation sets, whereas the other daily 
data taken for a period of 10 months, i.e. from March 2005 to the end of December 2005 (Fig. 
5) were used as the testing set.  Model inputs were selected by prior knowledge and research in 
the study area.  Model inputs were reservoir inflow with four lags and average rainfall over the 
catchment with three lags and the output from the models was just the reservoir inflow for the 
next day. The evaluation procedure of the number of lags for the reservoir inflow and rainfall is 
not shown here since it is well-known. After the input (Q(t), Q(t-1), Q(t-2), Q(t-3), Q(t-4), R(t), 
R(t-1), R(t-2), R(t-3), where Q(t-i) and R(t-i) represent the reservoir inflow and rainfall at the ith 
lag number respectively) and output (Q(t+1) in output layer represented the reservoir inflow at 
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 Fig. 2: Location map of the Sembrong Dam 
in Johor, Malaysia

Plate 1: An aerial view of the Sembrong Dam and reservoir and 
the river downstream of the dam (Courtesy of Department of 

Irrigation and Drainage, Kuala Lumpur) 

Fig. 3: Theissen’s polygon showing the 
locations of the three rainfall stations
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time t+1) variables were selected, the ANN architecture 9-N-1 was explored for the capturing of 
the complex, dynamic, and non-linear, rainfall-discharge process.  The architecture of the models 
is a 9-N-1 format in which N represent the number of neuron in hidden layer.

Fig. 4: Daily reservoir inflow data for training and
 validation during 1995 to1998 and 2002 to 2004

Fig. 5: Daily reservoir inflow data for testing
(March – December, 2005)
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Results and Discussions
Different ANN models were trained with different number of neurons in hidden layer. Each model 
compromised of nine inputs, one hidden layer and one output. The performance criterion for each 
model during the training process is presented in Table 1. These results have been obtained using 
raw reservoir inflow and rainfall data (non-transformed, but scaled). On comparing the results, 
it was revealed that adding neurons (until 11neurons) to hidden layer increases the R and CE 
values and decrease NRMSE, which is desirable. Based on table 1, there is no point to add more 
neurons to the hidden layer thereafter (after 11 neurons) in view of the decreasing performance 
criteria with increasing neuron numbers. The best architecture obtained was selected with respect 
to maximum values of R and CE and minimum NRMSE value and this was from the model 9-11-1. 
This model was further employed to simulate the independent testing data and the results are 
also presented in Table 1. In the testing stage, although the selected model was found to result in 
improved NRMSE criterion but however, it simultaneously showed decreased R and CE values. 

Fig. 6: Observed and predicted of selected AAN model in the training

Fig. 7: Observed inflows and selected ANN model 
predicted inflows during the testing phase
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Fig. 6 shows the simulation results of the 9-11-1 model for the training data section. The model 
has some over prediction in base-flows but nevertheless, it was not able to capture the high peaks. 
Simulation results for testing period (Fig. 7) shows good generalization for base-flows and some 
over-prediction in peak flows. 

 Conclusions
In this study, the potential of a feed-forward multi layer perceptron for forecasting the daily reservoir 
inflow was investigated for the Sembrong dam catchment in Malaysia. An appropriate architecture 
of ANN model was found by trial and error. The model was examined for an independent data 
set. Results showed good generalization for base-flows and medium peaks but over-estimation 
in high peaks (which tends to err on the conservative side). With respect to specific climatic and 
hydrologic properties of small tropical catchment, the results of study show the validity of using 
neural network for modelling reservoir inflow series.

Table 1
Performance criteria of the ann models with different architecture 

during the training and testing phases

During training

Architecture
Pearson’s correlation 

coefficient
(R)

Nash-Sutcliff efficiency 
coefficient

(CE)

Normal root mean 
square error
(NRMSE)

9-2-1 0.758 0.566 173.483
9-3-1 0.841 0.688 147.001
9-4-1 0.830 0.686 147.505
9-5-1 0.822 0.666 152.091
9-6-1 0.823 0.675 150.104
9-7-1 0.831 0.689 146.773
9-8-1 0.838 0.690 146.613
9-9-1 0.812 0.643 157.367
9-10-1 0.844 0.710 141.679
9-11-1 0.862 0.738 134.648
9-12-1 0.829 0.675 150.139
9-13-1 0.840 0.700 144.207
9-14-1 0.821 0.618 162.612
9-15-1 0.847 0.716 140.304

During Testing
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