

UNIVERSITI PUTRA MALAYSIA

CHARACTERIZATION OF AN ORGANIC SOLVENT-TOLERANT PROTEASE FROM *PSEUDOMONAS AERUGINOSA* STRAIN K

LEE POH GEOK

FSAS 2003 27

CHARACTERIZATION OF AN ORGANIC SOLVENT-TOLERANT PROTEASE FROM *PSEUDOMONAS AERUGINOSA* STRAIN K

By

LEE POH GEOK

ī.

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, In Fulfilment of the Requirement for the degree of Doctor of Philosophy

March 2003

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctoral of Philosophy

CHARACTERIZATION OF AN ORGANIC SOLVENT-TOLERANT PROTEASE FROM *PSEUDOMONAS AERUGINOSA* STRAIN K

By

LEE POH GEOK

March 2003

Chairman : Professor Abu Bakar Salleh, Ph.D.

Faculty : Science and Environmental Studies

This study involves the isolation and screening of an organic solvent-tolerant producer from eleven Benzene-Toluene-Xylene-Ethylbenzene (BTEX) tolerant bacteria and Polycyclic-Aromatic-Hydrocarbons (PAHs) degraders. The bacteria were initially isolated following qualitative screening on skim milk agar plates and quantitative screening for organic solvent stable protease in liquid media. An organic solvent-tolerant protease producer identified as *Pseudomonas aeruginosa* strain K was selected for further analysis based on the stability of its protease in 25% (v/v) benzene and toluene.

Maximum protease production by *Pseudomonas aeruginosa* strain K was achieved after 48 h incubation at pH 7.0 and 37°C. Static condition and 4.0% (v/v) bacterial inoculum gave the optimum enzyme yield. Culture media containing sorbitol as the carbon source; casamino acids as the organic nitrogen source and sodium nitrate the inorganic nitrogen source, gave the highest level of protease production. Corn steep liquor, beef extract and ammonium nitrate on the other hand inhibited protease

activity. However, the addition of metal ions such as K^+ , Mg^{2+} and Ca^{2+} maximized enzyme synthesis.

The organic solvent-tolerant strain K protease was purified to homogeneity by ammonium sulphate precipitation and anion exchange chromatography with 124-fold increase in specific activity and about 40% recovery. The molecular weight of the purified enzyme as revealed by SDS-PAGE electrophoresis is about 51 kilodaltons (kDa). The strain K protease was an alkaline metalloprotease with an optimum pH and temperature of pH 10.0 and 70°C, respectively. The protease was activated by Zn²⁺ and Sr²⁺ while Fe³⁺ inhibited it. Activation effect was also observed when the purified enzyme was exposed to denaturing and reducing agents such as 6M urea, Triton-X-100 and Tween 20 for 1 h exposure to the purified enzyme. After 14 days of incubation, the purified organic solvent-tolerant enzyme was 1.11, 1.82, 1.50, 1.75 and 1.80 times more stable in 1-decanol, isooctane, decane, dodecane and hexadecane, respectively.

The gene coding for the organic solvent-tolerant protease was amplified from *Pseudomonas aeruginosa* strain K by polymerase chain reaction using consensus primers based on the multiple sequences alignment of alkaline and metalloprotease genes from *Pseudomonas* species. Nucleotide sequence analysis of the gene revealed an open reading frame containing 1440 bp, which codes for a polypeptide of 479 amino acid residues. The polypeptide composed of a N-terminal propeptide of 7 amino acid residues and a mature protein of 472 amino acid residues. Amino acid sequence comparison revealed that the organic solvent-tolerant protease gene shared high homology with alkaline and metalloprotease sequences from *Pseudomonas*

aeruginosa and *Pseudomonas fluorescens*. The recombinant strain K protease was successfully expressed in pGEX-4T-1 expression vector. In the presence of 1.0 mM IPTG, the recombinant strain K protease was released into the periplasm of the *Escherichia coli* BL21 (DE3) host.

.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENCIRIAN GEN STABIL PELARUT ORGANIK DARIPADA PSEUDOMONAS AERUGINOSA STRAIN K

Oleh

LEE POH GEOK

Mac 2003

Pengerusi : Profesor Abu Bakar Salleh, Ph.D

Fakulti : Sains dan Pengajian Alam Sekitar

Pengajian mengenai penyaringan dan pemencilan bakteria penghasil protease stabil pelarut organik telah dijalankan ke atas sebelas pencilan yang stabil kepada benzena, toluena, xilena dan etilbenzena (BTEX). Bakteria yang berkeupayaan mengdegradasi hidrokarbon polisiklik aromatik telah dipencil berdasar kepada pemencilan kualitatif di atas agar susu (SMA) dan pemencilan kuantitatif kepada protease stabil pelarut organik di dalam media kaldu. Satu pencilan yang menghasilkan protease stabil pelarut organik telah dikenalpasti sebagai *Pseudomonas aeruginosa* strain K. Pencilan tersebut dipilih untuk kajian selanjutnya berdasarkan kepada keupayaan proteasenya yang stabil dalam 25% (I/I) benzena dan toluena.

Penghasilan maksimum protease *Pseudomonas aeruginosa* strain K tercapai pada pH 7.0 dan 37°C selepas 48 jam pengeraman. Keadaan statik dan 4.0% (I/I) inokulum bakteria menghasilkan protease pada tahap yang maksimum. Penghasilan protease tertinggi diperolehi apabila bakteria strain K dikulturkan dalam media yang menggunakan sorbitol sebagai sumber karbon, asid casamino dan sodium nitrat sebagai sumber nitrogen organik dan nitrogen tidak organik. "Corn steep liquor",

ekstrak daging and ammonium nitrat merencat aktiviti protease. Penambahan ion logam seperti K^+ , Mg^{2+} and Ca^{2+} meningkatkan sintesis enzim tersebut.

Protease stabil pelarut organik daripada strain K berjaya ditulenkan hingga homogen melalui pemendakan ammonium sulfate dan kromatografi penukaran anion dengan peningkatan aktiviti spesifik sehingga 124 kali ganda dan pulangan aktiviti sebanyak 40%. Berat molekul enzim yang ditulenkan ialah kira-kira 51 kDa ditentukan melalui kaedah SDS-PAGE. Protease strain K adalah protease jenis alkali dan metalo dengan pH dan suhu optimumnya pada pH 10.0 dan 70°C. Ion logam seperti Zn²⁺ and Sr²⁺ mengaktifkan enzim ini manakala ion Fe³⁺ merencatkannya. Tindakan keaktifan protease juga dapat dikesan dengan kehadiran agen denaturasi dan penurun, di mana pendedahan selama 1 jam kepada 6M urea, Triton-X-100 and Tween 20 meningkatkan aktiviti enzim. Selepas pengeraman selama 14 hari dengan pelarut organik, protease yang telah ditulenkan didapati lebih stabil sebanyak 1.11, 1.82, 1.50, 1.75 and 1.80 kali ganda untuk 1-decanol, isooctana, decana, dodecana and hexadecana berbanding dengan piawai.

Gen protease stabil pelarut organik daripada *Pseudomonas aeruginosa* strain K telah digandakan melalui tindakbalas berantai polimerasi dengan menggunakan primerprimer yang berdasarkan jujukan tindihan gen protease alkali dan metalo daripada spesies *Pseudomonas*. Analisis jujukan menunjukkan rangka bacaan terbuka bersaiz 1440 bp yang mengkodkan polipeptida yang mengandungi 479 residu asid amino. Polipeptida tersebut terdiri daripada 7 asid amino residu propeptida N-terminal dan 472 residu asid amino protein matang. Perbandingan asid amino menunjukkan homologi yang tinggi dengan protease alkali dan metalo daripada spesis

Pseudomonas aeruginosa dan *Pseudomonas fluorescens*. Protease daripada strain K rekombinan telah berjaya diekspreskan dengan vektor pengekspresan pGEX-4T-1. Kehadiran 1.0 mM IPTG menyebabkan protease strain K rekombinan dirembeskan ke dalam periplasma perumah *Escherichia coli* BL21 (DE3).

ACKNOWLEDGEMENTS

No written words to elaborate or express how privileged, grateful and honour, I am to be able to complete and write my thesis. This "mission impossible" will only be possible and come true by the power and assistance of the all mighty God. To my dearest mother and father, thank you for bringing me up to be who I am today. My success symbolizes and reflects on the undivided support and love from both of you.

My heartiest gratitude goes to my supervisors: Assoc. Prof. Dr. Che Nyonya Abdul Razak and Prof. Dr. Abu Bakar Salleh. I am truly thankful to Dr. Che Nyonya for giving me the opportunity to study on this interesting and advent project. My appreciation also goes to Prof. Dr. Abu Bakar Salleh for his willingness to help, listen and assist in every way, in the midst of his heavy responsibilities and duties. Above all, thank you for the advice, guidance, ideas, criticism and encouragement throughout the project. Not forgetting my supervisory committee members: Prof. Dr. Mahiran Basri and Assoc. Prof. Dr. Raja Noor Zaliha Abdul Rahman and Dr. Basyaruddin for their constructive comments, constant support and invaluable guidance. In taking this text from the raw manuscript stage to the final ready thesis stage, I have received tremendous assistance from the meticulous checking of the text to numerous suggestions for modifications and special learning aids from all of you.

I would like to dedicate my appreciation to Assoc. Prof. Dr. Tan Wen Siang, Prof. Dr Khatijah Yusoff and my dearest friends. I am grateful to Dr. Tan Wen Siang for providing me with wealth of comprehensive information, invaluable and

insightful contributions to the last chapter. Especially to five of the best and brightest friends: Ong Swee Tin, Kho Chiew Ling, Dr. Lau Wei Hong, Dr. Majid, Dr. Mao, Brother Laith and Leow. Thanks for your unending patience, good humour and support during the seemingly unending process of getting this research finished! Special recognition is addressed to all my Bacteriology lab mates and friends in Virology Lab, thank you for your friendship. I am also indebted to all the staff in Department of Biochemistry and Microbiology.

I certify that an Examination Committee met on 20th March 2003 to conduct the final examination of Lee Poh Geok on her Doctor of Philosophy thesis entitled "Characterization of an Organic Solvent-tolerant Protease from *Pseudomonas aeruginosa* strain K" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

KHATIJAH YUSOFF, Ph.D.

Professor, Faculty of Science and Environmental Studies Universiti Putra Malaysia (Chairperson)

ABU BAKAR SALLEH, Ph.D.

Professor, Faculty of Science and Environmental Studies Universiti Putra Malaysia (Member)

RAJA NOOR ZALIHA ABDUL RAHMAN, Ph.D.

Associate Professor, Faculty of Science and Environmental Studies Universiti Putra Malaysia (Member)

MAHIRAN BASRI, Ph.D.

Professor, Faculty of Science and Environmental Studies Universiti Putra Malaysia (Member)

MOHD. AZIB BIN SALLEH

Professor, Postgraduate Studies and Research Support Division Universiti Sarawak Malaysia (Independent Examiner)

GULAM RUSUL RAHMAT ALI, Ph.D. Professor/Deputy Dean School of Graduate/Studies University Putra Malaysia

Date: 9 JUN 2003

This thesis submitted to the Senate of the Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as followed:

ABU BAKAR SALLEH, Ph.D.

Professor, Faculty of Science and Environmental Studies Universiti Putra Malaysia (Member)

RAJA NOOR ZALIHA ABDUL RAHMAN, Ph.D.

Associate Professor, Faculty of Science and Environmental Studies Universiti Putra Malaysia (Member)

MAHIRAN BASRI, Ph.D.

Professor, Faculty of Science and Environmental Studies Universiti Putra Malaysia (Member)

e

AINI IDERIS, Ph.D. Professor/Dean School of Graduate Studies Universiti Putra Malaysia

Date: 11 JUL 2003

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

LEE POH GEOK Date: 9 June 2003

TABLE OF CONTENTS

			Page
ABS	STRACT		II
ABS	STRAK		V
ACKNOWLEDGEMENTS			VIII
APF	OVAL		Х
DEC	CLARATION		XII
LIS	OF TABLES		XVIII
LIS	FOF FIGURES		XIX
LIST OF ABBREVIATIONS			XXIII
СН	APTER		
1.	INTRODUCTION	1	1
	1.1 Objectives	s of the Project	5
2.	LITERATURE R	EVIEW	6
	2.1 Proteases		6
	2.1.1 I	Definition of Proteases	6
	2.1.2 \$	Sources of Proteases	6

2.1.2.1	Animal Proteases	7	
2.1.2.2	Plant Proteases	8	
2.1.2.3	Microbial Proteases	9	
Classification of Pr	roteases	10)
Functional Propert	ies of Proteases	11	l
Organic Solvent-to	lerant Microorganisms	12	2

2.4

2.5

2.6

2.7	Organic	Solvent-tolerant Proteolytic Enzymes	13
2.8	Influence	ce of Organic Solvents on Protease Activity	14
2.9	Effect o	f Cultivation Conditions on Protease Production	18
2.10	Effect o	f Physical Factors on Protease Production	19
	2.10.1	Effect of pH on Protease Activity	19
	2.10.2	Effect of Agitation Rates on Protease Activity	20
	2.10.3	Effect of Temperatures on Protease Activity	21
2.11	Effect o	f Nutritional Conditions on Protease Production	23
	2.11.1	Effect of Carbon Sources on Protease Production	24
	2.11.2	Effect of Nitrogen Sources on Protease Production	25
		2.11.2.1 Effect of Organic Nitrogen Sources on	
		Protease Production	25

2.11.2.2 Effect of Inorganic Nitrogen Sources on Protease Production

27

			2.11.2.3 Effect of Amino Acids on Protease	
			Production	27
		2.11.3	Effect of Metal Ions on Protease Production	28
	2.12	Purification	on of Proteases	29
		2.12.1	Concentration of Enzymes	29
		2.12.2	Chromatographic Separation of Enzymes	31
		2.12.3	Purity Determination of Proteins	36
	2.13	Properties	s of Purified Proteases	36
	2.14	Cloning,	Sequencing and Expression of Organic Solvent-tolera	int
		Protease (Gene	42
		2.14.1	Protein Engineering and Molecular Technologies	42
		2.14.2	Genetic Engineering of Microbial Proteases	44
3.	MAT	ERIALS A	ND METHODS	48
	3.1	Materials		48
	3.2	General N	Aethods	53
	3.3	Bacterial	Sources	53
	3.4	Isolation	and Screening of Proteolytic Microorganisms	53
	3.5	Selection	of Organic Solvent-tolerant Microorganisms	54
	3.6	Identifica	tion of Microorganism	54
	3.7	Assay of	Protease Activity	54
		3.7.1	Tyrosine Standard Curve	56
		3.7.2	Preparation of Casein	56
		3.7.3	Determination of Tyrosine Standard Curve	57
	3.8	Preparati	on of Inoculum	58
	3.9	Preparati	on of Stock Culture	58
	3.10	Effect of	Media on Protease Production	58
	3.11	Growth C	Curve and Protease Production of Pseudomonas	
		aeruginos	sa strain K	60
	3.12	Physical	Factors Affecting the Protease Production by	
		Pseudom	onas aeruginosa strain K	60
		3.12.1	Effect of Temperatures on Protease Production	61
		3.12.2	Effect of Inoculum Sizes on Protease Production	61
		3.12.3	Effect of Agitation Rates on Protease Production	61
		3.12.4	Effect of pH on Protease Production	61
	3.13	Nutrition	al Factors Affecting the Protease Production	
		by Pseud	omonas aeruginosa strain K	62
		3.13.1	Effect of Carbon Sources on Protease Production	62
		3.13.2	Effect of Nitrogen Sources on Protease Production	63
			3.13.2.1 Effect of Organic Nitrogen Sources on	
			Protease Production	63
			3.13.2.2 Effect of Inorganic Nitrogen Sources on	

		Protease Production	63
		3.13.2.3 Effect of Additional Inorganic Nitrogen	
		Sources on Protease Production	64
		3.13.2.4 Effect of Amino Acids on Protease	
		Production	64
		3.13.2.5 Effect of Additional Amino Acids on	
		Protease Production	64
3.14	Effect of	Metal Ions on Protease Production	64
3.15	Effect of	Ca ²⁺ Concentrations Protease Production	65
3.16	Effect of	Organic Solvents on the Stability of Protease	65
3.17	Effect of	Different Percentages of Organic Solvents on	
	the Stabi	lity of Organic Solvent-tolerant Protease	65
3.18	Growth	Curve and Protease Production of Pseudomonas	
	aerugina	osa strain K in Optimized Growth Medium	66
3.19	Purificat	ion of Organic Solvent-tolerant Protease	66
	3.19.1	Ammonium Sulphate Precipitation	66
	3.19.2	Anion-Exchange Chromatography	67
	3.19.3	Protein Determination	67
3.20	Characte	erization of Organic Solvent-tolerant Protease	68
	3.20.1	Determination of Molecular Mass	68
	3.20.2	Detection of Protein and Proteolytic Activity	68
	3.20.3	Effect of pH on Protease Activity and Stability	69
	3.20.4	Effect of Temperatures on Protease Activity	70
	3.20.5	Effect of Temperatures on Protease Stability	70
	3.20.6	Effect of Exposure Time at 37°C and 50°C on	
		Protease Stability	70
	3.20.7	Effect of Metal Ions on Protease Activity	70
	3.20.8	Effect of Protease Inhibitors on Protease Activity	71
	3.20.9	Effect of Denaturing and Reducing Agents on	
		Protease Activity	71
	3.20.10	Organic Solvents Stability of strain K protease	71
	3.20.11	Substrate Specificity of strain K protease	72
3.21	Cloning	and Sequencing of Organic Solvent-tolerant	
	Protease	Gene	72
	3.21.1	Genomic DNA Extraction	72
	3.21.2	Quantification of Genomic DNA	73
3.22	Amplifi	cation of Organic Solvent-tolerant Protease Gene	
	by Polyı	merase Chain Reaction (PCR)	74
3.23	Purifica	tion of the Amplified PCR Product	78
3.24	Cloning	of Organic Solvent-tolerant Protease Gene by	
	pCR 2.1	Vector	79

	3.25	Transfo	ormation		79
	3.26	Plasmic	d Preparati	on	80
	3.27	DNA S	equencing		80
	3.28	Constru	uction of C	rganic Solvent-tolerant Protease Plasmid	81
	3.29	Express	sion of Red	combinant Organic Solvent-tolerant Protein	82
	3.30	Prepara	tion of Cu	lture Supernatant and Cell Extract	83
	3.31	Detecti	on of Reco	mbinant Organic Solvent-tolerant Protein	
		by SDS	-PAGE an	d Western Blot	83
4.	RESU	JLTS AN	D DISCU	SSION	85
	4.1	Isolatio	n and Scre	ening of Proteolytic Microorganisms	85
	4.2	Identifi	cation of H	Bacteria	89
	4.3	Effect of	of Media o	n Protease Production	93
	4.4	Growth	Curve an	d Protease Production of Pseudomonas	
		aerugir	<i>iosa</i> strain	K	96
	4.5	Effect of	of Physical	Factors Affecting Growth and Protease	
		Produc	tion of <i>Pse</i>	rudomonas aeruginosa strain K	98
		4.5.1	Effect of	f Temperatures on Protease Production	98
		4.5.2	Effect of	f Inoculum Sizes on Protease Production	100
		4.5.3	Effect o	f Agitation Rates on Protease Production	103
		4.5.4	Effect of	f pH on Protease Production	106
	4.6	Enzym	e Optimiza	ation in the Production Media	109
	4.7	Nutritio	onal Factor	rs Affecting Growth and Protease	
		Produc	tion of <i>Pse</i>	eudomonas aeruginosa strain K	110
		4.7.1	Effect o	f Carbon Sources on Protease Production	110
		4.7.2	Effect o	f Nitrogen Sources on Protease Production	115
			4.7.2.1	Effect of Organic Nitrogen Sources on	
				Protease Production	115
			4.7.2.2	Effect of Inorganic Nitrogen Sources on	
				Protease Production	120
			4.7.2.3	Effect of Additional Inorganic Nitrogen	
				Sources on Protease Production	124
			4.7.2.4	Effect of Amino Acids on Protease	
				Production	127
			4.7.2.5	Effect of Additional Amino Acids on	
				Protease Production	131
		4.7.3	Effect o	f Metal Ions on Protease Production	134
		4.7.4	Effect o	f Ca ²⁺ Concentrations on Protease Production	137
	4.8	Effect	ofOrganic	e Solvents on the Stability of Organic	
		Solven	t-tolerant	strain K protease	140
	4.9	Growt	h Curve an	d Protease Production of Pseudomonas	
		aerugi	<i>nosa</i> strair	n K in Optimized Growth Medium	146

	4.10	Purificat	ion of Organic Solvent Protease	149
		4.10.1	Ammonium Sulphate Precipitation	149
		4.10.2	Anion-Exchange Chromatography	152
	4.11	Characte	rization of Protease	155
		4.11.1	Determination of Molecular Mass	155
		4.11.2	Detection of Protein and Proteolytic Activity	156
		4.11.3	Effect of pH on Protease Activity and Stability	159
		4.11.4	Effect of Temperatures on Protease Activity	163
		4.11.5	Effect of Temperatures on Protease Stability	165
		4.11.6	Effect of Metal Ions on Protease Activity	171
		4.11.7	Effect of Protease Inhibitors on Protease Activity	174
		4.11.8	Effect of Denaturing and Reducing Agents on Protease	
			Activity	177
		4.11.9	Effect of Organic Solvents on the Stability of the	
			Purified Protease	179
		4.11.10	Substrate Specificity of strain K protease	183
	4.12	Cloning,	, Sequencing and Expression of Organic Solvent-tolerant	t
		Protease	Gene	185
	4.13	Genomi	c DNA Extraction	186
	4.14	Amplific	cation of Organic Solvent-tolerant Protease Gene by	
		Polymer	ase Chain Reaction (PCR)	188
	4.15	Cloning	of Organic Solvent-tolerant Protease Gene by pCR 2.1	
		Vector		190
	4.16	Analysis	s of the Partial Nucleotide Sequence of the Organic	
		Solvent-	tolerant Protease Gene	191
	4.17	Analysis	s of the Nucleotide Sequence of the Organic Solvent	
		Tolerant	Protease Gene	196
	4.18	Analysis	s of the Deduced Amino Acid Sequence of the Organic	
		Solvent-	tolerant Protease Gene	201
	4.19	Express	ion of the strain K Protease Gene in Escherichia coli	210
	4.20	Detectio	on of Recombinant Organic Solvent-tolerant Protein by	
		SDS-PA	GE and Western Blotting	215
5.	CONC	LUSION	AND RECOMMENDATIONS	219
	5.1	Conclus	ion	219
	5.2	Recomm	nendations	223
REFE	RENCE	ËS		226
APPE	NDICE	S		242
BIOD	ATA O	F THE A	UTHOR	250

LIST OF TABLES

Table		Page
1	The Log $P_{O/W}$ Value of Common Solvents	16
2	Some Properties of Purified Microbial Proteases	38
3	Preparation of Tyrosine Standard Curve	57
4	Pseudomonas aeruginosa and Pseudomonas fluorescens Alkaline Proteases (apr), Metalloproteases and Alkaline Metalloproteinase Precursors Accession Numbers Extracted from the NCBI Database	75
5	Oligonucleotide Used as Primers for Specific Amplification of Genes Encoding for Organic Solvent-tolerant Protease Gene Fragments	77
6	Characteristics of Pseudomonas aeruginosa strain K	92
7	Effect of Temperatures on the Growth and Protease Production of <i>Pseudomonas aeruginosa</i> strain K	99
8	Effect of the Best Carbon and Organic Nitrogen Sources on Protease Production	120
9	General Effects of Organic Solvents on Biocatalysis	141
10	Effect of Organic Solvents on the Stability of Protease	142
11	Ammonium Sulphate Fractionation of Crude Enzyme	151
12	Purification Table of Pseudomonas aeruginosa strain K Protease	153
13	Organic Solvent Stability of the Pools of Fractions	153
14	Organic Solvent Stability of the Purified strain K Protease in Organic Solvents	182
15	Spectrophotometric Assay of the Extracted Genomic DNA	187
16	Growth of Recombinant Bacteria after Induction by 1.0 mM IPTG	214

LIST OF FIGURES

Figure		Page
1	Schematic Representation of Enzyme Deposited on a Solid Support Material and Used in an Organic Solvent	17
2	Procedure for Assay of Protease Activity	55
3	Experimental Procedure of Cloning of the Alkaline Protease strain K	76
4	Cloning and Sequencing Strategy of the Cloned Fragments by TOPO TA 2.1 Vector. The arrows represent the direction of the Sequencing Runs.	81
5	Zones of Lysis on SMA Plate	87
6	Selection of Organic Solvent-tolerant Microorganisms	88
7	Cellular Morphology of <i>Pseudomonas aeruginosa</i> strain K on a Nutrient Agar Plate	90
8	Gram Staining of Pseudomonas aeruginosa strain K	91
9	Effect of Media on Protease Production	94
10	Effect of Media on Bacterial Growth	95
11	Growth Curve and Protease Production of <i>Pseudomonas</i> aeruginosa strain K	97
12	Effect of Inoculum Sizes on Protease Production	101
13	Effect of Inoculum Sizes on Bacterial Growth	102
14	Effect of Agitation Rates on Protease Production	104
15	Effect of Agitation Rates on Bacterial Growth	105
16	Effect of pH on Protease Production	107
17	Effect of pH on Bacterial Growth	108
18	Effect of Carbon Sources on Protease Production	111
19	Effect of Carbon Sources on Bacterial Growth	112
20	Effect of Organic Nitrogen Sources on Protease Production	116

21	Effect of Organic Nitrogen Sources on Bacterial Growth	117
22	Effect of Inorganic Nitrogen Sources on Protease Production	122
23	Effect of Inorganic Nitrogen Sources on Bacterial Growth	123
24	Effect of Additional Inorganic Nitrogen Sources on Protease Production	125
25	Effect of Additional Inorganic Nitrogen Sources on Bacterial Growth	126
26	Effect of Amino Acids on Protease Production	128
27	Effect of Amino Acids on Bacterial Growth	129
28	Effect of Additional Amino Acids on Protease Production	132
29	Effect of Additional Amino Acids on Bacterial Growth	133
30	Effect Metal Ions on Protease Production	135
31	Effect Metal Ions on Bacterial Growth	136
32	Effect of Ca ²⁺ Concentrations on Protease Production	138
33	Effect of Ca ²⁺ Concentrations on Bacterial Growth	139
34	Effect of Different Percentages of Organic Solvents on the Stability of Protease	145
35	Growth Curve and Protease Production of <i>Pseudomonas</i> aeruginosa strain K in Optimized Growth Medium	147
36	Elution Profile of the Protease on DEAE-Sephacel Column	154
37	SDS-PAGE of Purified Protease Produced by <i>Pseudomonas aeruginosa</i> strain K	157
38	Electrophoresis of strain K Protease in 10% Polyacrylamide Gel Under Non-Denaturing Conditions	158
39	Effect of pH on Protease Activity	160
40	Effect of pH on Protease Stability	162
41	Effect of Temperatures on Protease Activity	164
42	Effect of Temperatures on Protease Stability	166

43	Effect of Temperature on Protease Stability at 50°C	168
44	Effect of Temperature on Protease Stability at 37°C	169
45	Effect of Metal Ions on Protease Activity	173
46	Effect of Protease Inhibitors on Protease Activity	176
47	Effect of Denaturing and Reducing Agents on Protease Activity	178
48	Organic Solvent Stability of the Purified Protease	180
49	Substrate Specificity of strain K protease	184
50	Gel Electrophoresis of Genomic DNA from <i>Pseudomonas aeruginosa</i> strain K	188
51	Gel Electrophoresis of PCR Products Amplified by using Primers For F1 and Rev R1, For F2 and Rev R1, and For F1 and Rev R2, respectively.	192
52	Gel Electrophoresis of PCR Products Amplified by using Primers For F0 and Rev R1228, For F1 and Rev R2, For F2 and Rev R1228, For F0 and Rev R2, F2 and Rev R1417, respectively.	194
53	Gel Electrophoresis of 410 bp PCR Product Amplified by using For KI and Rev KJ	195
54	Gel Electrophoresis of 358 bp PCR Product Amplified by using For KK and Rev KO	196
55	Gel Electrophoresis of 1440 bp PCR Product Amplified by using For K and Rev K	197
56	Nucleotide and Deduced Amino Acid Sequences of the Organic Solvent-tolerant strain K protease	200
57	Multiple Sequence Alignment of the Organic Solvent-tolerant Protease with Alkaline or Metalloproteases from Several Bacteria Species	205
58	Schematic Representation of <i>Pseudomonas aeruginosa</i> Alkaline Protease	207
59	Hydropathy Profile of the strain K Protease	209
60	Expression of Organic Solvent-tolerant Protease by pGEX-4T-1/KE6	213
61	SDS-PAGE Analysis of the GST Fusion Proteins after Induction by 1.0 mM IPTG	217

62 Western Blot Hybridization of the GST Fusion Proteins after Induction by 1.0 mM IPTG 218

LIST OF ABBREVIATIONS

Adenine base nucleotide
Alkaline Buffer
Alkaline protease
Ammonium Persulphate
Bromochloroindolyl phosphate
Brain Heart Infusion
Benzene-Toluene-Xylene-Ethylbenzene
Base pair
Cytosine base nucleotide
Centimeter
Dalton
3,4-dichloroisocoumarin
Diisopropylflouro phosphate
Distilled water
Dimethylsulfoxide
Deoxyribonucleic acid
Deoxynucleotide triphosphates
Dithiothreitol
L-3-carboxytrans-2, 3-epoxypropyl-leucylamido (4-guanidine) butane
Ethylenediaminetetraacetic Acid
Fast Protein Liquid Chromatography
Guanine base nucleotide

g/L	Gram per litre
GST	Glutathione-S-Transferase
GTE	Glucose-Tris-HCl-EDTA
h	Hour
HPLC	High Performance Liquid Chromatography
IAA	Iodoacetic acid
IPTG	Isopropyl β -D Thiogalactoside
kDa	Kilodaltons
kbp	Kilobase pairs
L	Litre
М	Molar
mA	Milliampere
mg	Milligram
mL	Millilitre
mM	Millimolar
min	Minute
NBT	Nitroblue tetrazolium salts
nm	Nanometer
ORF	Open reading frame
PAGE	Polyacrylamide gel electrophoresis
PAHs	Polycyclic-Aromatic-Hydrocarbons
PCMB	p-chloromercuribenzoate
PCR	Polymerase Chain Reaction
PMSF	Phenylmethylsulfonyl fluoride
SDS	Sodium dodecyl sulphate

