

# **UNIVERSITI PUTRA MALAYSIA**

# MACROBENTHOS AND WATER QUALITY OF LANGAT RIVER SYSTEM, MALAYSIA

**AZRINA BINTI MOHAMED ZAWAWI** 

FSAS 2002 64



## MACROBENTHOS AND WATER QUALITY OF LANGAT RIVER SYSTEM, MALAYSIA

By

AZRINA BINTI MOHAMED ZAWAWI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirement for the Master of Science

2002



Khas buat betwarga tersayang .....

Semoga kita cenua akan sentiasa dilimpahl rahmat oleh ALLAH S.W. 7



Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science

#### MACROBENTHOS AND WATER QUALITY OF LANGAT RIVER SYSTEM, MALAYSIA

By

#### **AZRINA BINTI MOHAMED ZAWAWI**

November 2002

Chairman: Dr. Abdul Rahim Ismail

Faculty: Science and Environmental Studies

A study on macrobenthos and water quality of Langat River system was conducted at 12 sampling stations in Langat River and its tributaries, Semenyih River, Chongkak River and Lopo River. Samples were collected every month from March 1998 to February 1999 except for September 1998 and December 1998. Ten taxa of macrobenthos with 64 species were identified. Ephemeroptera and Diptera were dominant at the upstream area of Langat River system while Oligochaeta was dominant at the downstream area. Oligochaeta had the highest percentage of mean density (98.89%) followed by Diptera (0.57%) and Ephemeroptera (0.34%). *Limnodrilus hoffmeisteri* from the order of Oligochaeta had recorded the highest mean density about *hoffmeisteri* from the class of Oligochaeta had recorded the highest mean density about 1899673.34 ind/m<sup>2</sup> (80%) and it was dominant at all the polluted stations in the downstream of Langat River. This species can be used as the bioindicator of the polluted water bodies in Malaysia.

Twenty one physicochemical factors, which influenced the density of macrobenthos were analyzed. According to the analysis, there were some other pollutants beside the climate such as the effluent from industries, poultry farms and the surface run off, which influenced the changes of monthly physicochemical factor value.

Based on the correlation analysis, factors such as the width of the river, temperature, dissolved oxygen, orthophosphate, nitrate, armmonium and total suspended solids showed a strong significant correlation with the distribution and density for macrobenthos. Based on the water quality index analyses for the whole sampling period between March 1998 and February 1999, the water quality index for Langat River System was recorded in a range of 45 to 60 which is classified as very polluted. Water quality analysis for each sampling stations throughout the sampling periods illustrated that Stations 1, 2, 3, 4, 9, 10, 11 and 12 had a water quality index below 60, indicating that they were very polluted while Stations 5, 6, 7 and 8 were slightly polluted with water quality index in a range of 61 to 73.

Abstrak tesis yang dikemukakan kepada senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains.

#### MAKROBENTOS DAN KUALITI AIR BAGI SISTEM SUNGAI LANGAT, MALAYSIA

Oleh

#### AZRINA BINTI MOHAMED ZAWAWI

November 2002

Pengerusi: Dr. Abdul Rahim Ismail

Fakulti: Sains dan Pengajian Alam sekitar

Kajian terhadap makrobentos dan kualiti air bagi Sistem Sungai Langat telah dijalankan di 12 buah stesen pensampelan di Sungai Langat dan juga cabang-cabangnya iaitu Sungai Semenyih, Sungai Chongkak dan Sungai Lopo. Pensampelan dijalankan setiap bulan dari bulan Mac 1998 hingga bulan Februari 1999 kecuali pada bulan September 1998 dan Disember 1998. Sebanyak 10 buah taksa bagi makrobentos telah dikenalpasti meliputi 64 bilangan spesies kesemuanya. Order Ephemeroptera dan Diptera mendominasi bahagian hulu Sungai Langat sementara Oligochaeta mendominasi kawasan hilir bagi sungai terebut. Kepadatan bagi Oligochaeta mencatatkan jumlah tertinggi sebanyak 98.89% diikuti dengan kepadatan Order Diptera sebanyak 0.57%



mendominasi semua stesen yang tercemar di hilir sungai. Spesies ini boleh dijadikan sebagai bioindikator bagi sungai-sungai tercemar di Malaysia.

Secara keseluruhannya, sebanyak 21 parameter fizikokimia telah dianalisis dan didapati mempengaruhi kepadatan makrobentos. Berdasarkan analisis yang dijalankan, terdapat beberapa faktor luaran lain yang mempengaruhi faktor fizikokimia bulanan yang diuji selain dari faktor cuaca iaitu buangan sisa industri, ladang penternakan serta hakisan.

Dari analisis korelasi yang dijalankan, beberapa faktor fizikokimia seperti kelebaran sungai, suhu, konduktiviti, pH, oksigen terlarut, ortofosfat, nitrat, armnonia dan jumlah bahan terampai sangat mempengaruhi taburan dan kepadatan makrobentos. Berdasarkan analisis indeks kualiti air yang dijalankan pada setiap bulan pensampelan dari bulan Mac 1998 hingga bulan Februari 1999, kualiti air bagi Sistem Sungai Langat berada di dalam julat 45 hingga 60 dan diklasifikasikan sebagai sangat tercemar. Analisis indeks kualiti air mengikut stesen pensampelan mendapati Stesen 1, 2, 3, 4, 9, 10, 11 dan 12 berada di bawah 60 dan diklasifikasikan sebagai sangat tercemar sementara indeks kualiti air bagi Stesen 5, 6, 7 dan 8 menunjukkan keadaan sedikit tercemar dengan indeks kualiti air yang berada dalam julat 61 hingga 73.



#### ACKNOWLEDGEMENT

The author wishes to acknowledge the assistance of many individuals for their contribution either directly or indirectly in the field work and the preparation of this thesis especially to the chairman of this project, Dr. Abdul Rahim Ismail for his help, support and encouragement in this research. The author also wishes to thank En. Sharom Khatim for his help and guidance in the field work during the sampling periods from March 1998 to February 1999. Much appreciation is extended to the management of Chongkak River and the Paper Mill Pump Stations for their permission to carry out a research inside their territory. The author would also likes to appreciate En. Azman Abdul Latif for his help and encouragement in this research. The co-operation from the staffs of Entomology Lab and the staffs of Biology Department are much appreciated. Lastly the author would like to thank Hartini Anwar, Ruslina Mohd Ali, Aida Abdul Rahman, Syahaiza Mustajab and all members for their help, idea, kindness and encouragement. Hopefully the success will be ours. INSYAALLAH.





I certify that an Examination Committee met on 25<sup>th</sup> November 2002 to conduct the final examination of Azrina Binti Mohamed Zawawi on her Master of science thesis entitled "Macrobenthos and Water Quality of Langat River System, Malaysia" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

#### Jambari Haji Ali, Ph.D.

Associate Professor, Faculty Science and Environmental Studies, Universiti Putra Malaysia (Chairman)

#### Abdul Rahim Ismail, Ph.D.

Department of Biology, Faculty Science and Environmental Studies, Universiti Putra Malaysia. (Member)

#### Fatimah Md. Yusoff, Ph.D.

Professor, Department of Biology, Faculty Science and Environmental Studies, Universiti Putra Malaysia. (Member)

#### Misri Kusnan, Ph.D.

Department of Biology, Faculty Science and Environmental Studies, Universiti Putra Malaysia. (Member)

SHAMSHER MOHAMAD RAMADILI, Ph.D. Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 26 DEC 2002

This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

### Abdul Rahim Ismail, Ph.D.

Department of Biology, Faculty Science and Environmental Studies, Universiti Putra Malaysia. (Chairman)

# Fatimah Md. Yusoff, Ph.D.

Professor, Department of Biology, Faculty Science and Environmental Studies, Universiti Putra Malaysia. (Member)

## Misri Kusnan, Ph.D.

Department of Biology, Faculty Science and Environmental Studies, Universiti Putra Malaysia. (Member)

#### AINI IDERIS, Ph.D. Professor/Dean

Professor/Dean School of Graduate Studies Universiti Putra Malaysia

Date:



## **DECLARATION**

I hereby declare that the thesis is based on my original work except for quotations and citations which have been acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Putra Malaysia or other institutions.

AZRINA BINTI MOHAMED ZAWAWI Date: 24 Decomber 2002



## **TABLE OF CONTENTS**

| DEDICATION            | ii    |
|-----------------------|-------|
| ABSTRACT              | iii   |
| ABSTRAK               | iv    |
| ACKNOWLEDGEMENTS      | vii   |
| APPROVAL SHEETS       | viii  |
| DECLARATION FORM      | х     |
| LIST OF TABLES        | XV    |
| LIST OF FIGURES       | xix   |
| LIST OF ABBREVIATIONS | xxiii |

# CHAPTER

| 1. | INTR | ODUCTION                                             | 1  |
|----|------|------------------------------------------------------|----|
| 2. | LITE | RATURE REVIEW                                        | 4  |
|    | 2.1  | The Importance of Rivers                             | 4  |
|    | 2.2  |                                                      | 5  |
|    | 2.3  | -                                                    | 7  |
|    |      | 2.3.1 Definition                                     | 7  |
|    |      | 2.3.2 Classification                                 | 7  |
|    |      | 2.3.3 Adaptations to Fast Flowing Water Environments | 8  |
|    |      | 2.3.4 The Dispersion and Drift of Macrobenthos       | 10 |
|    | 2.4  | Influence of Abiotic Factors on Macrobenthos         | 11 |
|    |      | Organisms                                            |    |
|    |      | 2.4.1 Substrates                                     | 11 |
|    |      | 2.4.2 Water Current Velocity                         | 12 |
|    |      | 2.4.3 Temperature                                    | 13 |
|    |      | 2.4.4 Dissolved Oxygen                               | 13 |
|    |      | 2.4.5 pH                                             | 15 |
|    |      | 2.4.6 Inorganic Nutrients                            | 17 |
|    |      | 2.4.7 Heavy Metals                                   | 19 |
|    |      | 2.4.8 Total Suspended Solids                         | 22 |
|    | 2.5  | Influenced of Biotic Factors on Macrobenthos         | 22 |
|    |      | 2.5.1 Foods                                          | 23 |
|    |      | 2.5.2 Interspecific Competition                      | 23 |
|    |      | 2.5.3 Habitats                                       | 24 |
|    | 2.6  | River Pollution and Water Quality                    | 24 |
|    |      | 2.6.1 River Pollutions                               | 25 |
|    |      | 2.6.2 Water Quality                                  | 28 |



xi

| 3  | MATE  | RIAL     | AND METHODS                                                          | 32  |
|----|-------|----------|----------------------------------------------------------------------|-----|
|    | 3.1   | Study    | Area                                                                 | 32  |
|    | 3.2   | Sampl    | ing and Data Collections                                             | 34  |
|    |       | -        | Field Measurement                                                    | 43  |
|    |       | 3.2.2    | Water Samples                                                        | 45  |
|    |       |          | Sediments                                                            | 45  |
|    |       |          | Macrobenthos                                                         | 46  |
|    | 3.3   | Labora   | atory Analyses                                                       | 46  |
|    |       |          | Water Samples                                                        | 47  |
|    |       |          | Sediments Analyses                                                   | 54  |
|    |       |          | Macrobenthos                                                         | 57  |
|    | 3.4   |          | sis of Data                                                          | 57  |
|    |       |          | Transformation of Data                                               | 58  |
|    |       |          | Statistical Analysis                                                 | 58  |
|    |       |          | Water Quality Indices (WQI)                                          | 58  |
|    |       |          | Biotic Index                                                         | 59  |
|    | _     |          |                                                                      |     |
| 4. | RESU  |          |                                                                      | 60  |
|    | 4.1   | -        | cochemical Factors                                                   | 60  |
|    |       |          | Physical Factors                                                     | 60  |
|    |       |          | Water Chemical Factors                                               | 78  |
|    |       |          | Sediments Chemical Factors                                           | 104 |
|    | 4.2   |          | benthos                                                              | 135 |
|    |       |          | Species Composition                                                  | 135 |
|    |       |          | Percentage Abundance                                                 | 136 |
|    |       |          | Macrobenthos Density                                                 | 142 |
|    |       | 4.2.4    | Species Distribution                                                 | 144 |
|    |       | 4.2.5    | Monthly Fluctuation of Selected Species                              | 148 |
|    | 4.3   | Relation | onship Between Macrobenthos and Physicochemical                      | 154 |
|    |       | Factor   | S                                                                    |     |
|    |       | 4.3.1    | Correlation Between Macrobenthos and                                 | 154 |
|    |       |          | Physicochemical Factors                                              |     |
|    |       | 4.3.2    | Multiple Regression Analysis                                         | 162 |
|    |       | 4.3.3    | Monthly Multiple Regression Analysis                                 | 165 |
|    | 4.4   | Water    | Quality                                                              | 167 |
|    |       | 4.4.1    | Water Quality Index                                                  | 167 |
|    |       | 4.4.2    | Monthly Water Quality Index                                          | 167 |
|    |       | 4.4.3    | Correlation Analysis Between Water Quality Index<br>and Macrobenthos | 171 |
|    |       | 4.4.4    | Regression Analysis Between Water Quality Index<br>and Macrobenthos  | 171 |
|    |       | 4.4.5    | Biotic Index (Biological Scores)                                     | 175 |
| 5  | DISCU | JSSION   | 1                                                                    | 178 |
| 6  | CONC  | LUSIO    | Ν                                                                    | 198 |





| BIBLIOGRAPHY                                                                   | 201 |
|--------------------------------------------------------------------------------|-----|
| APPENDICES                                                                     | 213 |
| A1 Raw Data of Physicochemical Factors                                         | 213 |
| A2 Raw Data of Macrobenthos                                                    | 223 |
| A3 List of Abbreviations for Macrobenthos                                      | 226 |
| A4 Raw Data of Water Quality Index                                             | 270 |
| B1 Physicochemical Factors (Values ± SE, N=3) at 12 Sampling                   | 273 |
| Stations of Langat River System in March                                       | 215 |
| B2 Physicochemical Factors (Values ± SE, N=3) at 12 Sampling                   | 275 |
| Stations of Langat River System in April                                       | 215 |
| B3 Physicochemical Factors (Values ± SE, N=3) at 12 Sampling                   | 277 |
| Stations of Langat River System in May                                         | 211 |
|                                                                                | 279 |
| B4 Physicochemical Factors (Values ± SE, N=3) at 12 Sampling                   | 219 |
| Stations of Langat River System in June                                        | 201 |
| B5 Physicochemical Factors (Values $\pm$ SE, N=3) at 12 Sampling               | 281 |
| Stations of Langat River System in July                                        |     |
| B6 Physicochemical Factors (Values ± SE, N=3) at 12 Sampling                   | 283 |
| Stations of Langat River System in August                                      |     |
| B7 Physicochemical Factors (Values ± SE, N=3) at 12 Sampling                   | 285 |
| Stations of Langat River System in October                                     |     |
| B8 Physicochemical Factors (Values ± SE, N≈3) at 12 Sampling                   | 287 |
| Stations of Langat River System in November                                    |     |
| B9 Physicochemical Factors (Values ± SE, N=3) at 12 Sampling                   | 289 |
| Stations of Langat River System in January                                     |     |
| B10 Physicochemical Factors (Values ± SE, N=3) at 12 Sampling                  | 291 |
| Stations of Langat River System in February                                    |     |
| C Monthly Amount (%) of All Macrobenthos According to the                      | 293 |
| Order at 12 Sampling Stations of Langat River System                           |     |
| D1 Densities of Macrobenthos (ind/ $m^2 \pm SE$ , N=3) at 12 Sampling          | 294 |
| Stations of Langat River System in March                                       |     |
| D2 Densities of Macrobenthos (ind/ $m^2 \pm SE$ , N=3) at 12 Sampling          | 296 |
| Stations of Langat River System in April                                       |     |
| D3 Densities of Macrobenthos (ind/ $m^2 \pm SE$ , N=3) at 12 Sampling          | 298 |
| Stations of Langat River System in May                                         |     |
| D4 Densities of Macrobenthos (ind/m <sup>2</sup> $\pm$ SE, N=3) at 12 Sampling | 300 |
| Stations of Langat River System in June                                        |     |
| D5 Densities of Macrobenthos (ind/m <sup>2</sup> $\pm$ SE, N=3) at 12 Sampling | 302 |
| Stations of Langat River System in July                                        |     |
| D6 Densities of Macrobenthos (ind/m <sup>2</sup> $\pm$ SE, N=3) at 12 Sampling | 304 |
| Stations of Langat River System in August                                      |     |
| D7 Densities of Macrobenthos (ind/m <sup>2</sup> $\pm$ SE, N=3) at 12 Sampling | 306 |
| Stations of Langat River System in October                                     |     |
| D8 Densities of Macrobenthos (ind/ $m^2 \pm SE$ , N=3) at 12 Sampling          | 308 |

|            | Stations of Langat River System in November                                 |     |
|------------|-----------------------------------------------------------------------------|-----|
| D9         | Densities of Macrobenthos (ind/m <sup>2</sup> $\pm$ SE, N=3) at 12 Sampling | 310 |
| D          | Stations of Langat River System in January                                  | 510 |
| D10        | Densities of Macrobenthos (ind/ $m^2 \pm SE$ , N=3) at 12 Sampling          | 312 |
| DIO        |                                                                             | 512 |
| E1         | Stations of Langat River System in February                                 | 214 |
| El         | Monthly Multiple Regression Analysis Between Dependent                      | 314 |
|            | Variables (Macrobenthos) and Independent Variables                          |     |
|            | (Physicochemical Factors) at 12 Sampling Stations of Langat                 |     |
|            | River System in March                                                       |     |
| E2         | Monthly Multiple Regression Analysis Between Dependent                      | 315 |
|            | Variables (Macrobenthos) and Independent Variables                          |     |
|            | (Physicochemical Factors) at 12 Sampling Stations of Langat                 |     |
| -          | River System in April                                                       |     |
| E3         | Monthly Multiple Regression Analysis Between Dependent                      | 316 |
|            | Variables (Macrobenthos) and Independent Variables                          |     |
|            | (Physicochemical Factors) at 12 Sampling Stations of Langat                 |     |
|            | River System in June                                                        |     |
| <b>E4</b>  | Monthly Multiple Regression Analysis Between Dependent                      | 317 |
|            | Variables (Macrobenthos) and Independent Variables                          |     |
|            | (Physicochemical Factors) at 12 Sampling Stations of Langat                 |     |
|            | River System in July                                                        |     |
| E5         | Monthly Multiple Regression Analysis Between Dependent                      | 318 |
|            | Variables (Macrobenthos) and Independent Variables                          |     |
|            | (Physicochemical Factors) at 12 Sampling Stations of Langat                 |     |
|            | River System in August                                                      |     |
| <b>E6</b>  | Monthly Multiple Regression Analysis Between Dependent                      | 319 |
|            | Variables (Macrobenthos) and Independent Variables                          |     |
|            | (Physicochemical Factors) at 12 Sampling Stations of Langat                 |     |
|            | River System in October                                                     |     |
| E <b>7</b> | Monthly Multiple Regression Analysis Between Dependent                      | 320 |
|            | Variables (Macrobenthos) and Independent Variables                          |     |
|            | (Physicochemical Factors) at 12 Sampling Stations of Langat                 |     |
|            | River System in November                                                    |     |
| E8         | Monthly Multiple Regression Analysis Between Dependent                      | 321 |
|            | Variables (Macrobenthos) and Independent Variables                          |     |
|            | (Physicochemical Factors) at 12 Sampling Stations of Langat                 |     |
|            | River System in January                                                     |     |
| E9         | Monthly Multiple Regression Analysis Between Dependent                      | 322 |
|            | Variables (Macrobenthos) and Independent Variables                          |     |
|            | (Physicochemical Factors) at 12 Sampling Stations of Langat                 |     |
| P          | River System in February                                                    |     |
| F          | Best Fit Equations for The Estimation                                       | 323 |
| G          | Proposed Interim National Water Quality Standards for Malaysia              | 324 |
| Н          | BMWP Score System                                                           | 326 |
| DIOP       |                                                                             |     |
| RIOD       | ATA OF AUTHOR                                                               | 327 |

# LIST OF TABLES

| Table | Title                                                                                                                                                                                            | Page |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.    | Field Measurement                                                                                                                                                                                | 45   |
| 2.    | The Absorbance of a Series of Six Standards of Phosphate Solution                                                                                                                                | 48   |
| 3.    | The Absorbance of a Series of Seven Standards Ammonium Standard Solution                                                                                                                         | 49   |
| 4.    | The Absorbance of a Series of Six Standards of Nitrite-Solution                                                                                                                                  | 51   |
| 5.    | Composition of Macrobenthos at 12 Sampling Stations of Langat River System.                                                                                                                      | 137  |
| 6.    | Mean Number of Individuals (%) of All Macrobenthos (No $\pm$ SE,N=3)<br>According to the Order at 12 Sampling Stations of Langat River System<br>from March 1998 to February 1999.               | 143  |
| 7.    | Correlation Analysis (Pearson) Between Macrobenthos and Physico-<br>chemical Factors at 12 Sampling Stations of Langat River System from<br>March 1998 to February 1999.                         | 155  |
| 8.    | Yearly Multiple Regression Analysis Between the Dependent Variables<br>(Macrobenthos) and the Independent Variables (Physicochemical<br>Factors) at 12 Sampling Stations of Langat River System. | 163  |
| 9.    | Means of Water Quality Index (WQI) at 12 Sampling Stations of Langat River System from March 1998 to February 1999.                                                                              | 168  |
| 10.   | Monthly Means of Water Quality Index (WQI) at 12 Sampling Stations of Langat River System.                                                                                                       | 170  |
| 11.   | Correlation Analysis (Pearson) Between Water Quality Index (WQI)<br>and Macrobenthos at 12 Sampling Stations of Langat River System.                                                             | 172  |
| 12.   | Multiple Regression Analysis Between Dependent Variables<br>(Macrobenthos) and Independent Variables (Water Quality Index).                                                                      | 174  |
| 13.   | Biological Monitoring Working Party (BMWP) Scores for Each<br>Month of Sampling at Langat River System.                                                                                          | 176  |
| 14.   | Raw Data of Physicochemical Factors.                                                                                                                                                             | 213  |



| 15. | Raw Data of Macrobenthos                                                                                              | 223 |
|-----|-----------------------------------------------------------------------------------------------------------------------|-----|
| 16. | Raw Data of Water Quality Index                                                                                       | 267 |
| 17. | Physicochemical Factors (Values ± SE, N=3) at 12 Sampling Stations of Langat River System in March.                   | 273 |
| 18. | Physicochemical Factors (Values ± SE, N=3) at 12 Sampling Stations of Langat River System in April.                   | 275 |
| 19. | Physicochemical Factors (Values ± SE, N=3) at 12 Sampling<br>Stations of Langat River System in May                   | 277 |
| 20. | Physicochemical Factors (Values ± SE, N=3) at 12 Sampling Stations of Langat River System in June.                    | 279 |
| 21. | Physicochemical Factors (Values ± SE, N=3) at 12 Sampling Stations of Langat River System in July.                    | 281 |
| 22. | Physicochemical Factors (Values ± SE, N=3) at 12 Sampling Stations of Langat River System in August.                  | 283 |
| 23. | Physicochemical Factors (Values ± SE, N=3) at 12 Sampling<br>Stations of Langat River System in October.              | 285 |
| 24. | Physicochemical Factors (Values ± SE, N=3) at 12 Sampling Stations of Langat River System in November.                | 287 |
| 25. | Physicochemical Factors (Values ± SE, N=3) at 12 Sampling Stations of Langat River System in January.                 | 289 |
| 26. | Physicochemical Factors (Values ± SE, N=3) at 12 Sampling Stations of Langat River System in February.                | 291 |
| 27. | Monthly Amount (%) of All Macrobenthos According to the Order at 12 Sampling Stations of Langat River System.         | 293 |
| 28. | Densities of Macrobenthos (ind/m <sup>2</sup> $\pm$ SE, N=3) at 12 Sampling Stations of Langat River System in March. | 294 |
| 29. | Densities of Macrobenthos (ind/m <sup>2</sup> ± SE, N=3) at 12 Sampling Stations of Langat River System in April.     | 296 |
| 30. | Densities of Macrobenthos (ind/m <sup>2</sup> $\pm$ SE, N=3) at 12 Sampling Stations of Langat River System in May.   | 298 |

| 31. | Densities of Macrobenthos (ind/m <sup>2</sup> $\pm$ SE, N=3) at 12 Sampling Stations of Langat River System in June.                                                                                 | 300 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 32. | Densities of Macrobenthos (ind/m <sup>2</sup> $\pm$ SE, N=3) at 12 Sampling Stations of Langat River System in July.                                                                                 | 302 |
| 33. | Densities of Macrobenthos (ind/m <sup>2</sup> $\pm$ SE, N=3) at 12 Sampling Stations of Langat River System in August.                                                                               | 304 |
| 34. | Densities of Macrobenthos (ind/ $m^2 \pm SE$ , N=3) at 12 Sampling Stations of Langat River System in October.                                                                                       | 306 |
| 35. | Densities of Macrobenthos (ind/m <sup>2</sup> $\pm$ SE, N=3) at 12 Sampling Stations of Langat River System in November.                                                                             | 308 |
| 36. | Densities of Macrobenthos ( $ind/m^2 \pm SE$ , N=3) at 12 Sampling Stations of Langat River System in January.                                                                                       | 310 |
| 37. | Densities of Macrobenthos (ind/ $m^2 \pm SE$ , N=3) at 12 Sampling Stations of Langat River System in February.                                                                                      | 312 |
| 38. | Monthly Multiple Regression Analysis Between Dependent Variables<br>(Macrobenthos) and Independent Variables (Physicochemical<br>Factors) at 12 Sampling Stations of Langat River System in March.   | 314 |
| 39. | Monthly Multiple Regression Analysis Between Dependent Variables<br>(Macrobenthos) and Independent Variables (Physicochemical<br>Factors) at 12 Sampling Stations of Langat River System in April.   | 315 |
| 40. | Monthly Multiple Regression Analysis Between Dependent Variables<br>(Macrobenthos) and Independent Variables (Physicochemical<br>Factors) at 12 Sampling Stations of Langat River System in June.    | 316 |
| 41. | Monthly Multiple Regression Analysis Between Dependent Variables<br>(Macrobenthos) and Independent Variables (Physicochemical<br>Factors) at 12 Sampling Stations of Langat River System in July.    | 317 |
| 42. | Monthly Multiple Regression Analysis Between Dependent Variables<br>(Macrobenthos) and Independent Variables (Physicochemical<br>Factors) at 12 Sampling Stations of Langat River System in August.  | 318 |
| 43. | Monthly Multiple Regression Analysis Between Dependent Variables<br>(Macrobenthos) and Independent Variables (Physicochemical<br>Factors) at 12 Sampling Stations of Langat River System in October. | 319 |
| 44. | Monthly Multiple Regression Analysis Between Dependent Variables                                                                                                                                     | 320 |

| cochemical |  |
|------------|--|

(Macrobenthos) and Independent Variables (Physicochemical Factors) at 12 Sampling Stations of Langat River System in November.

| 45. | Monthly Multiple Regression Analysis Between Dependent Variables<br>(Macrobenthos) and Independent Variables (Physicochemical<br>Factors) at 12 Sampling Stations of Langat River System in January.  | 321 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 46. | Monthly Multiple Regression Analysis Between Dependent Variables<br>(Macrobenthos) and Independent Variables (Physicochemical<br>Factors) at 12 Sampling Stations of Langat River System in February. | 322 |
| 47. | Proposed Interim National Water Quality Standards for Malaysia.                                                                                                                                       | 323 |
| 48. | Biological Monitoring Working Party (BMWP) Score System.                                                                                                                                              | 324 |



## LIST OF FIGURES

| Fig  | gure Title                                                           |                                                                                     | Page |
|------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------|------|
| 1. I | Langat River System in Peninsula                                     | ar of Malaysia.                                                                     | 33   |
|      | Locations of Sampling Stations (<br>10, 11 and 12) at Langat River S |                                                                                     | 35   |
| 3. 5 | Station 1 at Telok Dato near Ban                                     | ting.                                                                               | 36   |
| 4. 5 | Station 2 at Brooklands Oil Palm                                     | Estate.                                                                             | 36   |
| 5.8  | Station 3 at Dengkil Oil Palm Pla                                    | ntation                                                                             | 38   |
| 6. 5 | Station 4 at Bandar Baru Bangi.                                      |                                                                                     | 38   |
| 7. 5 | Station 5 at Kampung Batu 17 in                                      | Hulu Langat                                                                         | 39   |
| 8, 5 | Station 6 at Kampung Orang Asl                                       | i in Hulu Langat.                                                                   | 39   |
| 9. 3 | Station 7 at Lopo River.                                             |                                                                                     | 41   |
| 10.  | . Station 8 at Chongkak River                                        |                                                                                     | 41   |
| 11.  | . Station 9 at Kampung Sungai B                                      | uah, Semenyih River.                                                                | 42   |
| 12.  | Station 10 at Rinching River.                                        |                                                                                     | 42   |
| 13.  | . Station 11 at Semenyih River (N                                    | Jear Semenyih Town).                                                                | 44   |
| 14.  | . Station 12 at Semenyih River (N                                    | Jear Tekala River).                                                                 | 44   |
| 15.  |                                                                      | at Stations 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,<br>tem from March 1998 to February 1999. | 61   |
| 16.  |                                                                      | =3) at Stations 1, 2, 3, 4, 5, 6, 7, 8,<br>r System from March 1998 to February     | 66   |
| 17.  |                                                                      | ± SE, N=3) of Stations 1, 2, 3, 4, 5, 6,<br>River System from March 1998 to         | 70   |
| 18.  | Mean pH (pH ± SE, N=3) at St<br>11 and 12) of Langat River Sys       | ations 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,<br>tem from March 1998 to February 1999.      | 74   |



| <ol> <li>Mean Dissolved Oxygen (mg/l ± SE, N=3) of Stations 1, 2, 3, 4, 5,</li> <li>6, 7, 8, 9, 10, 11 and 12) at Langat River System from March 1998 to<br/>February 1999.</li> </ol>                             | 79       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| <ol> <li>Mean Biochemical Oxygen Demand (mg/l ± SE, N=3) of Stations</li> <li>1, 2, 3, 4, 5, 6, 7, 8, 9,10,11 and 12) at Langat River System from<br/>March 1998 to February 1999.</li> </ol>                      | 83       |
| <ul> <li>21. Mean Concentration of Orthophosphate (mg/l ± SE, N=3) at Stations</li> <li>1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11 and 12) of Langat River System from March 1998 to February 1999.</li> </ul>               | 87       |
| <ul> <li>22. Mean Concentration of Nitrate (mg/l ± SE, N=3) at Stations 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12) of Langat River System from March 1998 to February 1999.</li> </ul>                              | 91       |
| <ul> <li>23. Mean Concentration of Nitrite (mg/l ± SE, N=3) at Stations 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11 and 12) of Langat River SystemBasin from March 199 to February 1999.</li> </ul>                            | 93<br>98 |
| <ul> <li>24. Mean Concentration of Ammonium (mg/l ± SE, N=3) at Stations</li> <li>1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11 and 12) of Langat River System from March 1998 to February 1999.</li> </ul>                     | 100      |
| 25. Mean Concentration of Total Suspended Solids (TSS)<br>(mg/l ± SE, N=3) at Stations 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12)<br>of Langat River System from March 1998 to February 1999.                       | 105      |
| 26. Mean Concentration of Total Dissolved Solids (TDS)<br>(mg/l ± SE, N=3) at Stations 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12)<br>of Langat River System from March 1998 to February 1999.                       | 109      |
| <ul> <li>27. Mean Concentration of Chemical Oxygen Demand (COD)<br/>(mg/l ± SE, N=3) at Stations 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12)<br/>of Langat River System from March 1998 to February 1999.</li> </ul> | 113      |
| 28. Mean Concentration of Cuprum (mg/l ± SE, N=3) in Water at<br>Stations 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12) of Langat River System<br>from March 1998 to February 1999.                                    | 117      |
| <ol> <li>Mean Concentration of Zinc (mg/l ± SE, N=3) in Water at Stations</li> <li>1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11 and 12) of Langat River System from</li> <li>March 1998 to February 1999.</li> </ol>           | 121      |
| 30. Mean pH (pH ± SE, N=3) of the Sediment at Stations 1, 2, 3, 4, 5,<br>6, 7, 8, 9, 10, 11 and 12) at Langat River System from March 1998 to                                                                      | 125      |



February 1999.

| <ol> <li>Mean Concentration of Organic Matter (mg/l ± SE, N=3) at Stations</li> <li>1, 2, 3, 4, 5, 6, 7, 8, 9,10,11 and 12) of Langat River System from<br/>March 1998 to February 1999.</li> </ol>                                                                         | 127 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 32. Mean Concentration of Cuprum (mg/l ± SE, N=3) in Sediment at<br>Stations 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11 and 12) of Langat River System<br>from March 1998 to February 1999.                                                                                            | 129 |
| <ol> <li>Mean Concentration of Zinc (mg/l ± SE, N=3) in Sediment at Stations</li> <li>1, 2, 3, 4, 5, 6, 7, 8, 9,10,11 and 12) of Langat River System from March</li> <li>1998 to February 1999.</li> </ol>                                                                  | 131 |
| 34. Mean Concentration of Plumbum (mg/l ± SE, N=3) in Sediment at<br>Stations 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11 and 12) of Langat River System<br>from March 1998 to February 1999.                                                                                           | 133 |
| 35. Distribution of Macrobenthos at 12 Sampling Stations According to<br>the Order of Oligochaeta, Diptera, Ephemeroptera, Trichoptera,<br>Gastropoda, Plecoptera, Coleoptera, Odonata, Hemiptera and<br>Crustacea of Langat River System from March 1998 to February 1999. | 139 |
| 36. Mean Density (ind/m <sup>2</sup> ), Distributions and Fluctuations for Selected Genus of Oligochaeta (Limnodrilus hoffmeisteri and Limnodrilus profundicola).                                                                                                           | 145 |
| 37. Mean Density (ind/m <sup>2</sup> ), Distributions and Flucuations for Selected<br>Genus of Diptera ( <i>Pentaneura</i> sp., <i>Polypedilum</i> sp. and <i>Simulium</i> sp.).                                                                                            | 146 |
| 38. Mean Density (ind/m <sup>2</sup> ), Distributions and Fluctuations for Selected<br>Genus of Ephemeroptera (Baetis sp., Caenis sp. and Stenacron sp.)                                                                                                                    | 147 |
| 39. Mean Density (ind/m <sup>2</sup> ), Distributions and Fluctuations for Selected<br>Genus of Trichoptera (Cheumatopsyche sp., Macrostemum<br>fenestratum and Hydropsyche annulata).                                                                                      | 149 |
| 40. Mean Density (ind/m <sup>2</sup> ), Distributions and Fluctuations for Selected<br>Genus of Gastropoda ( <i>Filopaludina martensi martensi</i> , Brotia<br>costulata) and Plecoptera (Acroneuria sp.).                                                                  | 150 |
| 41. Monthly Fluctuation for Macrobenthos According to the Order of<br>Trichoptera, Diptera, Plecoptera, Ephemeroptera, Hemiptera and<br>Coleoptera at 12 sampling stations of Langat River System.                                                                          | 151 |
| 42. Monthly Fluctuation for Macrobenthos According to the Order of                                                                                                                                                                                                          | 152 |

| Odonata, Gastropoda, Oligochaeta and Crustacea at 12 sampling stations of Langat River System.      |     |
|-----------------------------------------------------------------------------------------------------|-----|
| <ol> <li>Mean of Water Quality Index at 12 Sampling Stations of Langat River<br/>System.</li> </ol> | 169 |
| 44. Monthly Water Quality Index of Langat River System                                              | 169 |
| 45. Biological Monitoring Working Party Scores at 12 Sampling Stations of Langat River System.      | 177 |



# LIST OF ABBREVIATIONS

| AAS                | = Atomic Absorption Spectrophotometer |
|--------------------|---------------------------------------|
| APHA               | = American Public Health Association  |
| BMWP               | = Biological Monitoring Working Party |
| BOD                | = Biochemical Oxygen Demand           |
| COD                | = Chemical Oxygen Demand              |
| Cu (s)             | = Cuprum (Sediment)                   |
| Cu(w)              | = Cuprum (Water)                      |
| DO                 | = Dissolved Oxygen                    |
| DOE                | = Department of Environment           |
| FAS                | = Ferrous Ammonium Sulphate           |
| $H_2SO_4$          | = Acid Sulphuric                      |
| HCL                | = Acid Hydrochloric                   |
| HClO <sub>4</sub>  | = Acid Perchloric                     |
| HgI <sub>2</sub>   | = Mercuric Iodide                     |
| HgSO <sub>4</sub>  | = Mercuric Sulphate                   |
| HNO <sub>3</sub>   | = Acid Nitric                         |
| $K_2Cr_2O_7$       | = Potassium Dichromate                |
| KI                 | = Potassium Iodide                    |
| NaOH               | = Natrium Hydroxide                   |
| NH₄OH              | = Ammonium Hydroxide                  |
| NO <sub>2</sub> -N | = Nitrite-Nitrogen                    |
| NO <sub>3</sub> -N | = Nitrate-Nitrogen                    |



| Org                | = Organic Matter         |
|--------------------|--------------------------|
| Pb(s)              | = Lead (Sediment)        |
| PO <sub>4</sub> -P | = Orthophosphate         |
| SE                 | = Standard Error         |
| St.                | = Station                |
| TDS                | = Total Dissolved Solids |
| TSS                | = Total Suspended Solids |
| Zn (s)             | = Zinc (Sediment)        |
| Zn(w)              | = Zinc (Water)           |