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Magnetic thin films based on the giant magnetoresistance (GMR) and colossal 

magnetoresistance (CMR) effects are currently being used as head sensor in the 

magnetic data storage technology. With the technological revolution in the magnetic 

recording world of last decades, a need of better and more sensitive 

magnetoresistance material arises for head sensing. In the first part of this work, a 

series of Ag-Fe-Co granular films with different composition and thickness had been 

fabricated onto microscope glass slides using RF magnetron sputtering system. The 

crystalline analysis show that the as-deposited films consist of <1 1 1> and <200> 

silver texture. Negative GMR values have been obtained and no tendency to saturate 

at any temperature has been observed. The experimental results show that the GMR 

value is governed by the composition, microstructure, thickness and temperature. 

Under an optimum condition, formation of the right shape and size of magnetic 

cluster in the matrix will cause rapid increase of the GMR value. In this work, the 

optimum conditions for the highest GMR value of 7.6% measured at room 
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temperature is obtained for the Ags7.oF�.5C03.5 deposited for 60 minutes. In the 

second part of the work, Pulsed Laser Deposition (PLD) system had been assembled 

to fabricate ceramic films. Surface studies of the laser irradiated targets show that 

low fluence of laser causes the periodic structure such as ripples, ridges and cone. 

However, high fluence of laser will cause the exfoliational and hydrodynamic 

sputtering process. In this work, bulk and thin films of Lao.67Cao.33Mn03 (LCMO), 

Lao.67Sr0.33Mn03 (LSMO) and Lao.67Bao.33Mn03 (LBMO) had been prepared. 

Scanning electron microscope micrograph shows that the films consist of wide range 

of small particles size distribution and they are in spherical shape. The XRD shows 

that the as-deposited film is in amorphous state and later transfers to polycrystalline 

state when heat-treatment is applied. Curie temperature, Tc of the films is slightly 

lower than that of bulk due to the existing amorphous or antiferromagnetic phases at 

the grain boundaries (GBs). However, the resistances show a huge increase due to 

the existence of the insulating GBs region. Overall, negative CMR had been obtained 

for bulk and film samples. The CMR value of polycrystalline films increases with 

decreasing temperature at low applied magnetic field. This behaviour, which is 

known as Low Field Magnetoresistance (LFMR), is expected to be due to the 

polarization of electrons in the magnetically disordered regions near the grain 

boundaries. 
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Saput nipis magnet yang berdasarkan kesan magnetorintangan gergasi (MRG) dan 

magnetorintangan raksaksa (MRR) kini telah diguna sebagai kepala sensor dalam 

teknologi data simpanan bermagnet. Dengan revolusi teknologi dalam dunia 

pengrekodan bermagnet pada dekat yang lepas, keperluan bahan magnetorintangan 

yang lebih baik dan peka diperlukan bagi kepala sensor. Dalam bahagian pertama 

kerja ini, satu siri saput granular Ag-Fe-Co telah disediakan di atas slid kaca 

mikroskop pada ketebalan dan komposisi yang berbeza dengan menggunakan sistem 

percikan magnetron RF. Pencirian hablur menunjukkan bahawa saput nipis bam 

mendap mengandungi tekstur perak <1 1 1> dan <200>. Nilai negatif MRG telah 

didapati dan tiada kesan untuk menjadi tepu dilihat pada mana-mana suhu. 

Keputusan eksperimen menunjukkan bahawa nilar MRG dikuasai oleh komposisi, 

mikrostruktur, ketebalan dan suhu. Di bawah keadaan optimum, pembentukan rupa 

bentuk dan saiz butiran yang betul di dalam saput akan menyebabkan nilai MRG 

bertambah secara mendadak. Dalam kerja ini, keadaan optimum untuk mendapat 
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nilai MRG yang paling tinggi yang bemilai 7.6% diukur pada suhu bilik telah 

diperolehi bagi Agg7 oF� 5C03 5 yang dimendap selama 60 minit. Dalam bahagian 

kedua bagi keIja ini, sistem Mendapan Dedenyut Laser (MDL) telah dipasang untuk 

fabrikasi saput tipis seramik. Kajian permukaan bagi bahan yang disinar cahaya laser 

menunjukkan bahawa sinaran kuasa rendah laser menyebabkan struktur berkala 

seperti jurang, bukit dan kon. Manakala, sinaran laser yang tinggi akan menyebabkan 

process percikan "eksfoliasi" dan "hidrodinamik". Dalam keIja ini, pepejal dan saput 

mpls bagi Lao 67Cao 33Mn03 (LCMO), Lao 67SrO 33Mn03 (LSMO) dan 

Lao 67Bao 33Mn03 (LBMO) telah disediakan. Mikrograf pengimbasan mikroskop 

elektron menunjukkan bahawa saput menggandungi taburan butiran kecil yang 

beIjulat besar dan berbentuk sfera. Data kritalografi menunjukkan bahawa saput barn 

mendap adalah dalam bentuk amorfus dan akan bertukar ke bentuk polihablur bila 

diberi rawatan haba. Suhu Curie, Tc bagi saput tipis adalah rendah sedikit 

berbanding dengan bahan pepejal disebabkan oleh wujudnya kawasan amorfus dan 

antiferromagnet di bahagian sempadan butiran (GBs). Walau bagaimanapun, satu 

peningkatan mendadak pada rintangan berlaku disebabkan oleh wujudnya bahagian 

penebat di GBs. Secara keseluruhan, MRR negatif telah diperolehi bagi sampel 

pepejal dan saput tipis. Magnitud MRR bagi saput tipis polihablur meningkat dengan 

penyusutan suhu pada keadaan medan magnet yang rendah. Tingkahlaku ini, dikenali 

sebagai magnetorintangan medan rendah (LFMR), adalah dijangkakan dan 

disebabkan oleh pengutuban elektron dalam bahagian kemagnetan yang tidak 

tersusun berdekatan dengan sempadan butiran. 
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