

UNIVERSITI PUTRA MALAYSIA

THE INTRODUCTION OF EICHHORNIA CRASSIPES INTO THE HIGH RATE ALGAL POND TO REMOVE NITROGEN FROM WASTEWATER

NGUYEN NGOC BICH

FSAS 1998 34

THE INTRODUCTION OF EICHHORNIA CRASSIPES INTO THE HIGH RATE ALGAL POND TO REMOVE NITROGEN FROM WASTEWATER

by

NGUYEN NGOC BICH

Thesis Submitted in Fulfilment of the Requirements for the Degree of Master of Science in the Faculty of Science and Environmental Studies Universiti Putra Malaysia

April 1998

Affectionately dedicated to

TRAN THI HONG NHUNG

Of Lai Khe, Ben Cat, Binh Duong

VIETNAM

ACKNOWLEDGEMENTS

This study is sponsored by the Technical Assistance Programme (TAP) from the government of Malaysia to the government of Vietnam. The programme is brought into effect by co-operation between the Rubber Research Institute of Malaysia (RRIM) and the Rubber Research Institute of Vietnam (RRIV).

The Directorates of RRIM and RRIV, led by Datuk Dr. Abdul Aziz b. S. A. Kadir and Mr. Mai Van Son, and particularly the gentlemen in charge of administration of the programme, Dr. Ismail Hashim and Dr. Dang Duy So, are profoundly thanked for their nomination and support.

Deep gratitude goes to Assoc. Prof. Dr. Mohammad Ismail Yaziz of Faculty of Science and Environmental Studies (FSES), Universiti Putra Malaysia (UPM), who has given his excellent guidance and aid during the study. Appreciation is due to Ir. Dr. Nordin Abdul Kadir Bakti of Applied Chemistry and Processing Division (ACPD) of RRIM, for his valuable advice and provision of facilities. Thanks are also due to Assoc. Prof. Dr. Nasiman Sapari of FSES, UPM for his worthy comments on

the manuscript. Staff of the ACPD's Effluent Research
Unit of RRIM are also thanked for their warm assistance,
amongst them are Dr. Zaid Isa, Mr. Mohd. Zin Karim, Mr.
Mohd. Idris Haji Noor, and Mr. Wan Mohd. Mukhtar.

Many other RRIM employees have been friendly and helpful. They belong to Crop Improvement and Protection Division (CIPD), Biotechnology and Strategic Research Division (BSRD), and Crop Management Division (CMD). It is impossible to highlight their respectable names, the list would be too long. Neither is it possible, for the same reason, to detail lecturers and assistants in Department of Environmental Science and Department of Biology, Faculty of Science and Environmental Studies, and Department of Soil Science, Faculty of Agriculture, UPM, who have provided their help whenever asked. Mr. Godwin Singam and friends at Centre for Environmental Technologies (CETEC), Kuala Lumpur were always ready to lend a hand, particularly in searching paperwork. Bui Nhu Phuong at Centre for Water and Environment (CEFINEA), Polytechnique University, Hochiminh City, also provided information.

The author would like to take this opportunity to express his devotion to his beloved parents, Mr. and Mrs. Nguyen Nghia and Vo Thi Xuan Lan, whose infinite love has motivated him to present accomplishment. He is thankful to his brothers - Minh Dat and Viet Hung are amongst those seven - who have backed him with their love and sympathy and trust. His brothers-in-law and sisters-in-law are also thanked for their love and care and compassion, of whom Hoang Thy and Hong An will be remembered for their delightful letters that were heartening in hours of need.

The author would like to apologise for his failure - due to lack of space - in demonstrating each and every gentle person who has, materially or spiritually, directly or indirectly, contributed to this study.

TABLE OF CONTENTS

		Page
ACKNOWL	EDGEMENTS	iii
LIST OF	TABLES	ix
LIST OF	FIGURES	x
LIST OF	PLATES	xiii
LIST OF	ABBREVIATIONS	xiv
ABSTRAC'	T	xv
ABSTRAK	•••••	xviii
CHAPTER		
I	INTRODUCTION	1
	T THED A HILDER DEVITED.	4
II	LITERATURE REVIEW	4
	Nitrogen Removal from Wastewater	4
	Aquatic Chemistry of Nitrogen	4
	The Need to Control Nitrogen	5
	The Nitrogen Cycle Biological Control of Nitrogen	7
	in Wastewater	9
	Treatment of Wastewater Using Algal	9
	Culture	11
	Biology of the Algae	11
	Symbiosis between Algae and	11
	Bacteria	13
	The High Rate Algal Pond	14
	Algae Removal Techniques	22
	Characteristics of Algae Removal	
	Techniques	27
	Treatment of Wastewater Using Water-	
	hyacinth	29
	Biology of Waterhyacinth	29
	Nitrogen Removal Using Water-	
	hyacinth	31
	Effluent Polishing Using Water-	
	hyacinth	33
	Summary of the Literature Review	34
III	MATERIALS AND METHODS	36
	Materials	36
	HRAP Experimental Models	36
	Wastewater	39
	Algal Culture	39
	Waterhyacinth Culture	40

TABLE OF CONTENTS

		Page
ACKNOWLE	EDGEMENTS	iii
LIST OF	TABLES	ix
LIST OF	FIGURES	х
LIST OF	PLATES	xiii
LIST OF	ABBREVIATIONS	xiv
ABSTRACT	Г	xv
ABSTRAK		xviii
CHAPTER		
I	INTRODUCTION	1
II	LITERATURE REVIEW	4
	Nitrogen Removal from Wastewater	4
	Aquatic Chemistry of Nitrogen	4
	The Need to Control Nitrogen	5
	The Nitrogen Cycle	7
	Biological Control of Nitrogen	
	in Wastewater	9
	Treatment of Wastewater Using Algal	
	Culture	11
	Biology of the Algae	11
	Symbiosis between Algae and	
	Bacteria	13
	The High Rate Algal Pond	14
	Algae Removal Techniques	22
	Characteristics of Algae Removal	
	Techniques	27
	Treatment of Wastewater Using Water-	
	hyacinth	29
	Biology of Waterhyacinth	29
	Nitrogen Removal Using Water-	
	hyacinth	31
	Effluent Polishing Using Water-	
	hyacinth	33
	Summary of the Literature Review	34
III	MATERIALS AND METHODS	36
	Materials	36
	HRAP Experimental Models	36
	Wastewater	39
	Algal Culture	39
	Matacharatinth Caltana	4.0

	Methods	42
	Experimental Design	42
	Sampling and Analysis	48
	Mass Balance of Nitrogen	50
	Statistical Analysis	52
IV	RESULTS AND DISCUSSIONS	53
	Preliminary Experiment	53
	Serum	53
	Tolerance of Algae to Raw Rubber	
	Wastewater	55
	Tolerance of Waterhyacinth to Raw	
	Rubber Wastewater	56
	Maximum Density of Waterhyacinth	
	Growing in Raw Rubber Wastewater	57
	Batch Mode Experiment	57
	Effect of Waterhyacinth on Growth of	
	Algae	57
	Effect of Algal Growth on Growth	60
	of Waterhyacinth	62
	Removal of Total Kjeldahl Nitrogen .	63
	Removal of Ammoniacal Nitrogen	66 68
	Removal of Organic Nitrogen Presence of Oxidised Nitrogen	69
	Configuration of Nitrogen Removal	71
	Effect of Waterhyacinth on	, 1
	Nitrogen Removal Structure	76
	Effect of Waterhyacinth on Nitrogen	, 0
	Removal Efficiency	78
	Effect of Waterhyacinth on Nitrogen	
	Transformations	79
	Effect of the Components on Environ-	
	mental Parameters	80
	Performance of the Batch Mode	86
	Continuous Mode Experiment	88
	COD Removal Rate	88
	Performance of the Continuous Mode .	92
V	SUMMARY AND CONCLUSIONS	95

99

BIBLIOGRAPHY

APPENDIC	ES	115
А	Laboratory Methods of Analysis	115
В	Additional Tables	138
VITA		143

LIST OF TABLES

Table		Page
1	Typical Wastewaters Treated by the HRAP	19
2	Typical Algal Species Used in the HRAP	21
3	Characteristics of Typical Algae Removal Techniques	28
4	Description of Runs in Batch Mode	45
5	Description of Runs in Continuous Mode	48
6	Characteristics of Latex Concentrate Skim Serum	55
7	Tolerance of Algae and Waterhyacinth to Raw Rubber Wastewater	56
8	Effect of Waterhyacinth Coverage on TKN Removal in the Batch Mode Experiment	66
9	Characteristics of the Treated Wastewater in the Batch Mode Experiment	87
10	Characteristics of the Treated Wastewater in the Continuous Mode Experiment	94
11	Meteorological Data at RRIM Experiment Station in Sungai Buloh from January to September 1997	139
12	Effect of 25% Surface Coverage of Waterhyacinth on Performance of the HRAP in Batch Mode	140
13	Effect of 75% Surface Coverage of Waterhyacinth on Performance of the HRAP in Batch Mode	141
14	Effect of 100% Surface Coverage of Waterhyacinth on Performance of the HRAP	

LIST OF FIGURES

Figure		Page
1	The Simplified Nitrogen Cycle	8
2	The Symbiosis of Algae and Bacteria	14
3	Schematic Diagram of the High Rate Algal Pond	15
4	Schematic Diagram of Effluent Treatment Model Used in Batch Mode	37
5	Schematic Diagram of Effluent Treatment Model Used in Continuous Mode	38
6	Graphical Presentation of the Batch Mode Experimental Set-up	44
7	Variations of VSS in the Batch Mode with Waterhyacinth Introduced at the Middle of the Experimental Runs	60
8	Correlation Between Chlorophyll a Concentration and VSS in the Batch Experiment	61
9	Variations of VSS in the Batch Mode with Waterhyacinth Introduced at the Start of the Experimental Runs	61
10	Relationship between Growth of Algae and Growth of Waterhyacinth	63
11	Growth Rate of Waterhyacinth in the HRAP Model	63
12	TKN Removal with Waterhyacinth Introduced at the Middle of the Experimental Runs	64
13	TKN Removal with Waterhyacinth Introduced at the Start of the Experimental Runs	65
14	AN Removal with Waterhyacinth Introduced	67

15	AN Removal with Waterhyacinth Introduced at the Start of the Experimental Runs	67
16	Organic N Removal with and without Waterhyacinth Coverage	68
17	NO ₃ -N in the HRAP with Waterhyacinth Introduced at the Start of the Experimental Runs	70
18	Effect of Initial Waterhyacinth Coverage on the Mechanism of N Removal	77
19	Effect of Midway Waterhyacinth Coverage on the Mechanism of N Removal	77
20	Effect of Initial Waterhyacinth Coverage on N Removal Efficiency	78
21	Effect of Midway Waterhyacinth Coverage on N Removal Efficiency	79
22	Effect of Algae and Waterhyacinth on pH .	81
23	Effect of Initial Waterhyacinth Coverage on pH	81
24	Effect of Midway Waterhyacinth Coverage on pH	82
25	Effect of Algae and Waterhyacinth on DO Concentration	84
26	Effect of Initial Waterhyacinth Coverage on DO Concentration	84
27	Effect of Midway Waterhyacinth Coverage on DO Concentration	85
28	COD Removal Rate Using 9-day Retention Time	88
29	COD Removal Rate Using 6-day Retention Time	89
30	COD Removal Rate Using 3-day Retention Time	90

31	Definition	Sketch	for	a	Mass	Balance	
	Analysis	for	a	Con	pletel	y-mixed,	
	Continuous	Reactor					91

LIST OF PLATES

Plate		Page
1	Chlorella vulgaris (spherical cell) and Scenedesmus acuminatus (elongated cell) .	41
2	Roots of Eichhornia crassipes	41
3	Batch-mode Experiment	47
4	Continuous-mode Experiment	47
5	Roots of Waterhyacinth Growing in a Pond Without Algae	59
6	Roots of Waterhyacinth After 10 Days of	5.0

LIST OF ABBREVIATIONS

AN Ammoniacal Nitrogen

APHA American Public Health Association

BOD Biochemical Oxygen Demand

COD Chemical Oxygen Demand

CV Coefficient of Variation

DO Dissolved Oxygen

HRAP High Rate Algal Pond

HRT Hydraulic Retention Time

N Nitrogen

NO₂-N Nitrite Nitrogen

NO₃-N Nitrate Nitrogen

P Level of significance

r Correlation coefficient

TKN Total Kjeldahl Nitrogen

TSS Total Suspended Solids

VSS Volatile Suspended Solids

WSP Waste Stabilisation Pond

Abstract of thesis submitted to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science

THE INTRODUCTION OF EICHHORNIA CRASSIPES INTO THE HIGH RATE ALGAL POND TO REMOVE NITROGEN FROM WASTEWATER

Ву

NGUYEN NGOC BICH

April 1998

Chairman: Assoc. Prof. Dr. Mohammad Ismail Yaziz

Faculty: Science and Environmental Studies

The treatment of wastewater using algal cultures has been researched and developed since 1950. The High Rate Algal Pond (HRAP) is the most efficient of this type of treatment, particularly for nitrogen removal. However, the main problem with the HRAP is the high level of organic suspended solids in the treated wastewater. Furthermore, nutrients released from the lysis of algal cells may give rise to eutrophication in the receiving water.

A laboratory-scale experiment was carried out using the HRAP in the company of an aquatic plant, waterhyacinth *Eichhornia crassipes*, as an integrated system to remove nitrogen from wastewater. The dominant algal species used was *Chlorella vulgaris*.

Twenty runs in the batch mode were operated under the conventional HRAP and the HRAP-waterhyacinth combination system. Three runs were operated in the continuous mode using the HRAP-waterhyacinth system with 50% surface area coverage and 3 different retention times (3 days, 6 days, and 9 days).

Comparison of the conventional HRAP and the HRAP-waterhyacinth system for treating diluted raw wastewater from rubber latex concentrate processing revealed better nitrogen removal efficiency by the HRAP-waterhyacinth system. Total Kjeldahl Nitrogen in the treated wastewater was 23% lower in the HRAP with waterhyacinth than that in the normal HRAP. Significant reduction of suspended solids was also recorded. Total Suspended Solids of the effluent in the HRAP-waterhyacinth system was generally less than 50 mg/L whereas it was greater than 450 mg/L in the conventional HRAP.

Within one reactor, the algae and the waterhyacinth could co-exist well. The algae did not show any inhibition towards growth of the waterhyacinth, whilst the latter allowed the algae to grow as long as there were nutrients and space for photosynthesis.

The mass balance of nitrogen depicted a partitioning of nitrogen removal in the HRAP-waterhyacinth system. This might be attributed to nitrogen assimilation by algae and bacteria, nitrogen uptake by waterhyacinth, biological nitrification-denitrification, and the volatilisation of ammonia. In the conventional HRAP, nitrogen removal was mainly due to ammonia volatilisation and assimilation.

These findings indicate that the introduction of Eichhornia crassipes into the HRAP may bring about better treatment of the wastewater, in terms of nitrogen and solids removal. However, further study is necessary to determine the optimum design and operation of such a system.

Abstrak Tesis Dikemukakan Kepada Senat Universiti Putra Malaysia Sebagai Memenuhi Keperluan Untuk Ijazah Master Sains

PENGUNAAN EICHHORNIA CRASSIPES
DI DALAM KOLAM ALGA KADAR TINGGI
UNTUK PENGURANGAN NITROGEN DARI AIR SISA

Oleh

NGUYEN NGOC BICH

April 1998

Pengerusi: Prof. Madya Dr. Mohammad Ismail Yaziz

Fakulti: Sains dan Alam Sekitar

Pengolahan air sisa menggunakan kultur alga telah diselidik dan dimajukan sejak 1950. Kolam Alga Kadar Tinggi (KAKT) merupakan cara pengolahan yang paling cekap bagi pengolahan cara ini, terutama nya untuk pengurangan nitrogen. Walau bagaimanapun, masaalah utama sistem KAKT adalah paras pepejal terampai organik yang tinggi di dalam air sisa yang telah dirawat. Tambahan, zat makanan yang ter keluar dari pada sel alga yang mati boleh menyebabkan eutrofikasi di dalam sungai yang menerima air sisa tersebut.

Suatu kajian makmal menggunakan KAKT yang mengandungi keladi bunting Eichhornia crassipes sebagai sistem bersepadu telah dijalankan untuk meneliti pengurangan nitrogen dari air sisa. Alga yang dominan yang digunakan ialah Chlorella vulgaris.

Sebanyak dua puluh percubaan secara kelompok (batch) telah dijalankan menggunakan sistem KAKT biasa dan sistem KAKT-keladi bunting. Tiga percubaan berterusan (continuous) juga dijalankan di mana 50% permukaan air sisa di tumbuhi keladi bunting dan menggunakan tempoh penahanan hidraulik yang berlainan.

Perbandingan kedua-dua sistem untuk mengolah air sisa cecair dari kilang pemprosesan getah menunjukkan sistem KAKT-keladi bunting memberi pengurangan nitrogen yang lebih baik. Kandungan Total Kjeldahl Nitrogen di dalam air sisa yang telah diolah secara KAKT-keladi bunting adalah 23% lebih rendah daripada yang diolah oleh sistem KAKT biasa. Pengurangan kandungan pepejal terampai yang lebih baik juga di catatkan. Amnya, kandungan pepejal terampai di dalam KAKT-keladi bunting adalah kurang daripada 50 manakala di dalam KAKT biasa adalah melebihi 450 mg/L.

Alga boleh bertumbuh bersama dengan keladi bunting.

Alga didapati tidak menghalang pertumbuhan keladi bunting sementara keladi bunting pula tidak menghalang pertumbuhan alga selagi zat makanan dan ruang untuk fotosintesis mencukupi.

Perimbangan jisim nitrogen menunjukkan pemetakan pengurangan nitrogen di dalam sistem KAKT-keladi bunting. Pengurangan nitrogen berlaku melalui asimilasi oleh alga dan bakteria, permakanan oleh keladi bunting, nitrifikasi dan denitrifikasi, dan pemeruapan amonia. Dalam sistem KAKT biasa, pengurangan nitrogen berlaku melalui pemeruapan amonia dan asimilasi.

Penemuan-penemuan ini menunjukkan penanaman Eichhornia crassipes di dalam KAKT boleh menghasilkan pengolahan yang baik untuk pengurangan kandungan nitrogen dan pepejal. Walau, tambahan perlu di jalankan untuk mengena bagaimana pun pasti rekabentuk sistem yang sesuai serta cara operasi sistem berkanaan.

CHAPTER I

INTRODUCTION

The treatment of wastes using algal cultures has been researched and developed since 1950 (Oswald et al., 1957). The High Rate Algal Pond (HRAP) has proven to be the most efficient of this type of treatment, particularly for nitrogen removal (Fallowfield et al., 1985; Picot et al., 1992). However, since the main function of the pond is the assimilation of nutrients in wastewater by algae through their metabolism, this leads to the development of organic suspended solids in the pond. Therefore, further treatment is needed to remove algae from the treated effluent (Gaudy and Gaudy, 1981).

Many separation and harvesting techniques have been developed to remove algae from the treated effluent, the most promising amongst them being centrifugation, chemical coagulation, and autoflocculation (Oswald and

Golueke, 1960). Other algae removal techniques include ion exchange, flotation, microstraining, electric charge field, sand filtration, pond operation techniques, land application, aquaculture, floating plants, and rock filters (Golueke and Oswald, 1965; McGarry Tongkasame, 1971; Middlebrooks et al., 1974; Harris et al., 1977; Dinges, 1978^a, 1978^b; Wolverton and McDonald, Ellis, 1983; Fallowfield and Garrett, 1979: 1985; Nordin, 1994). However, unless the algae produced have economic value, most of the harvesting methods are costly and/or complicated due to their requirements of energy, chemicals and other materials, complex technology, and sophisticated equipment (Fallowfield and Garrett, 1985).

Amongst aquatic plants that have been used in wastewater treatment for the purpose of nutrients removal and effluent upgrading, waterhyacinth (Eichhornia crassipes) is one of the most effective macrophytes (Hauser, 1984; Reedy and De Busk, 1985). However, no past study has mentioned the co-existence of waterhyacinth and algae within a common treatment reactor.

This study was aimed at investigating the possibility of using an integrated treatment system

created by the introduction of waterhyacinth into the HRAP to remove nitrogen from wastewater. The structure of nitrogen removal in such a system would also be studied.

