

UNIVERSITI PUTRA MALAYSIA

GIANT MAGNETORESISTANCE OF SILVER NICKEL IRON GRANDULAR MAGNETIC THIN FILMS PREPARED BY RF MAGNETRON SPUTTERING SYSTEM

LIM KEAN PAH

FPP 1998 79

GIANT MAGNETORESISTANCE OF SILVER NICKEL IRON GRANULAR MAGNETIC THIN FILMS PREPARED BY RF MAGNETRON SPUTTERING SYSTEM

By

LIM KEAN PAH

Thesis Submitted in Fulfillment of the Requirement for the Degree of Master of Science in the Faculty of Science and Environmental Studies, Universiti Putra Malaysia July, 1998

ACKNOWLEDGEMENT

First and foremost, I would like to acknowledge my supervisor, Associate **Professor Dr. Abdul Halim Shaari**, for giving me the platform to pursue my studies and to give me the opportunity to explore the Giant Magnetoresistance (GMR) effect of granular magnetic material and its application, besides the constant support throughout this work.

It is my pleasure to acknowledge my co-supervisor Associate Professor Dr. Chow Sai Pew for his comments and suggestion throughout this project. I would also like to extend my sincere appreciation to my co-supervisor Dr. Hishamuddin for his help and discussion on the theory of this project.

Special thanks are also given to my working colleagues, Suat Phin and Li San for their helpful discussions and suggestions on this work, and also Azhan and Mohamed for their help on the handling of all equipment in the laboratory and also on the X-ray diffraction (XRD) analysis.

Particular thanks are also owed to En. Razak for his help in setting up the four-point probe resistance measurement system and other technical help needed in this work. I would also like to thank Cik Azilah, Puan Aminah and Mr. Ho for helping me in handling the scanning electron microscope (SEM) unit.

I would also like to extend my appreciation to Dr. Tim Jackson from Physics department, University of Warwick, U. Kingdom during his visit under the CICHE (UPM-UK) program, for his helpful discussions and suggestion on this work.

The financial support in this work from the Ministry of Science and Technology, under the IRPA vote: 09-02-04-0019 (Giant Magnetoresistive and Magnetostrictive Material) is also gratefully acknowledged. Without this support, it is impossible for us to pursue this project with success. Lastly, I would also like to extend my gratitude to the government for granting the PASCA scholarship to me to support my daily expenditure.

TABLE OF CONTENT

ACKNOWLEDGEMENT	ii
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF PLATES	xi
LIST OF SIMBOLS	xii
ABSTRACT	xvi
ABSTRAK	xviii

CHAPTER ,

Ι	GENERAL INTRODUCTION	1
	Introduction	1
	Basis of Work	2
	Objective of Work	3
	Thesis Content	4
II	LITERATURE REVIEW	5
	Introduction	5
	Microstructure	6
	Giant Magnetoresistance (GMR) Effect	7
III	THEORY	10
	Thin Film	10
	Introduction	10
	Thin Film Growth Process	11
	Thin Film Deposition Process	11
	Deposition Condition	18
	Thin Film Application	19
	Sputtering	20
	Introduction	20
	Sputter Yield	21
	Glow Discharge	22
	Mechanisms of Sputtering	24
	Sputtering System	26

	Magnetoresistance (MR)	39
	Introduction	39
	Classification and Elements of Magnetoresistance	40
	Giant Magnetoresistance Ratio	41
	Giant Magnetoresistance Effect	42
	GMR Nanostructure for Multilayer and Granular Thin Film	43
	Types of GMR Effects in Multilayer and Granular Thin Film	46
	Model of Giant Magnetoresistance Effect for Granular Thin	
	Film	47
	Classical Approach of Giant Magnetoresistance Effect	50
	Magnetoresistance Application	55
	Some Practical Aspects of Sputtering System	57
	Sputtering Target	57
	Sputtering Gas	58
	Substrate Material	59
	Substrate Cleaning	60
	Solvent Cleaning	60
	Glow Discharge Cleaning	61
	Substrate Temperature	61
IV	METHODOLOGY	62
	Radio Frequency Magnetron Sputtering	62
	Liquid Nitrogen Trap	64
	Heater	64
	Shutter	65
	Operating Procedures	65
	Preparing Base Pressure for Sputtering	65
	Substrate Cleaning	65
	Thin Film Deposition Process	66
	Samples Cutting and Keeping	67
	Estimation of The Samples' Composition	68
	Giant Magnetoresistance Measurement	69
	Surface Morphology and Microstructure	72
	Structure and Phase Identification	74
	Errors of Measurements	75
V	RESULTS AND DISCUSSIONS	7 6
	Surface Morphology	76
	Scanning Electron Micrograph	7 6
	Energy Dispersive X-ray (EDX) Analysis	80
	X-ray Diffraction Spectrum	84
	Giant Magnetoresistance Effect	91

VI	CONCLUSIONS AND SUGGESTIONS	114
	Conclusions	114 116

REFERENCES

APPENDIXS

VITA

LIST OF TABLES

Table		Page
3.1	The color of luminous zones in glow discharge	23
3.2	MR effects value of several MR alloys	41
4.1	Estimated errors of measurements	75
5.1	Composition for all the AgNiFe thin film	82
5.2	Silver-Nickel-Iron granular magnetic thin film	82

LIST OF FIGURE

Figure		Page
3.1	Thin film deposition process	12
3.2	Ion Plating deposition system	14
3.3	Activated Reaction Evapouration (ARE)	15
3.4	Physical sputtering process	16
3.5	Chemical vapour deposition (CVD)	18
3.6	Luminous zones and dark spaces in a DC glow discharge	22
3.7	Schematic diagram of a sputter deposition system	28
3.8	DC-Diode sputtering deposition system	29
3.9	RF-Diode sputtering system	30
3.10	Radio frequency sputtering target for nonconductors	31
3.11	Cycloidal motion of electrons in a magnetic field	33
3.12	Electron's trajectory in a crossed electromagnetic field	34
3.13	Penning's sputtering system	35
3.14	Planar Magnetron Sputtering System	38
3.15	Cylindrical Magnetron Sputtering System	38
3.16(a)	GMR nanostructure and their magnetoresistance behaviour for antiferromagnetically coupled multilayer	45
3.16(b)	GMR nanostructure and their magnetoresistance behaviour for granular thin film	45

3.17(a)	Schematic of conduction in mutilayer magnetic thin film and the equivalent resistor network for the antiparallel coupling	48
3.1 7(b)	Schematic of conduction in mutilayer magnetic thin film and the equivalent resistor network for the parallel coupling	49
3.18	Construction of composite target for the deposition of alloy, compound thin films	57
4.1	Vacuum system schematic	63
4.2	Construction of the sputtering area	68
4.3	Basic construction of the system used to measure the MR effect of thin film	70
4.4	Self-made four-point probe sample holder	71
4.5	EDX spectrum for the thin film samples	73
5.1	EDX spectrum for AgNiFe thin film	81
5.2	The percentage of the nickel element observed in the EDX analysis versus the ratio of the surface area of nickel element in the target	83
5.3	XRD pattern for sample AgNi(3)Fe(2)	85
5.4	XRD pattern for sample AgNi(3)Fe(3)	86
5.5	XRD pattern for sample AgNi(2)Fe(3)	87
5.6	XRD pattern for sample AgNi(1)Fe(3)	88
5.7	XRD pattern for sample AgNi(0)Fe(3)	89
5.8	Giant magnetoresistance curve for sample AgNi(3)Fe(2)	93
5.9	Giant magnetoresistance curve for sample AgNi(3)Fe(3)	94
5.10	Giant magnetoresistance curve for sample AgNi(2)Fe(3)	95
5.11	Giant magnetoresistance curve for sample AgNi(1)Fe(3)	96

5.12	Giant magnetoresistance curve for sample AgNi(0)Fe(3)	97
5.13	The variation of the GMR value of the AgNiFe thin film with the deposition rates (thickness) of the film	99
5.14	Variation of GMR value with the percentage of nickel element in the thin film	101
5.15	Variation of GMR value with the percentage of silver element in the AgNiFe thin film	102
5.16	The linear relation between square of %GMR and applied field, H for AgNi(3)Fe(2) samples	104
5.17	The linear relation between square of %GMR and applied field, H for AgNi(3)Fe(3) samples	105
5.18	The linear relation between square of %GMR and applied field, H for AgNi(2)Fe(3) samples	106
5.19	The linear relation between square of %GMR and applied field, H for AgNi(1)Fe(3) samples	107
5.20	The linear relation between square of %GMR and applied field, H for AgNi(0)Fe(3) samples	108
5.21	The example of the $GMR^2 \propto H$ relationship and the magnetic entities saturation state	109
5.22	Gradient, k versus deposition rates	110
5.23	XRD spectrum for AgNi(0)Fe(3) samples	111
5.24	XRD spectrum for AgNi(1)Fe(3) samples	112
5.25	The correlation of the lattice spacing, d, for the AgNi(1)Fe(3) samples and the % of Giant Magnetoresistance	113

LIST OF PLATES

Plate		Page
3.1	ESM100 Edward Rf magnetron sputtering system unit	27
3.2	A top view of a planar disk target in a magnetron discharge	37
5.1	SEM photograph of the sample AgNiFe deposited for 80 minutes showing less droplets were formed at the surface of the film	77
5.2	SEM photograph of the sample AgNiFe deposited for 60 minutes showing less droplets were formed at the surface of the film	78
5.3	SEM photograph of the sample AgNiFe deposited for 40 minutes showing less droplets were formed at the surface of the film	78
5.4	SEM photograph of the sample AgNiFe deposited for 20 minutes showing less droplets were formed at the surface of the film	79
5.5	SEM photograph of the sample AgNiFe showing the contamination at the surface of the film	79
5.6	SEM photograph of the sample AgNiFe showing the contamination at the surface of the film	80

LIST OF SYMBOLS

GMR Giant Magnetoresistance SEM Surface electron microscope XRD X-ray diffraction Energy dispersive X-ray EDX Surface acoustic wave SAW VCR Video recorder cassette Ordinary Magnetoresistance OMR AMR Anisotropic Magnetoresistance CMR Colossal Magnetoresistance **Tunneling Magnetoresistance** TMR Ni Nickel Silver Ag Fe Iron PVD Physical vapour deposition CVD Chemical vapour deposition W Tungsten Mo Molybdenum Ta Tantalum Torr Pressure unit **Krypton Fluoride** KrF

MBE	Molecular beam epitaxy
ARE	Activated reactive evapouration
S	Sputter yield
DC	Direct current
Не	Helium
NE	Neon
Ar	Argon
O ₂	Oxygen
RF,rf	radio frequency
N ₂	Nitrogen
m _e	mass of electron
e	charge of electron
Ve	Velocity of electron
Н,В	Magnetic field
E	Electric field
Å	Angstrom
K	Kelvin
°C	Degree Celsius
G	Gauss
Т	Tesla
MR	Magnetoresistance

ρ_{max}, ρ_o	Resistivity
R	Resistance
Μ	Magnetic layer
NM	non-magnetic layer
CIP	Current parallel to the plane of the film layer
СРР	Current perpendicular to the plane of the film layer
$l_{\rm sf}$	spin diffusion length
ťN	Thickness of non magnetic film
σ	Conductivity
С	Magnetic entities concentration
$\lambda_s, \lambda_m, \lambda_{nm}$	Mean free paths for the interfaces, granules and matrix
p ₀ , p _s	The ratio of the spin-dependent potentials to spin-independent potentials for the granules and for the interfaces
ao	Lattice constant of the granules
V_{α}	The volume of the granules
f(V _α)	Distribution function for the size of the granules
$m_{\alpha}(V_{\alpha})$	The cosine of the angle the magnetic moment of the α th granule makes with respect to the external field
r _o	radian of the magnetic granule
Vo	volume of the magnetic granule
Μ	magnetization
MRAM	magnetoresistance random access memory

Ts	substrate temperature
T _c	crystallization temperature
T _{epi}	epitaxial temperature
mbar	pressure unit
a _{ni}	the sputtering area of the iron foil
a _{Ag}	the sputtering area of the silver disc
atotal	total sputtering area
Ni _{EDX}	the percentage of nickel element in the sample
Ni _{target}	the ratio of the surface area of nickel in the target
fcc	face centered cubic

Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of requirements for the degree of Master of Science

GIANT MAGNETORESISTANCE OF SILVER NICKEL IRON GRANULAR MAGNETIC THIN FILMS PREPARED BY RF MAGNETRON SPUTTERING SYSTEM

By

LIM KEAN PAH

July, 1998

 $\alpha \mathbf{i} \cdot \mathbf{i} = \mathbf{i} \cdot \mathbf{i}$

Chairman	Associate Professor Abdul Halim Shaari (Ph. D.)
Faculty	Science and Environmental Studies

The discovery of giant magnetoresistance (GMR) in multilayer system and subsequently in granular films has stimulated world wide research activities, due to both its fundamental significance and its potential application to magnetic sensors and data storage. Hence, this work is carried out to investigate this phenomenon. The first part of the work is to find out the suitable parameter and condition for producing good quality films. Granular magnetic thin films of Ag-Ni-Fe have been prepared at different deposition rates and compositions using RF Magnetron Sputtering system. Subsequently, the surfaces of the thin films were examined using the scanning electron microscope (SEM) and energy dispersive

X-ray (EDX) analysis, also in the SEM, was used to determine the composition of

the films. The crystalline state of the films was determined by X-ray diffraction

xvi

using CuK_{α} radiation in a 20 powder diffractometer and the resistances of the films were measured using a four-point probe method to calculate the GMR effect. Lastly, the data obtained were analysed to investigate and understand the electrical transport mechanism in thin films. The result shows that the GMR effect is thickness, structure and composition dependent. The highest GMR value was obtained for the samples deposited for 60 minutes with 25% of magnetic entities embedded in the non-magnetic matrix. The microstructure analysis shows that the highest GMR value was obtained if the formation of <111> fcc Ag texture is

dominant and small grain size was formed in the film. In conclusion, a good

granular thin film with high GMR value of 3.73% at room temperature has been

developed and this result meets the requirement in the magnetic sensors and data

storage industry.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia bagi memenuhi keperluan Ijazah Master Sains

MAGNETORINTANGAN GERGASI TERHADAP SAPUT TIPIS GRANULAR MAGNET Ag-Ni-Fe YANG DISEDIAKAN MELALUI SISTEM PERCIKAN MAGNETRON RF

Oleh

LIM KEAN PAH

Julai, 1998

Pengerusi:Prof. Madya Abdul Halim Shaari (Ph. D.)Fakulti:Sains dan Pengajian Alam Sekitar

Penemuan magnetorintangan gergasi (MRG) dalam sistem multilapisan dan seterusnya dalam saput tipis granular telah merangsang banyak aktiviti penyelidikan di seluruh dunia disebabkan oleh keistimewaan asas dan potensi penggunaannya pada sensor magnet dan pengstoran data. Justeru itu, kajian ini dilakukan untuk menyiasat fenomena tersebut. Bahagian pertama kajian ini adalah untuk mencari parameter dan keadaan yang sesuai untuk menghasilkan saput yang berkualiti. Saput tipis granular magnet Ag-Ni-Fe telah disediakan pada kadar mendapan dan komposisi yang berbeza dengan menggunakan sistem percikan magnetron RF. Seterusnya, permukaan saput tipis diperiksa dengan menggunakan mikroskop elektron pengimbasan (SEM) dan analisis penyebaran tenaga sinaran-X (EDX) yang terdapat dalam SEM telah digunakan untuk menentukan komposisi

sampel. Keadaan kehabluran sampel pula ditentukan dengan kaedah pembelauan sinaran-x dengan menggunakan sinaran CuK_{α} dalam meter pembelauan serbuk 20 dan rintangan bagi saput tipis pula diukur dengan menggunakan satu penduga empat titik untuk mengira kesan MRG. Akhir sekali, data yang didapati dianalisis untuk mengkaji dan memahami mekanisme pengaliran elektrik dalam saput tipis. Keputusan menunjukkan bahawa MRG mempunyai persandaran kepada ketebalan, struktur dan komposisi sampel. Nilai MRG yang tertinggi diperolehi pada sampel yang dipercik selama 60 minit dengan 25% bahan magnet dibenamkan dalam matrik bahan bukan magnet. Analisis mil**u**rostruktur menunjukkan bahawa MRG yang tinggi diperolehi jika pembentukan tekstur <111> Ag adalah dominan dan butiran yang terbentuk dalam saput tipis adalah kecil. Kesimpulannya, saput tipis granular yang bermutu dengan nilai MRG yang tinggi, iaitu 3.73% pada suhu bilik telah diperolehi. Keputusan yang diperolehi juga menunjukkan bahawa saput tipis yang disediakan dapat memenuhi syarat dalam industri sensor magnet dan penyimpanan data.

CHAPTER I

GENERAL INTRODUCTION

Introduction

At present, various kinds of thin film materials are used for the production of the electronic devices including high precision resistor, surface acoustic wave (SAW) filters, optical disks, magnetic tapes, sensors, and active matrix for liquid crystal television. Recent progress of these thin film devices is the result of developments of Si-Large Scale Integration (LSI) technology including thin film growth process, microfabrication and analysis technology of both the surface and interface of the thin films (Wasa, 1992). The recent discovery of giant magnetoresistance (GMR) in multilayer and granular thin films has led to much current world wide interest in the effect (Wiggins, 1996; Yu, 1994), due to both its fundamental significance and its potential in a variety of applications such as magnetic sensor (Folkerts, 1994), video cassette recorder (VCR) application (Suzuki, 1994), data storage (Brown, 1994) and many more.

Basis of Work

With the technological revolution in the magnetic recording world of the last decades, a need of better magnetoresistance material arises for large storage capacities and magnetoresistance sensor for information carrying and processing.

The evolution of storage technologies has influenced the thin film field. The data are now introduced into a system on a magnetic support with a much higher transfer rate. The operating speed of the internal memory increased with the use of matrices in which the ferrite cores were replaced by thin ferromagnetic films. This tendency shifted again in 1970 when the progress made in miniaturizing the active components led to semiconductor internal memories with bipolar or metal oxide semiconductor (MOS) technologies. Finally, external memories still preserve their classical structure but the introduction of thin film heads and media has led to a spectacular increase in recording performance (Ciureanu, 1990).

The search for better and more sensitive material for magnetic sensing was done for these last few decades. Hence, this work is carried out to search for a good magnetic granular thin film, which has high magnetoresistance value.

Objective of Work

The recent discovery of giant magnetoresistance (GMR) in multilayer system and subsequently in granular films has stimulated world wide research activities, due to both its fundamental significance and its potential application to magnetic sensor. It has generally been agreed that in both multilayer system and granular films the GMR arises from spin-dependent scattering occurring either at the surface of or within the magnetic entity (Badia, 1997; Yu, 1994; Greaves, 1994).

The magnitude of the GMR which had been observed has been found to be a sensitive function of both the size and the concentration of the ferromagnetic particles in the alloy (Badia, 1997; Yu, 1995).

So far, much attention has been paid to this problem both experimentally and theoretically, but it is still far from being understood. Most of the experimental work has focused on as-deposition and post-deposition annealing, which can produce good film for study (Badia, 1997; Yu, 1994).

In this research, the aims of work are as follows:

- 1. To find out the suitable parameters and conditions for producing good quality films.
- To investigate the effects of composition and thickness on the magnetic properties of the magnetic thin films

- 3. To investigate the surface morphology and structure of the films
- 4. To set-up a simple four point probe system for the measurement of the magnetoresistance effect

Thesis Content

A general outline of the current status of the research work on magnetic thin films and its application has been given in this chapter. A thorough literature review is given in chapter II. Subsequently, basic theories of thin films, sputtering and magnetoresistance effect are discussed in chapter III. The following chapter (chapter IV) mainly deals with the methodology of the project. The experimental results are discussed in chapter V. Conclusions and suggestions are given in chapter VI.

CHAPTER II

LITERATURE REVIEW

Introduction

Giant magnetoresistance (GMR) has been discovered first in Fe/Cr multilayers by Baibich in 1988 (Baibich, 1988; Kobayashi, 1994; Chaiken, 1993) and subsequently in many other multilayers, such as Ni-Fe/Cu (Nakatani, 1992), CoFe/Cu (Kanai, 1993), Co/Cu (Rupp, 1993; Kobayashi, 1994), etc., in which antiferromagnetically coupled layers are separated by non-magnetic interlayers. Recently, GMR has also been found in magnetic granular thin films, such as NiFeAg (Badia, 1997; Greaves, 1994; Wiggins, 1996), CoCu (Jackson, 1996; Yu, 1995), CoAg (Zhang, 1997; Tsoukatos, 1993), etc., and this has provided a promising application in the magnetic record industry.

In Chang's (1996) paper, he proposed that magnetoresistance effect can be roughly classified by their origin into several categories namely, ordinary magnetoresistance (OMR), anisotropic magnetoresistance (AMR), giant

