

UNIVERSITI PUTRA MALAYSIA

SYNTHESIS OF BROMINATED C-18 FATTY ACIDS AND SURFACTANT PROPERTIES OF THEIR SODIUM SALTS

STEVEN BAPTIST

FSAS 1996 5

SYNTHESIS OF BROMINATED C-18 FATTY ACIDS AND SURFACTANT PROPERTIES OF THEIR SODIUM SALTS

By

STEVEN BAPTIST

Thesis Submitted in Fulfilment of the Requirements for the Degree of Master of Science in the Faculty of Science and Environmental Studies, Universiti Pertanian Malaysia.

June 1996

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisors, Professor Dr. Hj. Badri bin Muhammad, Assoc. Prof. Dr. Karen Badri, Assoc. Prof. Dr. Mohd. Aspollah Hj. Sukari and Dr. Dzulkefly Kuang for the invaluable guidance, continuing advice, encouragement and discussions they have given me throughout the course of this research.

I would also like to acknowledge the funding received from Palm Oil Research Institute of Malaysia (PORIM) under the title "Soaps and Detergents from Palm Oil and Oil Palm Products", without which this project could not have been done.

The cooperation and assistance of the staff of the Chemistry Department of UPM: En. Sri Jegan, En. Zainal Zahari Zakaria, En. Zainal Abidin Kasim, En. Kamal Margona and En. Wahab is much appreciated.

Various colleagues and staff members of the Chemistry and Physics Department for their kind help and cooperation.

My family and friends for their patience and understanding.

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS	ii
LIST OF TABLES	vi
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	xii
ABSTRACT	xiii
ABSTRAK	xiv

CHAPTER

Ι	INTRODUCTION	1
	World Trends for Oleochemicals	1
	The Basis and Objectives of this Research	2
II	LITERATURE REVIEW	5
	Oleochemicals	5
	Natural Fatty Acid	5
	Halogenation of Fatty Acid	6
	Synthetic Aspects of Fat Halogenation	7
	Surfactant Classification	10
	Anionic	11
	Nonionic	11
	Cationic	11
	Amphoteric	11
	Soaps	12
	Surfactant Theory	12
	Adsorption	13
	Micelles	14
	Substance Combination	16
	Mixing	16
	Homogenization	16
	Dispersion	16
	Emulsification	17
	Suspension	17
	Emulsification Processes	17
	O/W Emulsion, W/O Emulsion	18
	Anionactive Emulsifiers	20
	Floculation and Coalesence in Emulsion Systems	20

III	MATERIALS AND METHODOLOGY	22
	Preparation of Brominated Oleic Acid (B1)	22
	Preparation of Brominated Stearic Acid (D1)	23
	Preparation of C-18 Fatty Acid Sodium Salts	23
	General Materials and Methods	24
	Surface Tension Measurement	25
	Conductivity Measurement	26
	Emulsion Stability Measurement	26
	O/W Emulsion	26
	W/O Emulsion	27
IV	RESULTS AND DISCUSSION	28
	Structure Analysis	28
	A1 and B1	28
	A2 and B2	38
	C1 and D1	45
	C2 and D2	51
	Surface Tension	58
	Evaluation of Surface Tension (γ) and CMC of A2	
	and B2 at various temperatures (25-50°C)	58
	Evaluation of Surface Tension (γ) and CMC of C2	
	and D2 at various temperatures (25-50°C)	76
	Comparison of Surface Tension (Ycmc) between A2,	
	B2, C2 and D2 at various temperatures (25-50°C)	93
	Comparison of CMCs by Surface Tension Method	
	(γ cmc) of A2, B2, C2, D2 at various temperatues	
	(25-50°C)	96
	Conductivity	98
	Evaluation of Conductivity (μ) and CMC of A2 and	
	B2 at various temperatures (25-50°C)	98
	Evaluation of Conductivity (11) and CMC of C2 and	
	D2 at various temperatures $(25-50^{\circ}C)$	115
	Comparison of Conductivity (Hame) between A2	115
	Comparison of Conductivity (μ cmc) between A2, B2 C2 and D2 at various temperatures (25-50°C)	131
	D_2 , C_2 and D_2 at various temperatures (25-50 C)	151
	Comparison of CMCs by Conductivity Method (μ cmc)	
	of A2, B2, C2 and D2 at various temperatures $(25-50^{\circ}C)$	135
	Comparison of CMCs by Surface Tension Method	
	(Yeme) and Conductivity Method (μ cme) of A2, B2,	
	C2 and D2 at various temperatures (25-50°C)	137

Emulsion Stability	139
Comparison of O/W Emulsion Stability of A2 and	
B2	139
Comparison of W/O Emulsion Stability of A2 and	
B2	148
Comparison of O/W Emulsion Stability of C2 and	
D2	156
Comparison of W/O Emulsion Stability of C2	
and D2	164
IV CONCLUSION	172
BIBLIOGRAPHY	173
A Additional Tables	179
VITA	196

LIST OF TABLES

Table

Page

1	¹³ C-Nuclear Magnetic Resonance Signals and Molecular Assignments for A2 and B2	34
2	Surface Tension (γ) of A2 at Various Temperatures (25-50°C) and Concentrations	180
3	Surface Tension (γ) of B2 at Various Temperatures (25-50°C) and Concentrations	181
4	Critical Micelle Concentration (CMC), log(CMC) and Ycmc at (25-50°C) for A2	60
5	Critical Micelle Concentration (CMC), log(CMC) and Ycmc at (25-50°C) for B2	61
6	Surface Tension (γ) of C2 at Various Temperatures (25-50°C) and Concentrations	182
7	Surface Tension (γ) of D2 at Various Temperatures (25-50°C) and Concentrations	183
8	Critical Micelle Concentration (CMC), log(CMC) and γ cmc at (25-50°C) for C2	77
9	Critical Micelle Concentration (CMC), log(CMC) and γcmc at (25-50°C) for D2	78
10	Critical Micelle Concentration (CMC) and Ycmc at (25-50°C) for A2, B2, C2 and D2	94
11	Conductivity (μ) of A2 at Various Temperatures (25-50°C) and Concentrations	184
12	Conductivity (μ) of B2 at Various Temperatures (25-50°C) and Concentrations	185
13	Critical Micelle Concentration (CMC), log(CMC) and µcmc at (25-50°C) for A2	100
14	Critical Micelle Concentration (CMC), log(CMC) and μ cmc at (25-50°C) for B2	101
15	Conductivity (μ) of C2 at Various Temperatures (25-50°C) and Concentrations	186
16	Conductivity (µ) of D2 at Various Temperatures (25-50°C) and Concentrations	187
	¥ 1	

17	Critical Micelle Concentration (CMC), log(CMC) and μ cmc at (25-50°C) for C2	116
18	Critical Micelle Concentration (CMC), log(CMC) and μ cmc (25-50°C) for D2	117
19	Critical Micelle Concentration (CMC) and μ cmc at (25-50°C) for A2, B2, C2 and D2	133
20	O/W Emulsion Separation of A2 at Emulsifier Concentration (0.0-3.0%) and Palm Olein (1-5 ml)	188
21	O/W Emulsion Separation of B2 at Emulsifier Concentration (0.0-3.0%) and Palm Olein (1-5 ml)	189
22	W/O Emulsion Separation of A2 at Emulsifier Concentration $(0.0-3.0\%)$ and Water $(1-5 \text{ ml})$	190
23	W/O Emulsion Separation of B2 at Emulsifier Concentration ($(0, 0, 3, 0\%)$) and Water (1-5 ml)	101
24	O/W Emulsion Separation of C2 at Emulsifier Concentration (0.0, 2.0%) and Palm Olain (1.5 ml)	102
25	O/W Emulsion Separation of D2 at Emulsifier Concentration (0.0-2.0%) and Palm Olein (1-5 ml)	192
26	W/O Emulsion Separation of C2 at Emulsifier Concentration	193
27	(0.0-3.0%) and Water (1-5 ml)	194
	Concentration (0.0-3.0%) and Water (1-5 ml)	195

LIST OF FIGURES

Figure

1	Structures of Fatty Acids (a) Oleic Acid and (b) Stearic Acid	6
2	Adsorption at Interfaces	13
3	Micelle Formation	15
4	Schematic Illustration of Emulsion Types	19
5	IR Spectrum of A1	29
6	IR Spectrum of B1	30
7	¹ H-NMR Spectrum of A1	31
8	¹ H-NMR Spectrum of B1	32
9	¹³ C-NMR Spectrum of A1	35
10	¹³ C-NMR Spectrum of B1	36
11	Structure of B1	37
12	IR Spectrum of A2	39
13	IR Spectrum of B2	40
14	¹ H-NMR Spectrum of A2	42
15	¹ H-NMR Spectrum of B2	43
16	Structures of (a) A2 and (b) B2	44
17	IR Spectrum of C1	46
18	IR Spectrum of D1	47
19	H-NMR Spectrum of C1	48
20	H-NMR Spectrum of D1	49
21	Structures of D1	50
22	IR Spectrum of C2	53
23	IR Spectrum of D2	54
24	H-NMR Spectrum of C2	55
25	H-NMR Spectrum of D2	56
26	Structures of (a) C2 and (b) D2	57
27	Surface Tension versus log(concentration) of A2 at 25°C	63
28	Surface Tension versus log(concentration) of A2 at 30°C	64
29	Surface Fension versus log(concentration) of A2 at 35°C	65
30	Surface Tension versus log(concentration) of A2 at 40°C	66
31	Surface Tension versus log(concentration) of A2 at 45°C	67
32	Surface Tension versus log(concentration) of A2 at 50°C	68
33	Surface Tension versus log(concentration) of B2 at 25°C	69
34	Surface Tension versus log(concentration) of B2 at 30°C	70

35	Surface Tension versus log(concentration) of B2 at 35°C	71
36	Surface Tension versus log(concentration) of B2 at 40°C	72
37	Surface Tension versus log(concentration) of B2 at 45°C	73
38	Surface Tension versus log(concentration) of B2 at 50°C	74
39	Schematic Representation of Orientation of (a) A2 and (b) B2	
	Molecules in a Micelle	75
40	Surface Tension versus log(concentration) of C2 at 25°C	80
41	Surface Tension versus log(concentration) of C2 at 30°C	81
42	Surface Tension versus log(concentration) of C2 at 35°C	82
43	Surface Tension versus log(concentration) of C2 at 40°C	83
44	Surface Tension versus log(concentration) of C2 at 45°C	84
45	Surface Tension versus log(concentration) of C2 at 50°C	85
46	Surface Tension versus log(concentration) of D2 at 25°C	86
47	Surface Tension versus log(concentration) of D2 at 30°C	87
48	Surface Tension versus log(concentration) of D2 at 35°C	88
49	Surface Tension versus log(concentration) of D2 at 40°C	89
50	Surface Tension versus log(concentration) of D2 at 45°C	90
51	Surface Tension versus log(concentration) of D2 at 50°C	91
52	Schematic Representation of Orientation of (a) C2 and	
	(b) D2 Molecules in a Micelle	92
53	Surface Tension versus Temperature of A2, B2, C2 and	
	D2	95
54	CMC of the Surface Tension Method versus Temperature for A2,	
~ ~	B2, C2 and D2	97
55	Conductivity versus Concentration of A2 at 25°C	103
56	Conductivity versus Concentration of A2 at 30°C	104
57	Conductivity versus Concentration of A2 at 35°C	105
58	Conductivity versus Concentration of A2 at 40°C	106
59	Conductivity versus Concentration of A2 at 45°C	107
60	Conductivity versus Concentration of A2 at 50°C	108
61	Conductivity versus Concentration of B2 at 25°C	109
62	Conductivity versus Concentration of B2 at 30°C	110
63	Conductivity versus Concentration of B2 at 35°C	111
64	Conductivity versus Concentration of B2 at 40°C	112
65	Conductivity versus Concentration of B2 at 45°C	113
66	Conductivity versus Concentration of B2 at 50°C	114
67	Conductivity versus Concentration of C2 at 25°C	119
68	Conductivity versus Concentration of C2 at 30°C	120
69	Conductivity versus Concentration of C2 at 35°C	121
70	Conductivity versus Concentration of C2 at 40°C	122

71	Conductivity versus Concentration of C2 at 45°C	123
72	Conductivity versus Concentration of C2 at 50°C	124
73	Conductivity versus Concentiation of D2 at 25°C	125
74	Conductivity versus Concentration of D2 at 30°C	126
75	Conductivity versus Concentiation of D2 at 35°C	127
76	Conductivity versus Concentiation of D2 at 40°C	128
77	Conductivity versus Concentration of D2 at 45°C	129
78	Conductivity versus Concentration of D2 at 50°C	130
79	Conductivity versus Temperature of A2, B2 C2 and D2	134
80	CMC for the Conductivity Method for A2, B2, C2 and D2	136
81	CMC for the Surface Tension () and Conductivity Method ()	
	for A2, B2, C2 and D2	138
82	Stability of o/w emulsions versus time at room temperature	
	0 0-3 0% A2 with 1ml palm olein	142
83	Stability of o/w emulsions versus time at room temperature	
	0 0-3 0% A2 with 3ml palm olein	143
84	Stability of o/w emulsions versus time at room temperature	
	0 0-3 0% A2 with 5ml palm olein	144
85	Stability of o/w emulsions versus time at room temperature	
	0 0-3 0% B2 with 1ml palm olein	145
86	Stability of o/w emulsions versus time at room temperature	
	0 0-3 0% B2 with 3ml palm olein	146
87	Stability of o/w emulsions versus time at room temperature	1.47
00	0 0-3 0% B2 with 5ml palm olein	14/
88	Stability of w/o emulsions versus time at refrigeration temperature	150
00	0 0-3 0% A2 with 1ml water	150
89	Stability of w/o emulsions versus time at refrigeration temperature $0.0.2.0\%$ (A.2.2ml mater	151
00	0.0-5.0% AZ 51111 Walci Stability of u/o amulaiona varaus time at refrigeration temperature	151
90	0.0.3.0% A2 with 5ml water	152
91	Stability of w/o emulsions versus time at refrigeration temperature	152
71	0.0-3.0% B2 with 1ml water	153
92	Stability of w/o emulsions versus time at refrigeration temperature	100
	0.0-3.0% B2 with 3ml water	154
93	Stability of w/o emulsions versus time at refrigeration temperature	
	0 0-3 0% B2 with 5ml water	155
94	Stability of o/w emulsions versus time at room temperature	
	0 0-3 0% C2 with Iml palm olein	158
95	Stability of o/w emulsions versus time at room temperature	
	0 0-3 0% C2 with 3ml palm olein	159
96	Stability of o/w emulsions versus time at room temperature	
	0 0-3 0% C2 with 5ml palm olein	160

97	Stability of o/w emulsions versus time at room temperature	
	0 0-3 0% D2 with 1ml palm olein	161
98	Stability of o/w emulsions versus time at room temperature	
	0 0-3 0% D2 with 3ml palm olein	162
99	Stability of o/w emulsions versus time at room temperature	
	0 0-3 0% D2 with 5ml palm olein	163
100	Stability of w/o emulsions versus time at refrigeration temperature	
	0 0-3 0% C2 with 1ml water	166
101	Stability of w/o emulsions versus time at refrigeration temperature	
	0 0-3 0% C2 with 3ml water	167
102	Stability of w/o emulsions versus time at refrigeration temperature	
	0 0-3 0% C2 with 5ml	168
103	Stability of w/o emulsions versus time at refrigeration temperature	
	0 0-3 0% D2 with 1ml water	169
104	Stability of w/o emulsions versus time at refrigeration temperature	
	0 0-3 0% D2 with 3ml water	170
105	Stability of w/o emulsions versus time at refrigeration temperature	
	0 0-3 0% D2 with 5ml Water	171

LIST OF ABBREVIATIONS

A1	Oleic Acid
A2	Oleic Soap
B1	Brominated Oleic Acid
B2	Brominated Oleic Soap
C1	Stearic Acid
C2	Stearic Soap
D1	Brominated Stearic Acid
D2	Brominated Stearic Soap
μ	conductivity
γ	surface tension
μcmc	conductivity at the CMC
Ycmc	surface tension at the CMC
CMC	critical micelle concentration
ppm	parts per million
IR	Infra Red
NMR	Nuclear Magnetic Resonance
CDCI3	deuterated chloroform
o/w	oil-in-water
w/o	water-in-oil

Abstract of the thesis presented to the Senate of Universiti Pertanian Malaysia in fulfilment of requirments for the degree of Master of Science.

SYNTHESIS OF BROMINATED C-18 FATTY ACIDS AND SURFACTANT PROPERTIES OF THEIR SODIUM SALT

By

STEVEN BAPTIST

June 1996

Chairman: Associate Professor Dr. Karen Badri Faculty : Science and Environmental Studies

The physicochemical properties of sodium salts fatty acid have not been thoroughly investigated and are, therefore, not well understood. In line with this, brominated and non-brominated sodium salts of C-18 chain fatty acids were prepared and their physicochemical properties and performance in aqueous solution have been investigated by means of surface tension, conductivity, NMR(¹H and ¹³C) and emulsion stability.

The experimental results indicate that when bromine atom/s were present in the alkyl chain of the fatty acid sodium salts, the surface activity increases. It was also found that closely packed micelles were formed with the introduction of the bromine atom/s onto the hydrophobic region of the surfactant, thus a lower critical micelle concentration was registered. However, the presence of bromine did not affect the formation of stable w/o emulsions.

Abstrak tesis yang dikemukakan kepada Senat Universiti Pertanian Malaysia bagi memenuhi keperluan Ijazah Master Sains.

SYNTHESIS PEMBROMINAN ASID LEMAK DAN CIRI-CIRI SURFAKTAN BAGI GARAM ASID LEMAK TERSEBUT

Oleh STEVEN BAPTIST

Jun 1996

Pengerusi : Professor Madya Dr. Karen Badri Fakulti : Sains dan Pengajian Alam Sekitar

Ciri-ciri fizikal mengenai garam asid lemak tidak dikaji dengan begitu mendalam maka pemahaman mengenainya adalah amat kurang. Oleh yang demikian, garam asid lemak yang mengandungi dan yang tidak mengandungi atom bromin telah disediakan dan ciri-ciri fizikalnya dikaji. Kajian dijalankan menggunakan teknik ketegangan permukaan, konduktiviti, NMR (¹H dan ¹³C) dan kestabilan emulsi.

Hasil kajian menunjukkan bahawa apabila atom bromin dimasukkan pada rantai carbon garam asid lemak, aktiviti permukaannya meningkat. Disamping itu, adalah didapati bahawa misel yang lebih rapat susunannya berjaya dihasilkan dengan kehadiran atom bromin pada kawasan hidrofobic surfaktan tersebut, maka dengan itu konsentrasi kritical misel (CMC) yang lebih rendah didapati. Walau bagaimanapun, kehadiran atom bromin tidak mengganggu pembentukan emulsi air dalam minyak (w/o) yang stabil.

CHAPTER I

INTRODUCTION

World Trends for Oleochemicals

World interest in oleochemistry appears to be increasing, particularly as a means to develop new uses for what seem to be an ever-increasing supply of vegetable oils. Among the more publicized ventures in recent years are printing inks, diesel fuel, lubricating oils and surfactants.

In many cases, oleochemicals often are described as being more "environmentally friendly" than alternate raw materials as they are non-toxic and rapidly biodegradable (Wilhelm, 1993).

According to Appalasami (1995), world oleochemical demand estimated at 4.4 million tonnes in 1990 is expected to reach 6.0 million tonnes in 2000. Fatty acids and glycerine which are building blocks for the production of oleochemical derivatives comprises about fifty percent of this demand. World production of natural fatty acids increased from 1.64 million tonnes in 1980 to 2.13 million in 1990 at an average annual growth rate of 3.0% (Kaufman and Ruebush, 1990). This growth rate is expected to decline to 2% by the year 2000 because of an overall slowdown in the economies of the developed countries, closure of obsolete plants and shift of production to the developing nations, particularly the Far East. Malaysia which contributes almost 30% of the world demand for fatty acids, and with

economies shrinking in the western countries, the industry must brace itself to face the challenges in terms of overcapacity, applications, technology, quality aspects and environmental issues.

It is estimated that there is approximately 40% overcapacity worldwide due to plants operating at 60-70% of their plant capacity (Wilhelm, 1993). This "overcapacity" situation has caused an imbalance in the supply and demand for fatty acids globally in the short and medium term. This coupled with the depressed market conditions due to the continued economic slowdown in major industralized countries has created additional burden on fatty acid operations arising from insufficient demand.

The options available by the fatty acid producers in order to overcome the problems of overcapacity are, firstly, to increase the downstream utilization of fatty acids by producing oleochemical derivatives such as soap, metallic stearates, fatty esters, fatty amines and surfactants. Secondly, to find new applications for their fatty acids, which is the development of new markets based on current products (Weiss, 1979).

The Basis and Objectives of This Research

It has been reported that fatty acids and anionic surfactants derived from these acids possess an inhibitory influence against micro-organisms (Sokoloff *et al.*, 1959). Oleic, linoleic and linolenic acids shows activity against bacteria such as *Lactobacillus helveticus*. Sokoloff *et al.* (1959) also demonstrated that unsaturation is an important factor in determining the activity of fatty acids against bacteria.

Subsequently, the length of the carbon chain was shown to be even more important than unsaturation as far as antibacterial activity was concerned and is also an essential factor in the antifungal activity of fatty acids (Linfield *et al.*, 1960a,b). Meanwhile, bromide although toxic at high concentration, has been widely used as a topical antiseptic and deodorant (Bennington, 1984 and Rahway, 1976). Hence, the prime concern of the present work was to synthesize fatty acids with bromide incorporated and to prepare carboxylate salts from these compounds. Subsequently, they were to be tested for their surfactant properties such as its micelle formation through the surface tension and conductivity methods together with their emulsion stability.

Of the points above, the rationale for undertaking a study on its physical aspects as this work intends to do has the following two interelated points:

- (a) Fundamental scientific understanding of such a chemically useful compound should be broadened to include an understanding of its physical behaviour.
- (b) The results of a physical study may unravel potential industrial applications of the compound.

Hence, we can conclude that the objectives of the work are as follows:

- i) To synthesize brominated fatty acids from saturated and unsaturated carbon-18 fatty acids.
- ii) To prepare carboxylate salts from the brominated and unbrominated carbon-18 fatty acids.

- III) To determine the critical micelle concentration (CMC) of the soaps by various physical methods, and
- iv) To investigate the ability of the emulsifier to form stable emulsion preparations

When one dispassionately considers the above objectives in relation to the physical properties of the surfactants, one can forsee experimental and theoretical interpretation difficulties that lie ahead Indeed, a survey of the relevant literature will indicate that very seldom do surface properties of surfactants lead to entirely unarguable conclusions. More often than not, one's explanation can be perfectly plausible without being accepted as unarguably correct.

This work does not aim at creating unassailable theoretical models or unarguable explanations Rather, existing accepted theories will be appropriate utilised, with modifications if necessary, to explain the acquired data. The originality of the work will lie in its being the first to study the brominated anionic surfactants prepared from fatty acids.

It is hoped that the report in this thesis will not only contribute new knowledge concerning surfactant properties of brominated anionics, but will also serve as a guiding reference to those contemplating further research on physical properties of the compounds

CHAPTER II

LITERATURE REVIEW

Oleochemicals

Natural Fatty Acids

The main sources of natural fatty acids for oleochemicals have been animal fats and tall oils with supplementation of lower quality raw materials available from the major edible oils (Ooi *et al.*, 1994 and Gunstone *et al*, 1986). This means that most straight chain, even-carbon number carboxylic acids occuring in the triglycerides of common oils and fats are readily available. The fatty acids embrace a large pool of chemical structures containing features such as homologues of C₂-C₂₄, *cus*-monoenoic acids, and double or multiple (non-conjugated) double bond (normally *cus*) systems.

Oleic acid (*cus*-octadecenoic acid), C18:1, is one of the most widely distributed monounsaturated fatty acid found in most vegetable oils and is one of the main fatty acid components in palm oil, which amounts to 37.5% (by weight). It is a C-18 fatty acid with an unsaturated double bond at the C₉. Besides being useful for human consumption, oleic acid may be regarded as an important raw material for the production of oleochemicals and in the preparation of high-technology lubricants or cosmetics. Stearic acid (octadecanoic acid), C18:0, is the saturated C-18 fatty acid which is commonly used in the production of surfactants,

cosmetics, detergents, soaps, pharmaceuticals and lubricants. However, palm oil's stearic acid content is considerably with lower than the oleic acid content with an amount of only 4.0% (by weight). Figure 1 shows the chemical structures of oleic and stearic acid.

(b) Stearic Acid (octadecanoic acid) C18:0

Figure 1. Structures of Fatty Acids (a) Oleic Acid and (b) Stearic Acid

Halogenation of Fatty Acid

Fatty acids in today's markets find their way into thousand of uses such as cosmetics, soap, metallic soaps, rubber applications, candles and water repellents where probably most of their uses are via halogenated derivatives (Soontag, 1963 and Ong, 1992). The diversity of end use application is partially explained by the

relatively low cost of fatty acids, their physiological compatibility with humans and animals, availability of raw materials and the highly functional surface activity of the derivatives.

Synthetic Aspects of Fat Halogenation

Halogenated fats or fatty derivatives are generally prepared by the addition of halogen to carbon-carbon unsaturated functional groups or by substitution of the hydrogen atoms of methylene groups with halogen or substitution of hydroxyl component of carboxyl groups with halogen. The common free halogens such as bromine or chlorine, add to unsaturated double or triple bonds (Lyness and Quackenbush, 1955); hydrogen halide may also be added (Jungermann and Spoerri, 1958). Substitution of the hydrogen atom of a methylene group of an aliphatic chain occurs with the common free halogens, and may be directed specifically to the 2position, or may be "random" in the sense that monohalogenation of other positions more remote from the carboxyl group may be carried out. Polychlorination, where no more than one chlorine atom may be attatched to the site of a single carbon atom, may also be achieved; however, rarely do two halogen atoms enter fatty molecules by substitution at the site of a single carbon atom of the chain, except in the case of acetic acid (Soontag, 1963).

The "free-radical" substitution of hydrogen by halogen in aliphatic chains are classified with respects to the source of the halogen free radicals, thus from free halogens by irradiation (Kohen and Stevenson, 1965), from sulfuryl chloride with

peroxides, from N-halosuccinimides (Hoi and Demerseman, 1953) and from carbon tetrachloride by irradiation.

As halogenation takes place either by substitution or addition, the reaction of both types are frequently employed for analytical purposes with the fatty acids or their derivatives. The reactivity of the halogens for both substitution and addition reactions is in inverse relationship to their molecular weight, which is in the opposite of that encountered with the hydrogen halides (Soontag, 1968). Chlorine and bromine are capable of both substitution and addition reactions, whereas iodine must be added slowly and does not generally yield substitution products (Soontag, 1968).

The contention that halogen additions to ethylenes constitute chain reactions involving radicals has received substantial support. It occurs through a transition state for halogen additions, one of the halogen atoms accepting a pair of electrons from the ethylene, the other atom thus assuming a negative charge. The negative halogen then migrates to the positive carbon atom of the ethylene, thereby completing the addition. The action of bromine on the ethylene bond may be presented as follows :

$$CH_2::CH_2 + Br:Br \rightarrow CH_2:CH_2:Br:Br \rightarrow Br:CH_2:CH_2:Br$$

The ethylenic bond thus function as a pseudo base, the intermediate assuming a linear configuration the resonating forms of which are $CH_2::CH_2Br:Br$ and $CH_2:CH_2:Br:Br$ (Ralston, 1963). The effect of alkyl substitution upon orientation,

the marked catalytic effect of water upon halogenation, and other considerations lend considerable support to this mechanism (Ralston, 1963).

The halogenation of monoethylenic acid presents the simplest case of halogenation of unsaturated fatty acids. The addition of bromine or chlorine to a monoethylenic acid yields the corresponding dihalo saturated acids; for example bromine adds to oleic acid to form 9,10-dibromostearic acid which melts at 28.5-29°C and is isomeric with the 9,10-dibromostearic acid melting at 29-30°C obtained from elaidic acid (Nevenzel and Howton, 1957 and Demetrious and Kummerow, 1963).

All the polyethylenic acids add halogens with the ultimate formation of the corresponding saturated halo acids. It is well known, however, that the rate of addition of halogens varies widely, depending upon the relative position of the double bonds. Conjugated acids, for instance, have a markedly different rate of addition than those containing unconjugated systems. The rate of addition to oleic, linoleic and linolenic acids increases with increasing unsaturation; however, a longer time is required for the complete bromination of the more highly unsaturated acids (Ralston, 1963).

The substitution of chlorine or bromine for hydrogen in the alkyl chain of the fatty acids, with the formation of either mono- or polyhalo acids, can be accomplished. It is generally assumed that a hydrogen upon the α -carbon atom is first replaced so that monohalogenation yields essentially an α -halo acid. This preference for α -halogenation has been ascribed to enolization. If the halogenation is continued, any of the hydrogens attatched to methylene groups may be involved.

Halogen substitution in the saturated acids can be accomplished through the "Hell-Volhard-Zelinsky" reaction using phosphorus as a catalyst or through "free-radical" substitution by employing N-halosuccinimides. These reactions are generally employed for the preparation of their α -bromo derivatives.

Free radical bromination with N-bromosuccinimide have been shown to be an elegant way to introduce a bromine atom at the allyl position of a double bond (Vogel, 1957) and at an α -carbon of the saturated fatty acid. Naudet and Ucciani (1960,1961,1963a,c) determined the extent of mono and dibromination which occured in the reaction of methyl oleate and N-bromosuccinimide. It was concluded that substitution of bromine for hydrogen took place on both sides of the double bond, possibly by a route other than a free radical mechanism. The products which were formed through the reaction were characterized by their behaviour towards alcoholic silver nitrate. Infrared spectroscopy can be employed to show that Nbromosuccinimide reacted with oleic and elaidic acids with geometrical isomerization at the double bond (Naudet *et al.*, 1963b). The isomerization occured in reactions yielding brominated and nonbrominated products. Nanavati *et al.* (1959) reported that the reaction proceeds by free radical removal of allylic hydrogen, which favors subsequent free rotation at the double bond.

Surfactant Classification

Surfactants can generally be classified into four types, namely, anionic, cationic, nonionic and amphoterics. Their definitions are given as follows :

