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PROPERTIES OF THEIR SODIUM SALT
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The physicochemical properties of sodium salts fatty acid have not been
thoroughly investigated and are, therefore, not well understood. In line with this,
brominated and non-brominated sodium salts of C-18 chain fatty acids were prepared
and their physicochemical properties and performance in aqueous solution have been
investigated by means of surface tension, conductivity, NMR('H and BC) and
emulsion stability.

The experimental results indicate that when bromine atom/s were present in
the alkyl chain of the fatty acid sodium salts, the surface activity increases. It was also
found that closely packed micelles were formed with the introduction of the bromine
atom/s onto the hydrophobic region of the surfactant, thus a lower critical micelle
concentration was registered. However, the presence of bromine did not affect the

formation of stable w/o emulsions.
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Ciri-ciri fizikal mengenai garam asid lemak tidak dil;aji dengan begitu
mendalam maka pemahaman mengenainya adalah amat kurang. Oleh yang demikian,
garam asid lemak yang mengandungi dan yang tidak mengandungi atom bromin telah
disediakan dan ciri-ciri fizikalnya dikaji. Kajian dijalankan menggunakan teknik
ketegangan permukaan, konduktiviti, NMR (‘H dan *C) dan kestabilan emulsi.

Hasil kajian menunjukkan bahawa apabila atom bromin dimasukkan pada
rantai carbon garam asid lemak, aktiviti permukaannya meningkat. Disamping itu,
adalah didapati bahawa misel yang lebih rapat susunannya berjaya dihasilkan dengan
kehadiran atom bromin pada kawasan hidrofobic surfaktan tersebut, maka dengan itu
konsentrasi kritical misel (CMC) yang lebih rendah didapati. Walau bagaimanapun,
kehadiran atom bromin tidak mengganggu pembentukan emulsi air dalam minyak

(w/o) yang stabil.
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CHAPTERI1
INTRODUCTION

World Trends for Oleochemicals

World interest in oleochemistry appears to be increasing, particularly as a
means to develop new uses for what seem to be an ever-increasing supply of
vegelable oils. Among the more publicized ventures in recent years are printing inks,
diesel fuel, lubricating oils and surfactants.

In many cases, oleochemicals olten are described as being more
“environmentally friendly” than alternate raw materials as they are non-toxic and
rapidly biodegradable (Wilhelm, 1993).

According to Appalasami (1995), world oleochemical demand estimated at
4.4 million tonnes in 1990 is expected to reach 6.0 million tonnes in 2000. Fatty
acids and glycerine which are building blocks for the production of oleochemical
derivatives comprises about fifty percent of this demand. World production of
natural fatty acids increased from 1.64 million tonnes in 1980 to 2.13 million in
1990 at an average annual growth rate ot 3.0% (Kaufman and Ruebush, 1990). This
growth rate is expected to decline to 2% by the year 2000 because of an overall
slowdown in the economies of the developed countries, closure of obsolete plants
and shitt of production to the developing nations, particularly the Far East. Malaysia

which contributes almost 30% ol the world demand for fatty acids, and with



economies shrinking in the western countries, the industry must brace itself to face
the challenges in terms of overcapacity, applications, technology, quality aspects
and environmental issues.

It is estimated that there is approximately 40% overcapacity worldwide due
to plants operating at 60-70% of their plant capacity (Wilhelm, 1993). This
“overcapacity” situation has caused an imbalance in the supply and demand for fatty
acids globally in the short and medium term. This coupled with the depressed
market conditions due to the continued economic slowdown in major industralized
countries has created additional burden on fatty acid operations arising from
insufficient demand.

The options available by the (atty acid producers in order to overcome the
problems of overcapacity are, firstly, to increase the downstream utilization of fatty
acids by producing oleochemical derivatives such as soap, metallic stearates, fatty
esters, fatty amines and surfactants. Secondly, to find new applications for their fatty
acids, which is the development of new markets based on current products (Weiss,

1979).

The Basis and Objectives of This Research
It has been reported that fatty acids and anionic surfactants derived from
these acids possess an inhibitory influence against micro-organisms (Sokoloft ef /.,
1959). Oleic, linoleic and linolenic acids shows activity against bacteria such as
Lactobactllus helveticus. Sokolott er al. (1959) also demonstrated that unsaturation

is an important factor in determining the activity of fatty acids against bacteria.



Subsequently, the length of the carbon chain was shown to be even more important
than unsaturation as far as antibacterial activity was concerned and is also an
essential factor in the antifungal activity of fatty acids (Linfield es al., 1960a,b).
Meanwhile, bromide although toxic at high concentration, has been widely used as a
topical antiseptic and deodorant (Bennington, 1984 and Rahway, 1976). Hence, the
prime concern of the present work was to synthesize fatty acids with bromide
incorporated and to prepare carboxylate salts from these compounds. Subsequently,
they were to be tested for their surfactant properties such as its micelle formation
through the surface tension and conductivity methods together with their emulsion
stability.
Of the points above, the rationale for undertaking a study on its physical

aspects as this work intends to do has the following two interelated points:
(a) Fundamental scientific understanding of such a chemically useful compound

should be broadened to include an understanding of its physical behaviour.
(b) The results of a physical study may unravel potential industrial applications of

the compound.

Hence, we can conclude that the objectives of the work are as follows:

i) To synthesize brominated fatty acids from saturated and unsaturated carbon-18

fatty acids.
i1) To prepare carboxylate salts from the brominated and unbrominated carbon-18

fatly acids.



i) To determine the critical micelle concentration (CMC) of the soaps by various
physical methods, and

1v) To investigate the ability of the emulsifier to form stable emulsion preparations

When one dispassionately considers the above objectives 1n relation to the
physical properties of the surfactants, one can forsee experimental and theoretical
interpretation difficulties that he ahead Indeed, a survey of the relevant literature
will indicate that very seldom do surface properties of surfactants lead to entirely
unarguable conclusions More often than not, one’s explanation can be perfectly
plausible without being accepted as unarguably correct

This work does not aim at creating unassailable theoretical models or
unarguable explanations Rather, existing accepted theories will be appropriate
utilised, with modifications 1f necessary, to explain the acquired data The
originality of the work will lie 1n 1ts being the first to study the brominated anionic
surfactants prepared from fatty acids

It 1s hoped that the report in this thesis will not only contribute new
knowledge concerning surtactant properties of brominated anionics, but will also
serve as a guiding reference to those contemplating further research on physical

properties of the compounds



CHAPTER 11
LITERATURE REVIEW
Olcochemicals
Natural Fatty Acids

The main sources of natural fatty acids for oleochemicals have been animal
lats and tall o1ls with supplementation ol lower quality raw materials available from
the major edible oils (Ooi et al., 1994 and Gunstone ez «f, 1986). This means that
most straight chain, even-carbon number carboxylic acids occuring in the
triglycerides of common oils and fats are readily available. The fatty acids embrace
a large pool of chemical structures containing features such as homologues of C-
C,s, c1s-monoenoic acids, and double or multiple (non-conjugated) double bond
(normally ces) systems.

Oleic acid (cus-octadecenoic acid), CI18:1, is one of .the most widely
distributed monounsaturated fatty acid found in most vegetable oils and is one of
the main fatty acid components in palm oil, which amounts to 37.5% (by weight). It
is a C-18 fatty acid with an unsaturated double bond at the Cy. Besides being useful
for human consumption, oleic acid may be regarded as an important raw material
for the production of oleochemicals and in the preparation of high-technology
lubricants or cosmetics. Stearic acid (octadecanoic acid), C18:0, is the saturated

C-18 fatty acid which is commonly used in the production of surfactants,



cosmetics, detergents, soaps, pharmaceuticals and lubricants. However, palm oil’s
stearic acid content is considerably with lower than the oleic acid content with an
amount of only 4.0% (by weight). Figure 1 shows the chemical structures of oleic

and stearic acid.

\/\/\/\/\/\/\/\/\<0
OH

(a) Oleic Acid (cis-octadecenoic acid) C18:1

\/\/\/\/\/\/\/\/\<O
OH
(b) Stearic Acid (octadecanoic acid) C18:0

Figure 1. Structures of Fatty Acids (a) Oleic Acid and (b) Stearic Acid

Halogenation of Iatty Acid

Fatty acids in today’s markets find their way into thousand of uses such as
cosmetics, soap, metallic soaps, rubber applications, candles and water repellents
where probably most of their uses are via halogenated derivatives (Soontag, 1963

and Ong, 1992). The diversity ot end use application is partially explained by the



relatively low cost of fatty acids, their physiological compatibility with humans and

animals, availability of raw materiais and the highly functional surface activity of

the derivatives.

Synthetic Aspects of Fat Halogenation

Halogenated fats or fatty derivatives are generally prepared by the addition
of halogen to carbon-carbon unsaturated functional groups or by substitution of the
hydrogen atoms of methylene groups with halogen or substitution of hydroxyl
component of carbbxyl groups with halogen. The common free halogens such as
bromine or chlorine, add to unsaturated double or triple bonds (Lyness and
Quackenbush, 1955); hydrogen halide may also be added (Jungermann and Spoerri,
1958). Substitution of the hydrogen atom of a methylene group of an aliphatic chain
occurs with the common free halogens, and may be directed specifically to the 2-
position, or may be “random” in the sense that monohalogenation of other positions
more remote from the carboxyl group may be carried out. Polychlorination, where
no more than one chlorine atom may be attatched to the site of a single carbon atom,
may also be achieved; however, rarcly do two halogen atoms enter fatty molecules
by substitution at the site of a single carbon atom of the chain, except in the case of
acetic acid (Soontag, 1963).

The “free-radical” substitution of hydrogen by halogen in aliphatic chains
are classified with respects to the source of the halogen free radicals, thus from free

halogens by irradiation (Kohen and Stevenson, 1965), from sulfuryl chloride with



peroxides, from N-halosuccinimides (Hoi and Demerseman, 1953) and from carbon

tetrachloride by irradiation.

As halogenation takes place either by substitution or addition, the reaction
of both types are frequently employed for analytical purposes with the fatty acids or
their derivatives. The reactivity of the halogens for both substitution and addition
reactions is in inverse relationship to their molecular weight, which is in the
opposite of that encountered with the hydrogen halides (Soontag, 1968). Chlorine
and bromine are capable of both substitution and addition reactions, whereas iodine
must be added slowly and does not generally yield substitution products (Soontag,
1968).

The contention that halogen additions to ethylenes constitute chain reactions
involving radicals has received substantial support. It occurs through a transition
state for halogen additions, one of the halogen atoms accepting a pair of electrons
from the ethylene, the other atom thus assuming a negative charge. The negative
halogen then migrates to the positive carbon atom of the ethylene, thereby
completing the addition. The action of bromine on the ethylene bond may be
presented as follows :

+ _
Cll:Cll, + Br:Br —»  CHy:CH,:Br:Br — Br:CH,:CH; :Br

The ethylenic bond thus function as a pseudo base, the intermediate assuming a
linear configuration the resonating torms of which are CH,::CH,Br:Br and

CH,:CH,:Br:Br (Ralston, 1963). The effect of alkyl substitution upon orientation,



the marked catalytic ettect of water upon halogenation, and other considerations
lend considerable support to this mechanism (Ralston, 1963).

The halogenation of monoethylenic acid presents the simplest case of
halogenation of unsaturated fatty acids. The addition of bromine or chlorine to a
monoethylenic acid yields the corresponding dihalo saturated acids; for example
bromine adds to oleic acid to form 9,10-dibromostearic acid which melts at 28.5-
29°C and is isomeric  with the 9 10-dibromostearic acid melting at 29-30°C
obtained from elaidic acid (Nevenzel and Howton, 1957 and Demetrious and
Kummerow, 1963).

All the polyethylenic acids add halogens with the ultimate formation of the
corresponding saturated halo acids. It is well known, however, that the rate of
addition of halogens varies widely, depending upon the relative position of the
double bonds. Conjugated acids, for instance, have a markedly different rate of
addition than those containing unconjugated systems. The rate of addition to oleic,
linoleic and linolenic acids increases with increasing unsaturation; however, a
longer time is required for the complete bromination of the more highly unsaturated
acids (Ralston, 1963).

The substitution ol chlorine or bromine for hydrogen in the alkyl chain of the
fatty acids, with the formation of either mono- or polyhalo acids, can be
accomplished. It is generally assumed that a hydrogen upon the o-carbon atom is
first replaced so that monohalogenation yields essentially an a-halo acid. This

preference for a-halogenation has been ascribed to enolization. 1f the halogenation

is continued, any of the hydrogens attatched to methylene groups may be involved.
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Halogen substitution in the saturated acids can be accomplished through the
*Hell-Volhard-Zelinsky” reaction using phosphorus as a catalyst or through “free-
radical” substitution by employing N-halosuccinimides. These reactions are
generally employed for the preparation of their a-bromo derivatives.

I‘ree radical bromination with N-bromosuccinimide have been shown to be
an elegant way to introduce a bromine atom at the allyl position of a double bond
(Vogel, 1957) and at an a-carbon of the saturated fatty acid. Naudet and Ucciani
(1960,1961,1963a,c) determined the extent of mono and dibromination which
occured in the reaction of methyl oleate and N-bromosuccinimide. It was concluded
that substitution of bromine for hydrogen took place on both sides of the double
bond, possibly by a route other than a free radical mechanism. The products which
were formed through the reaction were characterized by their behaviour towards
alcoholic silver nitrate. Infrared spectroscopy can be employed to show that N-
bromosuccinimide reacted with oleic and elaidic acids with geometrical
isomerization at the double bond (Naudet e /., 1963b). The isomerization occured
in reactions yielding brominated and nonbrominated products. Nanavati et al.
(1959) reported that the reaction proceeds by free radical removal of allylic

hydrogen, which favors subsequent free rotation at the double bond.

Surfactant Classification
Surfactants can generally be classified into four types, namely, anionic,

cationic, nonionic and amphoterics. Their definitions are given as follows :



